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Abstract—In the present article, we describe the implemen-
tation of the finite element numerical integration algorithm for
the Intel Iris Xe-LP Graphics Processing Unit. This GPU is a
direct successor of a Xeon Phi accelerator architecture. Although
it is used in integrated circuits and does not offer substantial
performance, its test should be treated as a preview of the
estimated performance for the Intel HPG Graphics Cards that
are announced to be released in 2022. In the article, we use
our previously developed auto-tuning Finite Element numerical
integration OpenCL code on the Intel Iris Xe-LP GPU integrated
into the Intel i7 11370H CPU and compare the results with the
Nvidia GeForce RTX 3060 GPU. This article brings the answer to
the question of whether the new Intel architecture can be a direct
competitor to the more classic GPU architecture. It also allows
showing if the new architecture can be used for the computation
of complex engineering tasks.

I. INTRODUCTION

D
URING the evolution of computer architectures used in

scientific computing, we can observe two main trends.

The first is connected to the increasing number of computing

cores and wide register units in CPUs. The second coincides

with the use of specialized accelerators used to speed up the

most demanding fragments of code. In the development of

the modern computing accelerators, most of the architectures

were based on GPUs, which occur with the SIMD manner of

calculation with the use of the thousands of threads operating

simultaneously. Since the presentation of the first Nvidia Tesla

in 2007 [1], the architecture of the most of the accelerators

used in high-performance systems is based on the Nvidia

GPUs. According to the top500 list in November 2021,

almost 30% of the supercomputers have Nvidia GPU-based

accelerators (Fig. 1).

Despite these trends, there have also been attempts to

find a middle ground between the high computational power

provided by GPU-based accelerators and the relative ease of

programming and versatility of CPUs. This type of accelerator

combines both - the relatively large amount of computing cores

with the extensive registers. As an example of such an archi-

tecture, the CELL Broadband Engine developed by IBM can

be chosen. This architecture consists of one general processing

core and eight smaller specialistic cores (Synergistic Processor

Elements) equipped with wide 128-bit vector registers and AL

units. These two types of accelerators, developed by Nvidia

and IBM, inspired Intel, their main competitor, to search

Fig. 1. Top500 Accelerators [2]

for its solution in the area of computing accelerators. Based

on the wide vector registers which characterise the Cell/BE

architecture, Intel started to create Larabee’s graphics card

architecture. With this architecture, the company attempted to

overcome the main barrier to wider adoption of accelerators

programming techniques, which was the complex model and

programming method. The main advantages of the designed

architecture were extensive (512-bit) vector registers, spe-

cialised texture units, coherent memory hierarchy and compat-

ibility with x86 architecture [3]. At the same time, Intel was

working on the Single-Chip Computer and Teraflops Research

Chip projects characterised by a huge multi-core structure.

Based on these designs, the Intel MIC (Many Integrated Core)

architecture was developed and used in the Intel Xeon Phi co-

processors codenamed Knights Corner(KNC) [4]. The MIC ar-

chitecture was advertised as an architecture that could combine

the power of GPU accelerators with the ease of programming

that characterizes processors. The next generation of the MIC

architecture, Knights Landing, was offered as a separate PCI-

express card and a stand-alone CPU. Intel Xeon Phi was a

significant part of the most powerful computer systems in the

world and in June 2015 the usage of this type of accelerator

reached 34% of all systems [2]. Even though Intel Xeon

Phi architecture was officially discontinued [5], its evolution

led to the Intel Xe graphics cards, which were announced

in November 2019 [6]. The new architecture was mentioned
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not to repeat the Xeon Phi’s mistakes, provide a unified

programming model (oneAPI), and outstanding performance

[7]. Intel Xe has different variants of microarchitectures, from

integrated/low power consumption (Xe-LP) to enthusiast/high-

performance gaming (Xe-HPG), data centre/high performance

(Xe-HP) and high-performance computing (Xe-HPC) [8]. Due

to the continuous unavailability of more advanced solutions

(Xe-HPG/HPC), the authors decided to test the only available

version of Intel’s new architecture - Xe-LP. To do this, we

try to port the numerical integration algorithm on the Intel

Iris Xe GPU. Our previous study includes the development

of the algorithm for modern GPUs [9], [10], CPUs [11],

Hybrid systems [12] as well as Intel Xeon Phi [13], [14],

[15]. Extending previous research into the new architecture

may provide clues as to whether Intel’s direction will allow it

to compete with solutions currently dominating the market.

Fig. 2. GeForce RTX 3060 Laptop [16]

II. GRAPHIC PROCESSOR UNIT (GPU)

To perform the tests, the authors used a mobile version of

the GeForce RTX 3060 graphics card as the reference chip, and

the Intel i7 11370H processor’s integrated graphics chip, Intel

Iris XE-LP. Both chips tested were built into the one laptop.

The GeForce RTX 3060 graphics card is based on the Ampere

architecture [16]. As we can see on the figure 2 the GPU

is divided into 3 GPC (Graphics Processing Clusters), which

consist of 5 TPC (Texture Processing Clusters). Each TPC

cluster contains 2 blocks of streaming multiprocessors (SM),

which adds up to 30 SM blocks. The applied GigaThread

Engine acts as a scheduler distributing work among streaming

multiprocessors.

Each streaming multiprocessor contains 64 cores running at

single precision, giving a total of 3840 cores. Additionally,

each SM contains 4 Tensor cores, one Ray Tracing core,

a 256kb register file, four texture units, and 128KB of L1

Cache/Shared memory [16].

The research used the Intel i7 11370 processor - a quad-

core and eight-threaded unit with a base core clock frequency

of 3.3 GHz. Built on the Tiger Lake architecture, it was first

unveiled in autumn 2020. The processor is equipped with a

graphics chip based on the Intel XE-LP architecture. Com-

pared to previous generations, the aforementioned graphics

chip architecture can reach a computing power of 2.2 teraflop.

Fig. 3. Intel Iris XE-LP architecture [17]

The architecture of the Intel XE-LP chip is divided into 6

blocks (Fig. 3). There are 16 Execution Units in each of them,

which makes 96 of them in total. The execution unit is the

smallest block in the architecture which is multithreaded itself

- it can execute 7 threads [18]. The computing unit consists

of 8 SIMD units (single instruction multiple data) used to

perform single and double-precision operations, and 2 SIMD

units for extended match operations [17]. The executing units

are combined in pairs in which the work is divided using the

Thread Controler.

III. NUMERICAL INTEGRATION

One of the most challenging engineering tasks in the use

of accelerators has proven to be Finite Element Method

procedures. One of the fundamental parts of FEM is numerical

integration, used to prepare elementary stiffness matrices for

the system solver. Most research on the use of accelerator

computing power has focused on the use of GPUs to accelerate

the solution of the final system of linear equations [19], [20].

Often the solution procedure is optimised first, as it is the most

time-consuming part of FEM. However, once the procedure

mentioned above is optimised, the earlier computational steps,

such as numerical integration or assembling the whole matrix,

also significantly affect the execution time [21].

Early research on transferring numerical integration to

GPUs for specific FEM applications has been presented for,

among others, linear elasticity with higher-order approxima-

tion [22], [23], nonlinear elasticity [24] and electromagnetism

[25], [26]. A comprehensive study of the finite element

assembly process on GPUs is described in [27], [28]. A

separate set of papers dealt with attempts to develop tools

for the automatic generation of finite element codes [29] in

the context of GPU computing described in [30], [31]. Recent

publications have extended the scope of research to include

energetic aspects of numerical integration and assembly [32]

and modern approximations such as isogeometric analysis

[33]. Previous Intel architecture, Xeon Phi was also very

widely used in finite element method procedures. It included
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solving a differential equation using numerical integration

in TVD Methods [34], the elastodynamic finite integration

technique [35], using the shifted boundary method to solve

a FEM problem [36] or solving partial differential equations

using hybridised discontinuous Galerkin discretisation [37].

The research presented in this paper is part of a trend to exploit

the possibilities of accelerating FEM calculations with modern

accelerators.

A. Finite Element Method

The finite element method is used to compute an approx-

imate solution of partial differential equations defined for a

given, usually three-dimensional computational area Ω along

with given boundary conditions ∂Ω [38], [39], [40], [41]. The

computational area is divided into several elements with sim-

ple geometry (tetrahedrons, cubes or prisms). Computations

are performed using a so-called weak formulation that defines

the problem to be solved.

The approach chosen in this paper is based on the most

commonly used assumption that each element in the compu-

tational domain is integrated only once. The integration results

in a small elementary stiffness matrix whose single element is

calculated in the form:
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where r and s are local indices from 1 to NS - the number

of shape functions for a given element.

Similarly, the vector on the right-hand side is calculated

from the formula:
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BCL and BCR denote words related to boundary condi-

tions defined for a single element and its shape function.

B. Numerical Integration Algorithm

The numerical integration in the Finite Element Method

is correlated with the geometry used and the type of ap-

proximation by given elementary shape functions. Therefore,

an appropriate geometric transformation must be applied to

the mesh geometry used for the calculations. Denoting the

physical coordinates in the mesh as x, the transformation from

the reference element with coordinates ξ is denoted as x(ξ). It

is usually obtained by the general form of a linear, multilinear,

quadratic, cubic or other transformation of the geometric

basis functions and the set of degrees of freedom. The use

of the Jacobian matrix J = ∂x
∂ξ

is required to transform

the coordinates from the reference to the real element, and

the whole process is the distinguishing part of numerical

integration in the Finite Element Method. This significantly

contrasts this algorithm from other integration and matrix

multiplication algorithms. A numerical quadrature transforms

an analytic integral into a sum over integration points in the

reference domain. Of the various possible quadratures, we

will focus on the most popular Gauss quadrature [42]. The

coordinates in the reference element are denoted as ξQ and

the weights as wQ where Q = 1, ..., NQ (NQ - the number

of Gauss points depending on the type of element and the

approximation degree used). In the final numerical integration

formula used in our calculations, we use the determinant of

the Jacobian matrix detJ = det(∂x
∂ξ

) and obtain:
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In order to unify and describe the algorithm from the point

of view of mathematical computation for the most efficient

implementation on hardware, some modifications have been

made to the above formulas by introducing the following

indices:

• ξQ[iQ], wQ[iQ] – tables with local coordinates of in-

tegration points (Gauss points) and weights assigned to

them, iQ = 1, 2, ..., NQ, where NQ – number of Gauss

points depending on geometry and type and the chosen

approximation degree,

• Ge – element geometry data table (related to the trans-

formation from reference element to real element),

• vol
Q[iQ] – table with volumetric elements vol

Q[iQ] =

det
�

∂x
∂ξ

�

×wQ[iQ],

• φ[iQ][iS ][iD], φ[iQ][jS ][jD] – tables with the values of

consecutive locally shaped functions and their derivatives

relative to global ( ∂φ
iS

∂xiD

) and local coordinates (∂φ̂
iS

∂ξiD
) at

subsequent integration points iQ,

– iS , jS = 1, 2, ..., NS , where NS – the number of

shape functions depending on the chosen geometry

and the degree of approximation,

– iD, jD = 0, 1, ..., ND, where ND – dimension of

space. For iD, jD different from zero, the tables refer

to derivatives with respect to the coordinate with

index iD, and for iD = 0 to the shape function,

so iD, jD = 0, 1, 2, 3,

• C[iQ][iD][jD] – table with values of the problem co-

efficients (material data, values of degrees of freedom

in previous nonlinear iterations and time steps, etc.) at

successive Gauss points,

• D[iQ][iD] – table with the values of the coefficients di

at subsequent Gauss points,

• Ae[iS ][jS ] – an array storing the local, elementary stiff-

ness matrix,

• be[iS ] – array storing the local, elementary right-hand

side vector.
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Using the notation presented, general formula for the ele-

mentary stiffness matrix was created:

Ae[iS ][jS ] =

NQ
ø

iQ

ND
ø

iD,jD

C[iQ][iD][jD]×

×φ[iQ][iS ][iD]× φ[iQ][jS ][jD]× vol
Q[iQ],

(4)

A right-handed vector formula was created analogously:

be[iS ] =

NQ
ø

iQ

ND
ø

iD

D[iQ][iD]×

×φ[iQ][iS ][iD]× vol
Q[iQ].

(5)

Through the notation introduced, we create a general nu-

merical integration algorithm for finite elements of the same

type and approximation degree (Alg. 1).

The optimal structure of the algorithm must take into ac-

count the capabilities of the hardware for which the algorithm

should be developed. For external accelerators usually con-

nected through some limiting interface, the cost of transferring

data to and from the accelerator can be very high and should

be hidden by a sufficiently large number of calculations. This

situation is favoured by the designed form of the algorithm

1, where the outer loop is a loop over all elements. Also, the

general form of the algorithm 1, which does not take into

account the location of the data at different memory levels,

allows us to treat each inner loop as independent and to change

its order for optimal performance. We can also achieve this

because all the necessary data can be calculated in advance and

used when needed. This allows us to create different variations

of the algorithm depending on the hardware used. We further

reference these versions of the algorithm as SQS and SSQ

in opposite to the reference QSS type presented on algorithm

1. In this notation, the letters indicate the order of the loops,

where Q denotes the loop over Gauss points, and S represent

the loop over shape functions.

IV. PROBLEMS SOLVED

To test the algorithm for both low and high-intensity tasks,

the Poisson and convection-diffusion problems were chosen.

The former task is characterised by the fact that its exact

solution is known so that its correctness can be tested. It

also requires relatively few resources, allowing fine-grained

algorithms performing a large number of relatively small tasks

to be tested. In contrast to Poisson, the convection-diffusion-

reaction problem is resource-intensive, allowing testing of a

coarse-grained implementation with fewer large elements to

compute. Selecting these two tasks allows in-depth testing of

the hardware for tasks commonly encountered in FEM and

scientific and engineering computing.

A. Poisson equation

The first of the studied problems - Poisson equation can f.e.

describe stationary temperature distribution (6).

Algorithm 1: Generalised numerical integration algo-

rithm for elements of the same type and degree of

approximation

1 - determine the algorithm parameters – NEL, NQ, NS ;

2 - load tables ξQ and wQ with numerical integration

data;

3 - load the values of all shape functions and their

derivatives relative to local coordinates at all

integration points in the reference element;

4 for e = 1 to NEL do

5 - load problem coefficients common for all

integration points (Array Ce);

6 - load the necessary data about the element

geometry (Array Ge);

7 - initialize element stiffness matrix Ae and element

right-hand side vector be;

8 for iQ = 1 to NQ do

9 - calculate the data needed for Jacobian

transformations (∂x
∂ξ

,
∂ξ
∂x , vol);

10 - calculate the derivatives of the shape function

relative to global coordinates using the

Jacobian matrix;

11 - calculate the coefficients C[iQ] and D[iQ] at

the integration point;

12 for iS = 1 to NS do

13 for jS = 1 to NS do

14 for iD = 0 to ND do

15 for jD = 0 to ND do

16 Ae[iS ][jS ]+ = C[iQ[[iD][jD]×
×φ[iQ][iS ][iD]×φ[iQ][jS ][jD]×
×vol

17 if iS = jS and iD = jD then

18 be[iS ]+ = D[iQ][iD]×
×φ[iQ][iS ][iD]× vol

19 end

20 end

21 end

22 end

23 end

24 end

25 - write the entire matrix Ae and vector be;

26 end

'
2u = f (6)

For the Poisson task, the matrices of the coefficients of the

convection-diffusion-reaction C[iQ] are of the form (7), for

all integration points.

C[iQ] =

þ

ÿ

ÿ

ø

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ù

ú

ú

û

(7)
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This allows the individual words of the stiffness matrix to

be obtained according to a simplified formula (8).

(Ae)rs =

�
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∂xj

dΩ (8)

The D[iQ] coefficients vector has the form (9).

D[iQ] =
�

0 0 0 Sv

�

(9)

where Sv is a right-hand-side coefficient, different for each

integration point.

B. Generalized convection-diffusion-reaction problem

Another of the tasks studied was the generalised convection-

diffusion-reaction problem. In order to maximise the use of

resources, it was assumed that the array C[iQ] and the coef-

ficients of the vector D[iQ] would be fully filled with values

different than 0. Arrays of this type appear, for example, in

the convective heat transfer problem, after SUPG stabilisation

has been applied.

For the studied convection-diffusion-reaction problem, the

coefficients C[iQ] and D[iQ] are constant for the whole

element. This allows us to generalise the solved problem by

freeing it from the details of specific applications while main-

taining the increased computational intensity of the algorithm.

C. Approximation

The finite element method is based on discretising the con-

sidered continuous area into a specified number of elements.

These elements are usually simple geometry elements such as

tetrahedrons, cubes or prisms. In the cases considered in this

work, prismatic elements were used.

With this type of elements, it is possible to reproduce even

the most complex geometry of the computational area Ω [43].

For the standard first-order linear approximation, the de-

grees of freedom of an element are related to its vertices. The

basic shape functions for a reference prismatic element are in

the form of a combination of 2D function that depends on

x and y coordinations of the given vertice, with the function

dependent on coordinate z.

V. DEVELOPMENT TOOLS

A. ModFEM

A modular software platform for finite element engineering

calculations, ModFEM [44], was used as the primary tool

used in the research. Thanks to its modular design, it allows

modifying individual parts of FEM calculations, such as

approximation, mesh handling and solution solvers.

The program consists of several levels on which the different

modules are located. The main module managed by the

user is the problems module, which defines the FEM weak

formulation and determines which other modules the user

uses. The most important modules are the mesh module, the

approximation module and the solver module. The rest of the

modules in the ModFEM code are used for different kinds of

division of labour over several types of hardware. Thanks to

its structure, this framework allows working in a distributed

environment, which makes it an excellent tool for FEM com-

putations both on accelerators and single computers, as well as

in high-performance computing environments such as clusters

or specialised supercomputers. In the course of the research,

an extension to the approximation module was developed with

appropriate accelerator support. The problem modules of the

investigated tasks were also modified in order to properly

prepare data structures and to comparatively test the numerical

integration algorithm in the OpenCL environment.

B. OpenCL

The OpenCL language was used to test different types of

accelerators. OpenCL allows programming of virtually any

multi-core and vector machines - from modern CPUs to GPUs,

through hybrid PowerXCell units, APUs and Intel Xeon Phi

accelerators. The OpenCL specification includes a C99-based

programming language for programming accelerators and an

application programming interface (API) for platform support

(defined as a given combination of available computing hard-

ware and system software) and execution on processors [45].

Due to the portability of OpenCL code between devices of

different types, each memory area can be physically mapped

differently depending on the available hardware resources.

OpenCL includes routines to preserve the portability of the

code between different hardware platforms by adapting the

memory and execution models to a given architecture [46].

Direct implementation on a given machine depends on the

OpenCL development platform provider and the corresponding

drivers.

With OpenCL technology, it has become possible to write

programs on many types of accelerators. However, this has

not solved the problem of performance portability, as each

architecture requires separate optimizations [15]. For our work,

we have developed a system for automatic tuning of the

numerical integration algorithm [9].

C. Auto-tuning

Due to the different possibilities of using memory in ac-

celerators based on graphics cards, eight parameters of the

numerical integration algorithm affecting its final performance

have been extracted:

1) WORKGROUP_SIZE - related to the minimum number

of threads possible to launch on the accelerator - in

the case of tests on the GPU, it was set to 64 due to

the recommendation of the manufacturers of the tested

cards.

2) USE_WORKSPACE_FOR_PDE_COEFF - a factor that

determines whether problem data should be stored in

threads’ shared memory or registers (line 5 of the 1

algorithm).

3) USE_WORKSPACE_FOR_GEO_DATA - geometric

data stored in threads’ shared memory or registers (line

6 of algorithm 1).
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4) USE_WORKSPACE_FOR_SHAPE_FUN - data of

shape functions and their derivatives stored in the shared

memory or registers (lines 3 and 10 of algorithm 1).

5) USE_WORKSPACE_FOR_STIFF_MAT - algorithm’s

local stiffness matrices and right-hand-side vectors

stored in the threads’ shared memory or registers (lines

7, 16, and 18 of the 1 algorithm).

6) COMPUTE_ALL_SHAPE_FUN_DER - algorithm

computes the values of all shape functions and their

derivatives before entering the double loop after the

shape functions (line 10 of algorithm 1).

7) COAL_READ - memory readout in a continuous man-

ner.

8) COAL_WRITE - continuously writing to memory.

The last two parameters of the numerical integration algo-

rithm, concern the way of writing and reading data from the

accelerator memory. Due to the physical design of this type of

device and the operation of threads in groups, how memory is

accessed can have a significant impact on the performance of

the algorithm. Optimal access to memory should be grouped

concerning threads, so that writes and reads are done in a

continuous (coalesced) manner - whole vectors of data from

memory. The list of parameters in the auto-tuning system is

mostly concerned with the way memory is handled in the

OpenCL model, which is based on the architecture of graphics

cards. Arrays passed as arguments to the numerical integration

procedure (e.g., geometric data and problem coefficients) can

be used directly in calculations, or previously downloaded to

local arrays, stored in registers or shared memory. By using

shared memory as a temporary data read buffer, data is read

continuously - a single thread reads the next memory cell and

writes to the shared buffer. The read data can be stored in

the buffer and used at a later time for calculation, or can be

written into registers, freeing up the buffer for further use.

How this data is stored in appropriate buffers is defined by the

USE_WORKSPACE_FOR_* parameters. The total number of

combinations of these parameters for any architecture is 40.

Since there are 3 variants of the algorithm for each architecture

(QSS, SQS, and SSQ), and we have 2 tasks, the total number

of combinations per architecture is 240. The developed system

consists of a set of scripts and code fragments responsible

for compiling the kernel with the appropriate options. Due

to the different compilation options available from various

software vendors, it was necessary to implement different

options depending on the installed accelerator and version of

the OpenCL framework.

VI. RESULTS

A. Poisson problem

During testing, it turned out that the QSS version of the

numerical integration algorithm achieved the best results for

both accelerators tested. Therefore, we have prepared the

comparison graph (Fig. 4). The tuning options are arranged

in the following order:

1) COAL_READ (CR)

2) COAL_WRITE (CW)

3) COMPUTE_ALL_SHAPE_FUN_DER (CASFD)

4) USE_WORKSPACE_FOR_PDE_COEFF (PDE)

5) USE_WORKSPACE_FOR_GEO_DATA (GEO)

6) USE_WORKSPACE_FOR_SHAPE_FUN (SHP)

7) USE_WORKSPACE_FOR_STIFF_MAT (STIFF)

In comparison with the results for GeForce RTX 3060 we

can observe that the results for Intel Xe are more chaotic.

Fig. 4. Automatic tuning on tested GPUs in QSS version of the numerical
integration algorithm for Poisson problem

On this graph, we see that the results for Nvidia GPU are

very regular and connected with the use of only one option

- CW. On Intel Xe, we can observe more chaotic results but

with the best results in the same cases - with the CW option

enabled. The use of shared memory in GeForce plays almost

no role at all - it can be connected with the fact that in the

Nvidia GPU all data are cached in L1 and L2 caches which

results in no differences in the less resource-consuming cases.

In the Iris Xe case, we can observe more memory dependent

results - especially with the combination of the coalesced

read/write and the use of the shared memory for SHP or GEO

data. Although the OpenCL routine returns the presence of 64

kB of Shared Memory on Intel Xe (in opposition to 48 kB in

Nvidia), it seems like this memory is mapped to the internal

L3 cache memory which is slower than the classical SM used

in external GPUs.

TABLE I
RESULTS (IN ns) OF CALCULATION FOR ONE ELEMENT IN POISSON

PROBLEM

QSS SQS SSQ

Intel Iris Xe-LP 9,185791 16,17432 49,23503

Nvidia GeForce 3060 RTX 0,992839 1,798503 8,390299

TABLE II
OPTIONS COMBINATION FOR THE BEST TIMES FOR POISSON PROBLEM

QSS SQS SSQ

Intel Iris Xe-LP 0100010 1100001 0100000

Nvidia GeForce 3060 RTX 1101000 1110010 0100010

The best results obtained are shown in the table I. We

can see that in the QSS and SQS cases GeForce is 9 times
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faster than Intel Iris Xe. In SQS case GeForce is almost

6 times faster than Iris. Table II show the combination of

options for the best results. As it was observed on the graphs

earlier, all best results are connected with the use of coalesced

writing of data. It indicates that both devices prefer vectorized

organization of data in the memory what is characteristic for

modern computing devices (both CPU and GPU).

B. Convection-diffusion-reaction problem

Fig. 5. Automatic tuning on Intel Iris Xe GPU for convection-diffusion
problem

In the case of the more resource-consuming convection

problem for Intel Iris Xe, we have observed more diversified

results, and in some cases, the SQS version of the numerical

integration algorithm was better than the QSS version (Fig.

5). The QSS version shows a more even level, only with a

peak when the extensive use of shared memory is observed

(GEO+CASFD+CR). In the Nvidia case, the results are similar

to the Poisson case and are very regular in shape and the QSS

version was the best in all the cases.

As in the Poisson problem, when we compare the results

for the QSS algorithm for both GPUs, we can observe more

chaotic results for the Intels’ GPU (Fig. 6).

Fig. 6. Automatic tuning on tested GPUs in QSS version of the numerical
integration algorithm for convection-diffusion problem

The best results presented in table III also show the same

differences between the Nvidia and Intel GPUs, reaching out

ten times faster execution on the GeForce RTX 3060. From the

best options analysis (Tab. IV) we can still observe the great

role of the coalesced writing in all variants of the algorithm.

The other options show a more chaotic nature, but in the

Nvidia case, we can observe that more resource-demanding

types of an algorithm (SQS and SSQ) are making good use

of the possibility of storing data in the shared memory.

TABLE III
RESULTS (IN ns) OF CALCULATION FOR ONE ELEMENT IN

CONVECTION-DIFFUSION PROBLEM

QSS SQS SSQ

Intel Iris Xe-LP 10,98633 19,90763 44,42342

Nvidia GeForce RTX 3060 1,196289 1,904297 9,090169

TABLE IV
OPTIONS COMBINATION FOR THE BEST TIMES FOR

CONVECTION-DIFFUSION PROBLEM

QSS SQS SSQ

Intel Iris Xe-LP 1110001 1100010 0100000

Nvidia GeForce 3060 RTX 1100000 0110010 0100100

VII. CONCLUSIONS

Intel Xe seems to have a more chaotic nature of execution

and its parametric tuning graphs are more reminiscent of CPU

graphs or the Xeon Phi we researched earlier [11], [47]. This

may be due to its more complex design and different memory

organisation than classic GPUs. Despite this, the results indi-

cate a quite high potential of the discussed architecture and

give hope that its versions intended for scientific and technical

computing equipped with additional levels of memory [17]

will be able to take an equal fight with the existing players

that is Nvidia and AMD. In our future work, we are planning

to test Intel Xe-LP architecture with the more time-consuming

discontinuous Galerkin approximation for the Finite Element

Method numerical integration and test the OpenCL 3.0 features

connected with the use of the shared memory buffer between

CPU and GPU cores in the integrated heterogeneous architec-

tures. After this study, the authors hope that moving to the

Intel Xe-HPC units will be easier to perform and provide the

High-Performance Computing community with the answer if

the new Intels’ architecture can be competitive with existing

solutions.
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[15] K. Banaś and F. Krużel, “OpenCL performance portability for Xeon
Phi coprocessor and NVIDIA GPUs: A case study of finite element nu-
merical integration,” in Euro-Par 2014: Parallel Processing Workshops,
vol. 8806 of Lecture Notes in Computer Science, pp. 158–169, Springer
International Publishing, 2014.

[16] Nvidia Corporation, NVIDIA AMPERE GA102 GPU ARCHITECTURE:

Ampere GA10x, 2021. Whitepaper.

[17] Intel Corporation, Intel Architecture Day 2020 Presentation Slides, 2020.
Whitepaper.

[18] Intel Corporation, oneAPI GPU Optimization Guide, 2022. Intel
Developer Guide.

[19] M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards
a complete FEM-based simulation toolkit on GPUs: Unstructured grid
finite element geometric multigrid solvers with strong smoothers based
on sparse approximate inverses,” Computers & Fluids, vol. 80, pp. 327
– 332, 2013. Selected contributions of the 23rd International Conference
on Parallel Fluid Dynamics ParCFD2011.

[20] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: A
GPU implementation of a general sparse linear solver,” Int. J. Parallel

Emerg. Distrib. Syst., vol. 24, no. 3, pp. 205–223, 2009.

[21] J. Mamza, P. Makyla, A. Dziekoński, A. Lamecki, and M. Mrozowski,
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