Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

Utilizing Frequent Pattern Mining for Solving Cold-Start Problem in Recommender Systems

, ,

DOI: http://dx.doi.org/10.15439/2022F86

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 217226 ()

Full text

Abstract. Although several approaches have been proposed throughout the last decade to build recommender systems (RS), most of them suffer from the cold-start problem. This problem occurs when a new item hits the system or a new user signs up. It is generally recognized that the ability to handle cold users and items is one of the key success factors of any new recommender algorithm. This paper introduces a frequent pattern mining framework for recommender systems (FPRS) - a novel approach to address this challenging task. FPRS is a hybrid RS that incorporates collaborative and content-based recommendation algorithms and employs a frequent pattern (FP) growth algorithm. The article proposes several strategies to combine the generated frequent itemsets with content-based methods to mitigate the cold-start problem for both new users and new items. The performed empirical evaluation confirmed its usefulness. Furthermore, the developed solution can be easily combined with any other approach to build a recommender system and can be further extended to make up a complete and standalone RS.

References

  1. Z. Batmaz, A. Yürekli, A. Bilge, and C. Kaleli, “A review on deep learning for recommender systems: challenges and remedies,” Artif. Intell. Rev., vol. 52, no. 1, pp. 1–37, 2019. http://dx.doi.org/10.1007/s10462-018-9654-y
  2. M. Kawai, H. Sato, and T. Shiohama, “Topic model-based recommender systems and their applications to cold-start problems,” Expert Systems with Applications, vol. 202, p. 117129, 2022. http://dx.doi.org/10.1016/j.eswa.2022.117129
  3. M. Pulis and J. Bajada, Siamese Neural Networks for Content-Based Cold-Start Music Recommendation. New York, NY, USA: Association for Computing Machinery, 2021, p. 719723. ISBN 9781450384582
  4. E. Kannout, “Context clustering-based recommender systems,” in 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 2020. http://dx.doi.org/10.15439/2020F54 pp. 85–91.
  5. M. Pondel and J. Korczak, “Collective clustering of marketing data - recommendation system upsaily,” in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 15, 2018. http://dx.doi.org/10.15439/2018F217 pp. 801–810.
  6. B. Yi, X. Shen, H. Liu, Z. Zhang, W. Zhang, S. Liu, and N. Xiong, “Deep Matrix Factorization With Implicit Feedback Embedding for Recommendation System,” IEEE Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4591–4601, 2019. http://dx.doi.org/10.1109/TII.2019.2893714
  7. M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, “Evaluating Collaborative Filtering Recommender Algorithms: A Survey,” IEEE Access, vol. 6, pp. 74 003–74 024, 2018. http://dx.doi.org/10.1109/ACCESS.2018.2883742
  8. R. Chen, Q. Hua, Y.-S. Chang, B. Wang, L. Zhang, and X. Kong, “A Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks,” IEEE Access, vol. 6, pp. 64 301–64 320, 2018. http://dx.doi.org/10.1109/ACCESS.2018.2877208
  9. B. Walek and V. Fojtik, “A hybrid recommender system for recommending relevant movies using an expert system,” Expert Systems with Applications, vol. 158, p. 113452, 2020. http://dx.doi.org/10.1016/j.eswa.2020.113452
  10. Y. Pérez-Almaguer, R. Yera, A. A. Alzahrani, and L. Martínez, “Content-based group recommender systems: A general taxonomy and further improvements,” Expert Systems with Applications, vol. 184, p. 115444, 2021. http://dx.doi.org/10.1016/j.eswa.2021.115444
  11. Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network,” Simulation Modelling Practice and Theory, vol. 113, p. 102375, 2021. http://dx.doi.org/10.1016/j.simpat.2021.102375
  12. R. Pasricha and J. McAuley, “Translation-Based Factorization Machines for Sequential Recommendation,” in Proceedings of the 12th ACM Conference on Recommender Systems, ser. RecSys’18. New York, NY, USA: Association for Computing Machinery, 2018. http://dx.doi.org/10.1145/3240323.3240356. ISBN 9781450359016 p. 6371.
  13. H. Wu, Z. Zhang, K. Yue, B. Zhang, J. He, and L. Sun, “Dualregularized matrix factorization with deep neural networks for recommender systems,” Knowledge-Based Systems, vol. 145, pp. 46–58, 2018. http://dx.doi.org/10.1016/j.knosys.2018.01.003
  14. F. Liu, R. Tang, X. Li, W. Zhang, Y. Ye, H. Chen, H. Guo, and Y. Zhang, “Deep Reinforcement Learning based Recommendation with Explicit User-Item Interactions Modeling,” 2018.
  15. M. K. Najafabadi, A. H. Mohamed, and M. N. Mahrin, “A survey on data mining techniques in recommender systems,” Soft Comput., vol. 23, no. 2, pp. 627–654, 2019. http://dx.doi.org/10.1007/s00500-017-2918-7
  16. M. Grzegorowski, A. Janusz, S. Lazewski, M. Swiechowski, and M. Jankowska, “Prescriptive analytics for optimization of FMCG delivery plans,” in Information Processing and Management of Uncertainty in Knowledge-Based Systems - 19th International Conference, IPMU 2022, Milan, Italy, July 11-15, 2022, Proceedings, Part II, ser. Communications in Computer and Information Science, D. Ciucci, I. Couso, J. Medina, D. Ślęzak, D. Petturiti, B. Bouchon-Meunier, and R. R. Yager, Eds., vol. 1602. Springer, 2022. http://dx.doi.org/10.1007/978-3-031-08974-9_4 pp. 44–53.
  17. A. Janusz, M. Grzegorowski, M. Michalak, Ł. Wróbel, M. Sikora, and D. Ślęzak, “Predicting Seismic Events in Coal Mines Based on Underground Sensor Measurements,” Engineering Applications of Artificial Intelligence, vol. 64, pp. 83–94, 2017.
  18. Z. Zhu, J. Kim, T. Nguyen, A. Fenton, and J. Caverlee, Fairness among New Items in Cold Start Recommender Systems. New York, NY, USA: Association for Computing Machinery, 2021, p. 767776. ISBN 9781450380379
  19. Z. Cui, X. Xu, F. XUE, X. Cai, Y. Cao, W. Zhang, and J. Chen, “Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios,” IEEE Transactions on Services Computing, vol. 13, no. 4, pp. 685–695, 2020. http://dx.doi.org/10.1109/TSC.2020.2964552
  20. A. Karpus, I. Vagliano, K. Goczyla, and M. Morisio, “An ontology-based contextual pre-filtering technique for recommender systems,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 8. IEEE, 2016. http://dx.doi.org/10.15439/2016F428 pp. 411–420.
  21. S. Natarajan, S. Vairavasundaram, S. Natarajan, and A. H. Gandomi, “Resolving data sparsity and cold start problem in collaborative filtering recommender system using linked open data,” Expert Systems with Applications, vol. 149, p. 113248, 2020. http://dx.doi.org/10.1016/j.eswa.2020.113248
  22. A. Karpus, I. Vagliano, and K. Goczyla, “Serendipitous recommendations through ontology-based contextual pre-filtering,” in Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation - 13th International Conference, BDAS 2017, Ustroń, Poland, May 30 - June 2, 2017, Proceedings, ser. Communications in Computer and Information Science, S. Kozielski, D. Mrozek, P. Kasprowski, B. Malysiak-Mrozek, and D. Kostrzewa, Eds., vol. 716, 2017. http://dx.doi.org/10.1007/978-3-319-58274-0_21 pp. 246–259.
  23. A. Pawlicka, M. Pawlicki, R. Kozik, and R. S. Chora, “A systematic review of recommender systems and their applications in cybersecurity,” Sensors, vol. 21, no. 15, 2021. http://dx.doi.org/10.3390/s21155248. [Online]. Available: https://www.mdpi.com/1424-8220/21/15/5248
  24. K. Ghazinour, S. Matwin, and M. Sokolova, “Monitoring and recommending privacy settings in social networks,” in Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa, Italy, March 22, 2013, Workshop Proceedings, G. Guerrini, Ed. ACM, 2013. doi: 10.1145/2457317.2457344 pp. 164–168.
  25. A. L. Vizine Pereira and E. R. Hruschka, “Simultaneous co-clustering and learning to address the cold start problem in recommender systems,” Knowledge-Based Systems, vol. 82, pp. 11–19, 2015. http://dx.doi.org/10.1016/j.knosys.2015.02.016
  26. M. Nilashi, O. Ibrahim, and K. Bagherifard, “A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques,” Expert Systems with Applications, vol. 92, pp. 507–520, 2018. http://dx.doi.org/10.1016/j.eswa.2017.09.058
  27. M. Grzegorowski, A. Janusz, D. Ślęzak, and M. S. Szczuka, “On the role of feature space granulation in feature selection processes,” in 2017 IEEE International Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, December 11-14, 2017, J. Nie, Z. Obradovic, T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, J. Kepner, A. Cuzzocrea, J. Tang, and M. Toyoda, Eds. IEEE Computer Society, 2017. http://dx.doi.org/10.1109/BigData.2017.8258124 pp. 1806–1815.
  28. M. Grzegorowski and D. Ślęzak, “On resilient feature selection: Computational foundations of r-C-reducts,” Inf. Sci., vol. 499, pp. 25–44, 2019. http://dx.doi.org/10.1016/j.ins.2019.05.041
  29. M. Grzegorowski, “Governance of the Redundancy in the Feature Selection Based on Rough Sets’ Reducts,” in Rough Sets - International Joint Conference, IJCRS 2016, Santiago de Chile, Chile, October 7-11, 2016, Proceedings, ser. Lecture Notes in Computer Science, V. Flores, F. A. C. Gomide, A. Janusz, C. Meneses, D. Miao, G. Peters, D. Ślęzak, G. Wang, R. Weber, and Y. Yao, Eds., vol. 9920, 2016. http://dx.doi.org/10.1007/978-3-319-47160-0_50 pp. 548–557. [Online]. Available: https://doi.org/10.1007/978-3-319-47160-0_50
  30. M. asid and R. Ali, Use of Soft Computing Techniques for Recommender Systems: An Overview. Singapore: Springer Singapore, 2017, pp. 61–80. ISBN 978-981-10-7098-3
  31. I. Viktoratos, A. Tsadiras, and N. Bassiliades, “Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems,” Expert Systems with Applications, vol. 101, pp. 78–90, 2018. http://dx.doi.org/doi.org/10.1016/j.eswa.2018.01.044
  32. H. Steck, “Collaborative filtering via high-dimensional regression,” CoRR, vol. abs/1904.13033, 2019. http://dx.doi.org/10.48550/ARXIV.1904.13033
  33. H. Kwasnicka and T. Ovedenski, “Pix2trips - a system supporting small groups of urban tourists,” in Proceedings of the 16th Conference on Computer Science and Intelligence Systems, Online, September 2-5, 2021, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 25, 2021. http://dx.doi.org/10.15439/2021F130 pp. 141–145.
  34. H. Sobhanam and A. K. Mariappan, “Addressing cold start problem in recommender systems using association rules and clustering technique,” in 2013 International Conference on Computer Communication and Informatics, 2013. http://dx.doi.org/10.1109/ICCCI.2013.6466121 pp. 1–5.
  35. W. Feng, Q. Zhu, J. Zhuang, and S. Yu, “An expert recommendation algorithm based on pearson correlation coefficient and fp-growth,” Clust. Comput., vol. 22, no. Supplement, pp. 7401–7412, 2019. http://dx.doi.org/10.1007/s10586-017-1576-y
  36. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, ser. UAI’98. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998. ISBN 155860555X p. 4352.
  37. M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative filtering recommender systems,” Found. Trends Hum.-Comput. Interact., vol. 4, no. 2, p. 81173, feb 2011. http://dx.doi.org/10.1561/1100000009. [Online]. Available: https://doi.org/10.1561/1100000009
  38. J. Han, M. Kamber, and J. Pei, “6 - mining frequent patterns, associations, and correlations: Basic concepts and methods,” in Data Mining (Third Edition), third edition ed., ser. The Morgan Kaufmann Series in Data Management Systems, J. Han, M. Kamber, and J. Pei, Eds. Boston: Morgan Kaufmann, 2012, pp. 243–278. ISBN 978-0-12-381479-1. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B978012381479100006X
  39. J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for association rule mining a general survey and comparison,” SIGKDD Explor. Newsl., vol. 2, no. 1, p. 5864, jun 2000. http://dx.doi.org/10.1145/360402.360421. [Online]. Available: https://doi.org/10.1145/360402.360421
  40. U. Fayyad, Knowledge Discovery in Databases: An Overview. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 28–47. ISBN 978-3-662-04599-2. [Online]. Available: https://doi.org/10.1007/978-3-662-04599-2_2
  41. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” in Proceedings of the 20th International Conference on Very Large Data Bases, ser. VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994. ISBN 1558601538 p. 487499.
  42. J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” SIGMOD Rec., vol. 29, no. 2, p. 112, may 2000. http://dx.doi.org/10.1145/335191.335372. [Online]. Available: https://doi.org/10.1145/335191.335372
  43. T. Silveira, M. Zhang, X. Lin, Y. Liu, and S. Ma, “How good your recommender system is? A survey on evaluations in recommendation,” International Journal of Machine Learning and Cybernetics, vol. 10, pp. 813–831, 2019. http://dx.doi.org/10.1007/s13042-017-0762-9
  44. M. Grzegorowski, “Massively Parallel Feature Extraction Framework Application in Predicting Dangerous Seismic Events,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 8. IEEE, 2016. http://dx.doi.org/10.15439/2016F90 pp. 225–229. [Online]. Available: https://doi.org/10.15439/2016F90
  45. E. Zdravevski, P. Lameski, R. Mingov, A. Kulakov, and D. Gjorgjevikj, “Robust histogram-based feature engineering of time series data,” in 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland, September 13-16, 2015, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 5. IEEE, 2015. http://dx.doi.org/10.15439/2015F420 pp. 381–388. [Online]. Available: https://doi.org/10.15439/2015F420
  46. M. Grzegorowski and S. Stawicki, “Window-based feature extraction framework for multi-sensor data: A posture recognition case study,” in 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland, September 13-16, 2015, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 5. IEEE, 2015. http://dx.doi.org/10.15439/2015F425 pp. 397–405.