
Improving N-NEH+ algorithm by using

Starting Point method

Radosław Puka

AGH University of Science and Technology in Kraków,

ul. Gramatyka 10, 30-067 Kraków, Poland

Email: rpuka@zarz.agh.edu.pl

Bartosz Łamasz, Iwona Skalna

AGH University of Science and Technology

in Kraków,

ul. Gramatyka 10, 30-067 Kraków, Poland

Email: {blamasz, iskalna}@zarz.agh.edu.pl

Abstract—The N-NEH+ algorithm is one of the most efficient
construction algorithms for solving the permutation flow-shop
problem with the makespan criterion. It extends the well-known
NEH heuristic with the N-list technique. In this paper, we propose
the Starting Point (SP) method that employs a new strategy for
using the N-list technique. The SP method allows to obtain an
algorithm that is a combination of NEH and an N-list-based
algorithm. Extensive numerical experiments on the standard set
of Taillard’s and VRF benchmarks show that the SP method
significantly improves the results (average relative percentage
deviation) of the NEH and N-NEH+ algorithms.

I. INTRODUCTION

T
HE permutation flow-shop problem (PFSP) is one of the

most famous combinatorial optimization problems in the

industry. It can be defined as follows: given two finite sets of

m machines {M1, . . . ,Mm} and n jobs {J1, . . . , Jn}, each

of which should go through all the m machines in the same

order, the goal is to find the ordering of jobs that minimizes the

assumed goal function (makespan, total tardiness, flow time,

cost, energy consumption, etc.).

The PFSP with makespan criterion, commonly referred to as

Fm|prmu|Cmax [1], which is our main concern, is undoubtedly

the most frequently investigated scheduling problem. Garey

and Johnson [2] have shown that Fm|prmu|Cmax is NP-hard

if m ~ 3. Therefore, various heuristic algorithms have been

developed to solve this problem. One of the most popular

algorithms for solving Fm|prmu|Cmax is the O(n3m) NEH

construction heuristic proposed by Navaz, Enscore and Ham

[3]. Since 1983 NEH has been commonly regarded as the best

heuristic for solving Fm|prmu|Cmax, and many attempts have

been made to improve it. Taillard [4] proposed the so-called

acceleration technique that reduces the asymptotic time com-

plexity of NEH to O(n2m). New criteria were proposed for the

initial job classification, e.g., in [5], [6], [7]. The problem of

tie-breaking (i.e., how to choose among different subsequences

with the same best partial makespan) was considered, e.g., in

[8], [9], [10]. One of the most efficient modifications of NEH

is the N-NEH+ algorithm recently proposed by Puka et al. [11]

which, roughly speaking, combines the NEH heuristic with the

N-list technique [11].

This study was conducted under a research project funded by a statutory
grant of the AGH University of Science and Technology in Kraków for
maintaining research potential.

In this paper, we propose the Starting Point (SP) method that

is based on a new strategy of using the N-list technique. The

extensive numerical experiments on the standard Taillard’s and

VRF benchmarks show that the SP method can significantly

improve the results of the N-NEH+ algorithm.

II. STARTING POINT METHOD

The general scheme of the NEH algorithm for solving

Fm|prmu|Cmax is presented in Algorithm 1.

Algorithm 1 NEH algorithm for solving Fm|prmu|Cmax

Initial phase: Sort n jobs in non-increasing order of their

total processing time and put them into the initial list of

jobs L = {1, . . . , n}.

Insertion phase: Schedule the first job and remove it from L
for k = 2, . . . , n do

Insert the job k in the place that minimizes the partial

makespan among the k possible ones

Remove job k from the list.

end for

Ruiz and Maroto [12] compared NEH with 25 heuristics

for solving PFSPs and it turned out that NEH performed the

best both with respect to the quality of the results and the

running time. It is no wonder then that a lot of studies on the

improvements of NEH performance have been published in

the scientific literature.

One of the most efficient NEH-based algorithms for solving

Fm|prmu|Cmax is the N-NEH+ algorithm [11]. It relies on

multiple run of the N-NEH algorithm (see Algorithm 2) that

extends NEH with the N-list technique. More specifically, N-

NEH+ runs N-NEH for the length of the N-list ranging in the

interval [0, N], where N � n 2 1 is the parameter of the N-

NEH+ algorithm, and takes the best result of all runs. Let us

note that if N = 1 (i.e., the N-list technique is not used) the

N-NEH+ algorithm is equivalent to NEH.

The Starting Point method proposed in this paper, presented

in Algorithm 3, is based on the following strategy: the first N 2

(N 2 is a parameter of the SP method) steps are performed as

in NEH, and the remaining steps are performed with the use

of the N-list technique. For example, given a problem with

n = 100 and N 2 = 0.2n, the first 20 jobs will be scheduled

as in NEH and the remaining 80 jobs as in N-NEH.

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 357–361

DOI: 10.15439/2022F103

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 357

Algorithm 2 N-NEH algorithm for solving Fm|prmu|Cmax

Initial phase: Sort n jobs in non-increasing order of their

total processing time and put them into the list L.

Insertion phase: Initialize the partial sequence S = {1}.

Initialize the list LN of N candidate jobs and remove the

respective jobs from L.

for k = 2, . . . n do

Evaluate each job in LN , put the best job in the respective

place in S and remove this job from LN .

if L ;= ' then

Append the first job from L to LN and remove this

job from L.

end if

end for

Algorithm 3 SP method for solving Fm|prmu|Cmax

Initial phase: Sort n jobs in non-increasing order of their

total processing time and put them into the list L.

Insertion phase: Initialize the partial sequence S = {1}.

for k = 2, . . . , α do

Insert the job k at the place that minimizes the partial

makespan among the k possible ones.

end for

Initialize the list LN of N candidate jobs and remove the

respective jobs from L.

for k = α+ 1, . . . , n do

Evaluate each job in LN , put the best job in the respective

place in S and remove this job from LN .

if L ;= ' then

Append the first job from L to LN and remove this

job from L.

end if

end for

For the purposes of this work, the Starting Point method

will be denoted as SP(N 2)N(N), where N 2 is a parameter of

the SP method and N is the length of the N-list. Additionally,

SP+(N 2)N(N) will be used to denote the method that relies

on running SP(n2)N(N) with n2 ranging in the interval [0, N 2];
the result of the SP+(N 2)N(N) method is the best result out of

all runs. Similarly, SP+(N 2)N+(N) will be used to denote the

method that runs the SP(n2)N(n22) method with n2 ranging in

the interval [0, N 2] and n22 ranging in the interval [1, N]. Let

us note that the SP(0)N-NEH+ algorithm (0 means that the SP

method is not used) is equivalent to the N-NEH+ algorithm,

whereas SP(N’)N+(1) is equivalent to NEH.

Since the optimal solution is not known for some instances,

the results obtained by a given algorithm are compared with

the best solution known so far. The average relative percentage

deviation (ARPD) of an algorithm is given as

ARPD =
1

I

I
�

i=1

(Cmax,i 2Besti) /Besti, (1)

where I is the number of instances, Cmax,i is the solution

of the algorithm on the instance i, and Besti is the best

solution known so far for this instance. Additionally, for many

computed instances, the computational effort of the evaluated

algorithm is measured by using the average CPU time (ACPU)

given as:

ACPU =

�

I
�

i=1

CPUi

�

/I, (2)

where CPUi is the CPU time of the algorithm on instance i.
The computational experiments that aim to verify the per-

formance of the SP+(N 2)N+(N) method are presented in the

next section. The performance of the method is assessed by

using ARPD and ACPU measures.

III. COMPUTATIONAL EXPERIMENT

The performance of the SP(N 2)N+(N) and SP+(N 2)N+(N)

algorithms (with Taillard’s acceleration) was verified on two

benchmarks: Taillard’s benchmark with 120 instances [13],

and VRF benchmark with 240 Small (S) and 240 Large (L)

instances [14]. The algorithm was implemented in C# and all

the computations were carried out on a computer with two

Intel Xeon E5-2660 v4 CPUs (14 cores, each with 2.0 GHz

base clock speed).

The results of SP(N 2)N+(N) (Table I) show that the use of

the N-list technique after performing N 2 steps of insertion

phase of NEH can improve the results of the N-NEH+

algorithm, i.e., the SP(N 2)N+(N) method can outperform

N-NEH+. However, if N 2 is too large (N 2 > 0.3n), the

probability of obtaining worse results is greater than in the

case of N 2 = 0. The most interesting results are obtained

for N 2 = 0.1n and N 2 = 0.2n. However, it should be noted

that improving the results is not possible for all lengths of the

N-list.

The results of SP+(N 2)N+(N) (Table II) show that the

greatest decrease in the ARPD values can be observed for

smaller values of N 2. It can also be observed that for

N 2 = 0.1n, the average improvement of N-NEH+ results

is 5.9% and for N 2 = 0.3n, the average decrease in the

ARPD value is greater than 11.6%. For all the considered

benchmarks, a regularity regarding the effectiveness of using

the SP+(N 2)N+(N) method can also be noticed: the longer

the N-list, the higher the average percentage decrease in the

ARPD value.

From Table III it can be concluded that the larger N 2, the

shorter computational time of the SP(N 2)N+(N) algorithm.

The computational time also decreases when increasing the

length of the N-list. The average decrease in computational

time between SP(0)N+(2) (i.e., N+(2)) and SP(0.9n)N+(2)

ranges from 14% to 16%, and the average decrease in

computational time between SP(0)N+(16) (i.e., N+(16)) and

SP(0.9n)N+(16) ranges from 63% to 69%. Table IV shows

that the computational time of SP+(N 2)N+(N) increases both

with N and N 2, however the increase with N is much faster.

The ARPD and ACPU values are also shown in Figures 1–

3, where the y-axis represents ARPD and x-axis represents

ACPU (in logarithmic scale) of the SP+(N 2)N+(N), NEH

358 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE I
APRD[%] FOR SP(N 2)N+(N) METHOD ON TAILLARD, VRF S AND VRF L INSTANCES; BEST VALUES FOR EACH N > 1 ARE MARKED IN BOLD

Bench. N
N

2

0 0.1n 0.2n 0.3n 0.4n 0.5n 0.6n 0.7n 0.8n 0.9n

Tai

1 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33

2 2.95 2.96 2.93 2.97 2.96 2.93 2.96 3.07 3.10 3.27

4 2.55 2.65 2.55 2.59 2.59 2.62 2.69 2.87 2.99 3.22

8 2.32 2.33 2.29 2.35 2.37 2.41 2.52 2.68 2.91 3.18

16 2.20 2.16 2.17 2.21 2.24 2.29 2.39 2.60 2.86 3.16

VRF S

1 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

2 3.32 3.32 3.31 3.40 3.47 3.45 3.54 3.63 3.71 3.80

4 2.95 2.94 2.99 3.03 3.09 3.19 3.34 3.41 3.59 3.78

8 2.64 2.66 2.67 2.73 2.85 3.01 3.14 3.31 3.53 3.78

16 2.47 2.42 2.48 2.56 2.70 2.86 3.06 3.27 3.53 3.78

VRF L

1 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33

2 3.00 3.00 3.01 3.01 3.03 3.04 3.08 3.11 3.15 3.21

4 2.67 2.65 2.68 2.72 2.72 2.76 2.84 2.89 2.99 3.11

8 2.39 2.36 2.40 2.41 2.44 2.52 2.59 2.69 2.83 3.02

16 2.14 2.11 2.12 2.14 2.20 2.28 2.36 2.50 2.69 2.95

TABLE II
APRD[%] FOR SP+(N 2)N+(N) METHOD ON TAILLARD, VRF S AND VRF L INSTANCES

Bench. N
N

2

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n 0.7n 0.8n 0.9n

Tai

2 2.82 2.74 2.66 2.63 2.58 2.50 2.49 2.48 2.47

4 2.41 2.31 2.23 2.19 2.15 2.12 2.12 2.11 2.11

8 2.15 2.04 1.98 1.94 1.93 1.91 1.89 1.89 1.89

16 2.02 1.90 1.85 1.82 1.81 1.79 1.78 1.78 1.78

VRF S

2 3.15 3.01 2.93 2.88 2.84 2.81 2.80 2.78 2.78

4 2.74 2.62 2.54 2.50 2.47 2.46 2.44 2.43 2.43

8 2.45 2.32 2.24 2.20 2.19 2.18 2.17 2.16 2.16

16 2.24 2.12 2.04 2.02 2.00 2.00 1.99 1.99 1.99

VRF L

2 2.89 2.84 2.80 2.77 2.74 2.73 2.73 2.72 2.72

4 2.55 2.51 2.49 2.46 2.45 2.45 2.45 2.45 2.45

8 2.28 2.24 2.22 2.21 2.20 2.20 2.19 2.19 2.19

16 2.05 2.00 1.98 1.97 1.97 1.97 1.96 1.96 1.96

TABLE III
ACPU[MS] OF SP(N 2)N+(N) METHOD ON TAILLARD, VRF S AND VRF L INSTANCES

Bench. N
N

2

0 0.1n 0.2n 0.3n 0.4n 0.5n 0.6n 0.7n 0.8n 0.9n

Tai

1 38.5 36.3 36.3 36.3 36.2 36.9 36.2 36.2 36.4 36.8

2 89.9 87.1 86.6 85.7 85.0 84.2 81.8 79.8 78.1 75.7

4 235.8 231.9 229.2 225.2 218.2 209.5 200.4 187.5 175.1 160.6

8 702.6 691.8 678.5 656.7 624.9 585.7 541.7 486.8 430.6 358.1

16 2304.1 2267.4 2205.8 2107.5 1979.7 1810.0 1614.7 1384.1 1129.0 832.8

VRF S

1 1.4 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2

2 3.0 2.9 2.9 2.8 2.8 2.7 2.7 2.6 2.5 2.4

4 7.6 7.5 7.3 7.1 6.8 6.6 6.3 5.8 5.4 4.9

8 21.5 21.0 20.4 19.7 18.7 17.3 15.8 13.8 11.9 9.9

16 63.4 62.2 59.8 56.4 52.0 46.4 39.9 32.3 25.2 19.7

VRF L

1 625.5 619.0 618.5 617.5 616.4 616.6 616.2 619.2 615.7 616.7

2 1488.2 1477.7 1468.2 1452.0 1435.0 1413.1 1385.4 1354.5 1314.8 1276.2

4 3959.7 3922.1 3868.1 3782.5 3678.1 3539.8 3377.0 3186.0 2965.1 2722.4

8 11838.0 11714.1 11473.0 11072.6 10566.2 9927.0 9149.9 8261.5 7242.4 6107.0

16 39163.6 38688.9 37624.2 35965.8 33753.0 30997.0 27669.3 23850.2 19489.1 14607.9

TABLE IV
ACPU[MS] OF SP+(N 2)N+(N) METHOD ON TAILLARD, VRF S AND VRF L INSTANCES

Bench. N
N

2

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n 0.7n 0.8n 0.9n

Tai

2 177.1 263.6 349.3 434.3 518.5 600.2 680.0 758.1 833.8

4 467.8 697.0 922.2 1140.4 1349.9 1550.3 1737.8 1912.9 2073.5

8 1394.4 2072.9 2729.7 3354.6 3940.3 4482.0 4968.8 5399.4 5757.5

16 4571.5 6777.3 8884.8 10864.4 12674.4 14289.1 15673.2 16802.1 17634.9

VRF S

2 6.0 8.9 11.6 14.4 17.1 19.8 22.4 24.9 27.3

4 15.1 22.4 29.5 36.4 43.0 49.2 55.0 60.4 65.3

8 42.5 62.9 82.6 101.3 118.7 134.5 148.3 160.1 170.1

16 125.6 185.3 241.7 293.7 340.1 380.0 412.3 437.5 457.2

VRF L

2 2965.9 4434.0 5886.1 7321.1 8734.2 10119.6 11474.1 12788.8 14065.1

4 7881.8 11749.8 15532.3 19210.4 22750.2 26127.1 29313.2 32278.2 35000.6

8 23552.1 35025.1 46097.7 56663.9 66590.9 75740.8 84002.3 91244.7 97351.7

16 77852.5 115476.7 151442.5 185195.5 216192.5 243861.8 267712.0 287201.0 301809.0

RADOSŁAW PUKA ET AL.: IMPROVING N-NEH+ ALGORITHM BY USING STARTING POINT METHOD 359

and N-NEH+ algorithms. As can be seen from the figures,

for all benchmarks, it is difficult to indicate the parameters

for which the SP+ method is dominated by other algorithm.

In most cases, the usage of SP+(N 2)N+(2) does not allow

obtaining non-dominated results. The results for the remaining

parameters form the Pareto front.

Table V presents the comparison of the APRD and

ACPU values of the selected algorithms for solving

Fm|prmu|Cmax(cf. [15]). It is not hard to see that these

results confirm the good performance of the SP+(N 2)N+(N)

algorithm. This means that the new strategy of delaying the

usage of the N-list allows to improve the results of N-NEH+

and makes the SP+(N 2)N+(N) even more competitive with

FRB algorithms [16]. One may argue that in most cases

the SP+(N 2)N+(N) algorithm is more time consuming than

FRB algorithms; however, you should keep in mind that

SP+(N 2)N+(N) is (unlike FRB) a construction algorithm, and

what is more, it allows you to obtain the entire population of

solutions, not just one solution as in the case of FRB.

TABLE V
ARPD[%] AND ACPU[MS] VALUES OF SELECTED ALGORITHMS ON

TAILLARD’S BENCHMARK.

Algorytm ARPD ACPU Algorytm ARPD ACPU

RAER 3.89 132.9 FRB42 2.33 235.2

RAER-di 3.53 277.5 N+(8) 2.32 702.6

NEH 3.33 38.5 SP+(0.2)N+(4) 2.31 697.0

NEMR 3.16 215.1 SP+(0.3)N+(4) 2.23 922.2

KKER 3.15 127.1 N+(16) 2.20 2304.1

NEHKK1-di 3.15 77.6 SP+(0.4)N+(4) 2.19 1140.4

NEH1-di 3.11 77.9 SP+(0.1)N+(8) 2.15 1394.4

NEHKK2 3.09 39.5 FRB44 2.13 379.5

NEHR 3.05 133.4 SP+(0.2)N+(8) 2.04 2072.9

NEH-di 3.03 76.9 SP+(0.1)N+(16) 2.02 4571.5

CL_WTS 3.02 1789.9 SP+(0.3)N+(8) 1.98 2729.7

NEMR-di 2.97 386.6 FRB48 1.95 639.3

N+(2) 2.95 89.9 SP+(0.4)N+(8) 1.94 3354.6

NEHFF 2.9 42.2 FRB2 1.93 1335.3

KKER-di 2.86 261.2 FRB46 1.91 511.2

NEHR-di 2.85 274.5 SP+(0.2)N+(16) 1.90 6777.3

NEHD-di 2.84 344.4 FRB410 1.87 765.0

SP+(0.1)N+(2) 2.82 177.1 SP+(0.3)N+(16) 1.85 8884.8

SP+(0.2)N+(2) 2.74 263.6 SP+(0.4)N+(16) 1.82 10864.4

SP+(0.3)N+(2) 2.66 349.3 FRB412 1.79 879.5

SP+(0.4)N+(2) 2.63 434.3 FRB3 1.61 10522.9

N+(4) 2.55 235.8 FRB5 1.48 30207.4

SP+(0.1)N+(4) 2.41 467.8

IV. CONCLUSION

This work proposes a Starting Point method that improves

N-list technique-based algorithms for solving the permuta-

tion flow-shop problem with makespan criterion. The general

idea behind the proposed method is to delay the usage of

the N-list technique. The extensive numerical experiments

on the standard Taillard’s and VRF benchmarks show that

for both benchmarks the Starting Point method significantly

improves the results of the N-NEH and N-NEH+ algorithms.

According to the best knowledge of the authors, the analyzed

SP+(N 2)N+(N) algorithm allows obtaining the best results

among the results of existing construction algorithms. It is also

worth noting that, unlike the more efficient FRB algorithm

(which is not construction algorithm), the SP+(N 2)N+(N)

100 1,000 10,000

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

SP+(0.1)N+(2)

SP+(0.2)N+(2)

SP+(0.3)N+(2)

SP+(0.4)N+(2)

SP+(0.1)N+(4)

SP+(0.2)N+(4)

SP+(0.3)N+(4)

SP+(0.4)N+(4)
SP+(0.1)N+(8)

SP+(0.2)N+(8)

SP+(0.3)N+(8)
SP+(0.4)N+(8)

SP+(0.1)N+(16)

SP+(0.2)N+(16)

SP+(0.3)N+(16)

SP+(0.4)N+(16)

NEH

N-NEH+(2)

N-NEH+(4)

N-NEH+(8)

N-NEH+(16)

ACPU

A
R

P
D

Fig. 1. ARPD vs. ACPU (in logarithmic scale) of SP+(N 2)N+(N) algorithm
on Taillard’s instances.

algorithm can return not just one but multiple complete

rankings. This issue is important because the results of the

SP+(N 2)N+(N) algorithm may be used as the initial pop-

ulation for genetic algorithms. The last important aspect of

the SP+(N 2)N+(N) algorithm is the ease of parallelization of

the computations (e.g., for different values of N 2 and N).

For example, the computation time of SP+(0.3n)N(N) run is

parallel on 4 cores (one core = one N 2 value), is equal to the

computational time of N-NEH for the same length of the N-

list. At the same time, the improvement in the ARPD value

for different benchmarks ranges from 6.8% to even 17.2%.

REFERENCES

[1] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and
approximation in deterministic sequencing and scheduling: a survey,”
in Discrete Optimization II, ser. Annals of Discrete Mathematics,
P. Hammer, E. Johnson, and B. Korte, Eds. Elsevier, 1979, vol. 5, pp.
287–326. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S016750600870356X

[2] M. Garey and D. Johnson, Computers and intractability. San Francisco:
W.H. Freeman, 1979, vol. 174.

[3] M. Nawaz, E. Enscore, and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,” Omega,
vol. 11, no. 1, pp. 91–95, 1983. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0305048383900889

[4] E. Taillard, “Some efficient heuristic methods for the flow shop
sequencing problem,” European Journal of Operational Research,
vol. 47, no. 1, pp. 65–74, 1990. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/037722179090090X

360 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

1 10 100

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

SP+(0.1)N+(2)

SP+(0.2)N+(2)
SP+(0.3)N+(2)

SP+(0.4)N+(2)

SP+(0.1)N+(4)

SP+(0.2)N+(4)

SP+(0.3)N+(4)
SP+(0.4)N+(4)

SP+(0.1)N+(8)

SP+(0.2)N+(8)

SP+(0.3)N+(8)
SP+(0.4)N+(8)

SP+(0.1)N+(16)

SP+(0.2)N+(16)

SP+(0.3)N+(16)

SP+(0.4)N+(16)

NEH

N-NEH+(2)

N-NEH+(4)

N-NEH+(8)

N-NEH+(16)

ACPU

A
R

P
D

Fig. 2. ARPD vs. ACPU (in logarithmic scale) of SP+(N 2)N+(N) algorithm
on VRF Small instances.

[5] P. Kalczynski and J. Kamburowski, “On the NEH heuristic for minimiz-
ing the makespan in permutation flow shops,” Omega, vol. 35, no. 1,
pp. 53–60, 2007.

[6] ——, “An improved NEH heuristic to minimize makespan in per-
mutation flow shops,” Computers & Operations Research, vol. 35,
no. 9, pp. 3001–3008, 2008, part Special Issue: Bio-inspired Methods
in Combinatorial Optimization.

[7] M. Nagano and J. Moccellin, “A high quality solution constructive
heuristic for flow shop sequencing,” Journal of the Operational Research

Society, vol. 53, no. 12, pp. 1374–1379, 2002.
[8] P. Kalczynski and J. Kamburowski, “An empirical analysis of the opti-

mality rate of flow shop heuristics,” European Journal of Operational

Research, vol. 198, no. 1, pp. 93–101, 2009.
[9] V. Fernandez-Viagas and J. Framinan, “On insertion tie-breaking rules in

heuristics for the permutation flowshop scheduling problem,” Computers

& Operations Research, vol. 45, pp. 60–67, 2014.
[10] I. Ribas, R. Companys, and X. Tort-Martorell, “Comparing three-

step heuristics for the permutation flow shop problem,” Computers

& Operations Research, vol. 37, no. 12, pp. 2062–2070, 2010.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S030505481000050X

[11] R. Puka, J. Duda, A. Stawowy, and I. Skalna, “N-neh+ algorithm for
solving permutation flow shop problems,” Computers & Operations

1,000 10,000 100,000

2

2.2

2.4

2.6

2.8

3

3.2

3.4

SP+(0.1)N+(2)

SP+(0.2)N+(2)

SP+(0.3)N+(2) SP+(0.4)N+(2)

SP+(0.1)N+(4)

SP+(0.2)N+(4)

SP+(0.3)N+(4)

SP+(0.4)N+(4)

SP+(0.1)N+(8) SP+(0.2)N+(8)

SP+(0.3)N+(8)
SP+(0.4)N+(8)

SP+(0.1)N+(16) SP+(0.2)N+(16)

SP+(0.3)N+(16)
SP+(0.4)N+(16)

NEH

N-NEH+(2)

N-NEH+(4)

N-NEH+(8)

N-NEH+(16)

ACPU

A
R

P
D

Fig. 3. ARPD vs. ACPU (in logarithmic scale) of SP+(N 2)N+(N) algorithm
on VRF Large instances.

Research, vol. 132, p. 105296, 2021. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0305054821000885

[12] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of
permutation flowshop heuristics,” European Journal of Operational

Research, vol. 165, no. 2, pp. 479–494, 2005.
[13] E. Taillard, “Benchmarks for basic scheduling problems,” European

Journal of Operational Research, vol. 64, no. 2, pp. 278–285,
1993, project Management anf Scheduling. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/037722179390182M

[14] E. Vallada, R. Ruiz, and J. Framinan, “New hard benchmark
for flowshop scheduling problems minimising makespan,” European

Journal of Operational Research, vol. 240, no. 3, pp. 666–677, 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0377221714005992

[15] V. Fernandez-Viagas, R. Ruiz, and J. Framinan, “A new vision
of approximate methods for the permutation flowshop to minimise
makespan: State-of-the-art and computational evaluation,” European

Journal of Operational Research, vol. 257, no. 3, pp. 707–721, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0377221716308074

[16] S. Rad, R. Ruiz, and N. Boroojerdian, “New high performing heuristics
for minimizing makespan in permutation flowshops,” Omega, vol. 37,
no. 2, pp. 331–345, 2009.

RADOSŁAW PUKA ET AL.: IMPROVING N-NEH+ ALGORITHM BY USING STARTING POINT METHOD 361

