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Abstract—Sentiment Analysis in the Software Engineering
community aims to make the development and maintenance
of software a better experience by helping provide code and
library suggestions, defect-related comments for source code, etc.
The manual finding of sentiment-based comments may be an
inaccurate prediction and a time-consuming process. Automating
the sentiment analysis process by leveraging Machine Learning
models can benefit software professionals by giving them insights
into other developers and feelings about software products,
libraries, development, and maintenance tasks at a glance. This
study aims to develop software sentiment prediction models based
on comments by (1) identifying the best embedding techniques
to represent the word of the comments, not just as a number
but as a vector in n-dimensional space (2) finding the best sets of
vectors using different features selection techniques (3) finding the
best methods to handle the class imbalance nature of the data,
and (4) finding the best architecture of deep-learning for the
training of models. The developed models are validated using 5-
fold cross-validation with four different performance parameters:
accuracy, AUC, recall, and precision on three different datasets.
The experimental finding shows that the models developed
using the word embeddings with feature selection using Deep
Learning classifiers on balanced data can significantly predict
the underlying sentiments of textual comments.

Keywords—Sentiment Analysis, Software Engineering Tasks,
Word Embedding, Feature Selection, Data Imbalance, SMOTE,
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I. INTRODUCTION

ENTIMENT Analysis can be used to gather the opinions

and feelings of the consumers regarding social and political
opinions, brand loyalty, etc. Sentiment Analysis utilizes natural
language processing and machine learning algorithms to draw
out textual data’s mood, opinions, and feelings. The texts can
be product reviews, posts on social media, messages on chat
boards, answers to questions on a question-answering website,
commit messages by developers, etc [1]. Software developers
can utilize the benefits of sentiment analysis to assist them in
their development and maintenance activities. They can be well
informed about whether a particular software, technology, or
tutorial is appropriate for their purposes. Sentiment Analysis
can distinguish feedback as being either positive or negative,
which helps in development decisions. The application of
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sentiment analysis is to find Software professionals’ sentiments
and mindsets, and it can be approached in two different ways:
The first and most straightforward way is to sit down face
to face with the software developers, glean insights into their
mindset, and evaluate their mood and feelings. Unfortunately,
this is a very time-intensive and tedious process to incorporate.
So, the other approach is preferred. The other approach uses
sentiment analysis to discern the mood and feelings of software
developers, from the product reviews, feedback forms, commit
messages, etc. An effort is made to identify the positive and
negative sentiments of developers. So, we have worked to cre-
ate a predictive model leveraging natural language processing
techniques and machine learning algorithms, to predict and
detect the exhibited sentiments, moods, and feelings effectively
and efficiently. The datasets are obtained from user’s App
Reviews, and issues tracked and managed using JIRA, and
user’s comments and messages on the Stack Overflow platform
[1]. For the machine to better understand and analyze the
text to improve the predictive model’s performance, we must
represent words as vectors [2][3].

Word embedding techniques do this by representing words
as vectors in an n-dimensional space. This provides a numeric
representation to the words, which allows them to be used as
input to Machine Learning Models, and it also preserves its
syntactic and semantic integrity so that words that are used
similarly have similar vector representations. In this study,
we use six Word Embedding Techniques to vectorize the
textual data, which are Term Frequency and Inverse Document
Frequency (TF-IDF), Skip-Gram (SKG), Continuous Bag of
Words (CBOW), Global Vectors for Word Representations
(GLOVE), Fast Text (FST) and Google News Word to Vector
(GW2V) [3]. After applying the word embeddings, we obtain
a multitude of features for the data, many of which will be
ineffective in the predictive model. To obtain the subset of
important features that are to be used as input to the model,
we apply six Feature Selection Techniques, namely Principal
Components Analysis, Gain Ratio Attribute Eval, Classifier
Attribute Eval, Info Gain Attribute Eval, OneR Attribute Eval,
and Analysis of Variance (ANOVA) [4]. Analyzing the data
after applying the Feature Selection Techniques, it is clear
that the data suffer from the class imbalance problem, which
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occurs when the number of samples in each class is not the
same. If not corrected, this can negatively affect the predictive
performance of the model. So, the Synthetic Minority Over-
sampling Technique (SMOTE) and the Borderline Synthetic
Minority Oversampling Technique (Borderline-SMOTE) are
applied to balance the data. After we balance the data, we need
to compare and evaluate the performance of the different tech-
niques we have applied. To achieve this, we use eight different
deep learning classifiers, which are applied by varying the
number of Hidden Layers and Dropout Layers. The application
of Deep Learning Classifiers to the models developed using
different Word Embedding Techniques can help determine
the models that can accurately and effectively predict the
underlying sentiment in textual data, which can be convenient
for a broad scope of Software Development and Maintenance
activities. This study also aims to find the Word Embeddings,
Feature Selection, and Data Sampling Techniques that provide
the most optimal results.

The remainder of the paper is laid out as follows: Section 2
presents a literature review on software sentiment analysis
and various word embedding approaches. Section 3 describes
the experimental dataset collection as well as the various
machine learning algorithms used. The research methodology
is described in Section 4 using an architecture framework. In
Section 5, the results of the experiments, along with their
analysis, are presented. Section 6 shows a comparison of
models created using various word-embedding approaches,
sets of features, and machine learning models. Finally, Section
7 summarizes the information provided and offers directions
for further research.

II. RELATED WORK

There are many methods to acquire features from textual
data. Term Frequency and Inverse Document Frequency (TF-
IDF) have been used by Rajni Jindal et al. to obtain features
from defect descriptions. They’ve used a Radial Basis function
of the Neural Network to classify the defect reports. Based on
tangible evidence, they’ve established that the model predicted
high severity defects with significant accuracy and efficiency
[5]. Sari and Siahaan have also leveraged Term Frequency
and Inverse Document Frequency (TF-IDF) to extract features
from defect descriptions. They’ve applied the InfoGain Feature
Selection technique to obtain the set of relevant features.
They’ve built severities prediction models with the assistance
of Support Vector Machine to predict severity levels of defects
[6]. Sentiment Analysis of Software Engineering Tasks has
tremendous potential, but pre-trained models don’t accurately
predict sentiments in Software Engineering Tasks. Bin Lin et
al. applied Deep Learning techniques to an enormous dataset
consisting of 40k manually labeled sentences, which were
sourced from Stack Overflow. Despite determining all the text’s
sentiments, it resulted in low accuracy levels and, ultimately,
poor results. In a comparison between Stanford CoreNLP and
Stanford CoreNLP SO, it was determined that the Stanford
CoreNLP SO was a better influence on Sentiment Analysis
tools than the Stanford CoreNLP. Another conclusion reached
by Bin Lin et al. was that Sentiment Analysis tools that are
not specifically trained for Software Engineering data yield
disappointing results on Software Engineering datasets [1].

Biswas et al. used software domain-specific Word Embed-
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ding learned from Stack Overflow in an attempt to improve
the performance of the predictive model. The impact on
the performance of Sentiment Analysis tools using Domain-
specific Word Embedding and Generic Word Embedding,
trained using Google news, were compared. The conclusion
reached was that the Generic Word Embedding was better
than the Domain-specific Word embedding. Biswas et al. also
found that oversampling or a combination of oversampling and
undersampling achieves a jump in performance in the handling
of compact Software Engineering datasets[2]. R Malhotra et al.
have attempted to develop Software Bug Classification (SBC)
models that can identify “low”, “moderate,” and “high” impact
levels on Software Bugs. The levels were indicated based on
Maintenance Effort (ME), Change Impact (CI), or a product
of both. The data is sourced from the changelogs in Google’s
GIT Repository. Data preprocessing is performed, and the SBC
models are developed using six classification techniques. The
study assessed three predictors, which were obtained from text
mining. After evaluation, it was found that the performance of
the combined SBC model showed higher accuracy than the ME
or CI SBC models. They also found that the accuracy of the
“high” category was superior to that of the other categories [7].

R Malhotra et al. have worked to find out if resampling
methods applied to software defect data improve performance.
They have used datasets sourced from the Defect Collection
and Reporting tool (DCRS) and performed data preprocessing
and applied three different resampling methods, and evaluated
their performance. The performance of the developed models
is evaluated using seven performance measures, accuracy,
precision, sensitivity, specificity, G-Mean, and AUC. They
have concluded that the application of resampling methods
to the maintainability prediction models can accurately predict
the minority class [5]. R Malhotra et al. have also attempted to
find the effects on the performance of Software Defect Predic-
tion Models after applying resampling techniques. They have
applied six oversampling and four undersampling methods to
rectify the class imbalance problem. Examining the evaluators,
which are: Sensitivity, GMean, Balance, and AUC values, it
was found that there was an evident improvement in the values
of the evaluators when data resampling methods were applied
to the Software Defect Prediction models [8].

Dr. Lov Kumar et al. have worked to automate the process
of determining the severity level of a defect in the software.
Defect descriptions in the form of text have been tokenized
using seven different word embedding techniques. The ob-
tained features are further pruned to achieve an optimal set
of relevant features using three different Feature Selection
techniques. These features, plagued by the Class Imbalance
Problem, have been rid of it by using the Synthetic Minority
Oversampling Technique (SMOTE). The performance of the
Word Embedding is evaluated using eleven different classifiers.
Dr. Lov Kumar et al. have successfully used Word Embed-
dings, Feature Selection, and Synthetic Minority Oversam-
pling Technique (SMOTE) to assemble a predictive model
capable of assigning a severity level to defect descriptions
[9]. SentiStrength-SE, which was proposed by Islam et al.,
achieved 73.85% precision and 85% recall. They call attention
to issues commonly faced by Sentiment Analysis Tools, some
of which are: Domain-specific meaning of words, Context-
sensitive variations in meanings of words, Difficulties in deal-
ing with negation, Sentimental words in copy-pasted content,
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Difficulty in dealing with irony and sarcasm, and Wrong
detection of proper nouns [3].

III. STUDY DESIGN

This section presents the details regarding various design
settings used for this research.

A. Experimental Dataset

The study uses three different experiential datasets to
validate our proposed framework. These datasets are used by
many software researchers for sentiment analysis [1][2]. The
primary objective is to explore different types of embedding,
feature selection, data sampling, and different variants of deep-
learning on these datasets to predict the sentiments of software
engineers. Figure 2 shows the number of positive and negative
sentiments for the considered datasets. From Figure 2, we
observed that the number of positive sentiments for stack
overflow is much higher than negative sentiments. The unequal
distribution of data leads to a class imbalance problem.
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Fig. 2: Data-Sets

B. Training of Models from Imbalanced Data Set:

After analysis of the data, it becomes quite evident that
the data is suffering from a class imbalance problem, i.e.,
the number of samples in each class is not the same. So, the
balancing of data is required to improve the predictive ability
of the developed Sentiment Analysis Models. We have per-
formed Synthetic Minority Oversampling Technique (SMOTE)
and Borderline Synthetic Minority Oversampling Technique
(Borderline-SMOTE) on each dataset to balance the data [10].

C. Word Embedding:

The textual data of the dataset is to be expressed as
vectors in relation to each other. Six different word embedding
techniques including Term Frequency and Inverse Document
Frequency (TF-IDF), Continuous Bag of Words (CBOW),
Skip-Gram (SKG), Global Vectors for Word Representation
(GLOVE), Google news Word to Vector (GW2V), fasttext
(FST) have been applied on the dataset. These techniques
were used to represent the textual data as a vector in an
n-dimensional space. We have also removed any and all
stopwords, bad symbols, and spaces before applying the word
embedding techniques. These will now be used to develop
models to determine the sentiment of Software Engineering
Tasks [9][2].

D. Feature Selection Techniques

The features vectors extracted from word-embedding are
used as an input, so, the performance also depends upon the
optimization of important features. To extract the important
features from the existing set of vectors, we have used six
different Feature Selection Techniques such as: Analysis of
Variance (ANOVA) is used to find feature having capability
to differentiate positive and negative sentiment, correlation
attribute evaluation (CORR_ATR) is used to remove highly
correlated features, Principal Components Analysis (PCA) is
used to find new value of uncorrelated features, Gain ratio,
information gain, and OneR are used to rank the features and
select best features for sentiment analysis [4][11].

E. Classification Technique:

In this study, we have used eight deep learning models,
which use K-Fold Cross-Validation with a k value of 5. We
have separated the data into training and testing data subsets.
An input layer with a number of neurons equal in quantity to
the number of features of the input data is present in every
single deep learning model. The models are all constituted of
Dense and Dropout layers. The Dense layer’s neurons receive
inputs from all the neurons present in the previous layer. The
Dropout layer’s neurons are randomly selected. The dropout
value used in this study is 0.2. The output layer has a single
neuron that corresponds to the binary classification of either
functional or non-functional requirements, and it uses a sig-
moid activation function, unlike the other layers, which use the
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Fig. 1: Deep Learning Architecture
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Rectified Linear Activation function (ReLLU) as the activation
function. Adam is the optimizer used to train the models, with
the loss function being the Binary Cross entropy. The number
of hidden layers is increased for the other four models. Figure
1 demonstrates the architectures of the models (DL1, DL2,
DL3, and DL4). The parameters used to validate the models
are: batch size = 30, Dropout = 0.2, and epochs = 100.

IV. RESEARCH METHODOLOGY

The pictorial representation of the proposed framework is
provided in Figure 3. We first extract the textual documents
from three different SE repositories, i.e., issue trackers, i.e.,
JIRA issue comments, Stack Overflow discussions contain
questions and answers and user reviews on mobile apps using
app stores so that their corresponding data may be analyzed.
After finding these textual documents, six different types
of word-embedding techniques have been used to represent
text documents as numerical vectors. Each embedding uses a
different way to represent words for text documents with a
real-valued vector. The values of these vectors are closer in
the vector space for similar words. Next, we have used two
different types of sampling techniques, such as: SMOTE and
BLSMOTE to handle the class imbalanced nature of datasets.
In the next step, we have applied different feature selection
techniques to select the best combination of relevant features.
The ANOVA test is used to remove insignificant features, PCA
is used to remove high correlation between features and find
new values of features, gain ratio, information gain, and OneR
is used to rank features and select the top best features, and
finally, correlation analysis is used to remove highly correlated
features. After finding the right sets of features, we have
used different variants of deep-learning techniques to train
software sentiment, and analysis models. The trained models
are validated with a 5-fold cross-validation method, and the
performance of these models is compared with the help of four
different performance parameters: accuracy, precision, recall,
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V. EMPIRICAL RESULTS AND ANALYSIS

The primary objective of this work is to analyze the per-
formance of the developed software sentiment analysis models
using different variants of deep-learning, word-embedding
techniques, features selection techniques, and data sampling
techniques with the purpose of investigating how different
contexts can impact their effectiveness. The proposed models
are validated with three software-related datasets, namely
mobile app reviews, Stack Overflow discussions, and JIRA
issue comments. Finally, the predictive ability of these models
is evaluated using different performance parameters such as
accuracy, AUC, precision, and recall. AUC is considered the
primary parameter for the model’s performance because of
its capability to provide good findings in case of imbalanced
nature of data. Tables I and II show the performance of models
in terms of Precision, Recall, accuracy, and AUC for the
AppReview dataset using different variants of deep-learning
and feature selection techniques with original data and sampled
data. The results for other combinations are similar. The high
value of AUC (> 0.7) in Tables I and II suggested that the
proposed models have the capability to predict the current state
of sentiment analysis for software engineering. In the majority
of cases, the precision, recall, and AUC values are higher than
0.8. Also, the information present in Tables I and II suggest
that the models trained on sampled data have a better ability to
predict sentiment as compared to original data. Another finding
from Tables I and II is that the models trained on selected sets
of features have a high value of precision, recall, and AUC as
compared to all features.

VI. COMPARATIVE ANALYSIS

In this section, we have compared the performance of
different word embedding techniques, class balancing ap-
proaches, feature selection strategies, and deep-learning tech-
niques, which are used for developing sentiment prediction
models using Box-plot diagrams and descriptive statistics. We
have also performed the Friedman test to find statistical signifi-
cance differences between different techniques. The hypothesis
used to achieve our objective is mentioned below:
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Fig. 3: Framework of proposed work



VENKATA KRISHNA CHANDRA MULA ET AL.: SOFTWARE SENTIMENT ANALYSIS USING DEEP-LEARNING APPROACH

TABLE I: AppReviews :Precision and Recall

Precision | Recall
DL1 | DL2 [ DL3 | DL4 [ DL5 | DL6 | DL7 | DL§ | DL1 | DL2 | DL3 | DL4 | DL5 | DL6 | DL7 | DL§
ORGDATA(OD)
TFIDF 0.85 | 084 | 084 | 084 | 085 | 0.83 | 0.83 | 0.84 | 090 | 0.87 | 085 | 0.87 | 0.87 | 0.87 | 0.88 | 0.8
CBOW | 064 | 0.72 | 0.76 | 0.68 | 067 | 0.76 | 0.64 | 0.64 | 095 | 0.86 | 0.63 | 0.80 | 090 | 0.81 | 092 | 098
SKG 081 | 082 | 083 | 08 | 083 | 085 | 082 | 081 | 07 | 086 | 081 | 086 | 087 | 0.75 | 0.77 | 0.83
GLOVE | 0.86 | 0.86 | 085 | 085 | 0.88 | 0.84 | 085 | 0.87 | 0.88 | 0.85 | 0.86 | 0.88 | 0.87 | 0.84 | 0.88 | 0.84
GW2V 084 | 083 | 085 | 085 | 087 | 085 | 0.86 | 085 | 087 | 088 | 0.87 | 089 | 0.79 | 0.86 | 0.88 | 0385
FASTXT | 0.74 | 0.77 | 077 | 0.6 | 073 | 0.3 | 0.3 | 0.76 | 0.73 | 0.68 | 0.73 | 0.69 | 0.82 | 0.72 | 0.66 | 0.69
ORGDATA(ANOVA)
TFIDF 0.87 | 087 | 086 | 0.87 | 087 | 0.84 [ 0.87 | 0.84 | 089 | 091 | 091 [ 091 | 0.88 | 092 | 0.89 | 091
CBOW | 062 | 0.62 | 0.71 | 0.68 | 0.66 | 0.66 | 0.62 | 0.64 | 1.00 | 1.00 | 0.88 | 0.89 | 096 | 090 | 1.00 | 098
SKG 081 | 083 | 08 | 086 | 085 | 085 | 082 | 0.83 | 082 | 083 | 0.82 | 0.68 | 0.83 | 0.80 | 083 | 0.83
GLOVE | 0.87 | 085 | 0.84 | 0.87 | 0.8%4 | 0.88 | 0.88 | 0.88 | 0.84 | 0.8%4 | 0.86 | 0.83 | 085 | 083 | 08 | 0.83
GW2V 0.89 | 0.86 | 0.87 | 086 | 0.89 | 0.87 | 0.84 | 0.87 | 0.86 | 0.89 | 0.88 | 0.85 | 0.88 | 0.87 | 0.87 | 0.88
FASTXT | 0.74 | 0.76 | 0.76 | 0.76 | 0.J6 | 0.75 | 0.J6 | 0.75 | 0.84 | 0.86 | 0.77 | 0.82 | 0.80 | 0.80 | 0.75 | 0.72
ORGDATA (OneR_ATR)
TFIDF 0.82 | 0.82 [ 0.83 [ 083 | 0.78 [ 073 | 072 [ 0.62 [ 093 | 0.93 [ 093 | 0.94 [ 0.97 [ 097 | 0.97 [ 1.00
CBOW | 062 | 062 | 0.64 | 0.66 | 0.64 | 0.70 | 062 | 062 | 1.00 | 1.00 | 099 | 0.96 | 098 | 091 | 1.00 | 1.00
SKG 071 | 071 | 071 | 0.70 | 0.73 | 0.73 | 062 | 0.68 | 0.84 | 091 | 087 | 087 | 0.82 | 0.84 | 1.00 | 0.90
GLOVE | 084 | 082 | 083 | 082 | 0.83 | 0.74 | 0.80 | 0.64 | 085 | 085 | 082 | 0.82 | 085 | 089 | 087 | 095
GW2V 085 | 086 | 085 | 083 | 083 | 07 | 082 | 0.79 | 083 | 084 | 084 | 0.86 | 0.87 | 091 | 084 | 0387
FASTXT | 063 | 0.69 | 0.71 | 0.69 | 0.68 | 0.67 | 0.63 | 0.64 | 0.88 | 0.82 | 0.81 | 0.78 | 0.77 | 0.83 | 099 | 081
SMOTE(OD)
TFIDF 0.87 | 092 [ 090 | 092 | 092 | 090 | 092 | 091 | 094 | 094 | 093 | 094 | 094 | 094 | 093 | 094
CBOW | 0.66 | 0.68 | 0.78 | 071 | 068 | 0.81 | 067 | 073 | 0.8 | 098 | 092 | 097 | 098 | 090 | 1.00 | 096
SKG 0.81 | 086 | 089 | 0.84 | 0.84 | 091 | 0.86 | 0.84 | 0.66 | 094 | 090 | 091 | 091 | 085 | 091 | 091
GLOVE | 0838 | 092 | 093 | 093 | 093 [ 093 | 092 | 093 | 0.87 | 094 | 090 | 091 | 094 | 093 | 090 | 092
GW2V 094 | 095 | 093 | 092 | 093 | 094 | 093 | 094 | 096 | 094 | 095 | 092 | 095 | 095 | 095 | 095
FASTXT | 0.9 | 0.77 | 081 | 075 | 0.77 | 0.78 | 0.73 | 0.77 | 0.87 | 0.87 | 085 | 090 | 0.89 | 090 | 092 | 0385
SMOTE(ANOVA
TFIDF 0.88 [ 092 [ 0.89 [ 091 | 0.90 | 0.89 | 092 | 0.89 [ 0.97 | 0.96 [ 0.97 | 0.96 [ 0.97 [ 097 | 0.97 [ 0.96
CBOW | 067 | 0.67 | 0.68 | 0.67 | 0.67 | 067 | 0.67 | 0.68 | 1.00 | 1.00 | 094 | 1.00 | 1.00 | 0.99 | 1.00 | 095
SKG 0.78 | 085 | 090 | 085 | 085 | 088 | 082 | 087 | 095 | 090 | 0.88 | 092 | 091 | 090 | 092 | 0.90
GLOVE | 0387 | 093 | 093 | 093 | 092 | 093 | 092 | 094 | 094 | 094 | 093 | 092 | 092 | 092 | 095 | 094
GW2v 092 | 092 | 093 | 093 | 092 | 094 | 093 | 094 | 096 | 095 | 096 | 095 | 095 | 095 | 093 | 0.96
FASTXT | 0.79 | 0.78 | 0.81 | 0.78 | 0.80 | 0.83 | 0.83 | 0.84 | 0.84 | 092 | 087 | 092 | 091 | 0.88 | 089 | 0387
SMOTE(OneR_ATR)
TFIDF 0.83 | 084 | 085 | 083 | 083 | 073 | 0.77 | 0.72 | 094 | 096 | 095 [ 094 | 094 | 097 | 096 | 097
CBOW | 067 | 067 | 068 | 069 | 0.73 | 067 | 067 | 0.68 | 1.00 | 099 | 095 | 097 | 095 | 1.00 | 1.00 | 096
SKG 0.70 | 0.70 | 0.71 | 0.70 | 0.68 | 0.69 | 0.67 | 0.68 | 097 | 098 | 095 | 097 | 098 | 098 | 1.00 | 093
GLOVE | 0.80 | 0.79 | 0.83 | 083 | 079 | 071 | 0.7 | 072 | 0.89 | 090 | 0.86 | 0.89 | 090 | 095 | 099 | 097
GW2v 078 | 0.79 | 0.79 | 0.80 | 0.80 | 0.83 | 0.79 | 0.74 | 0.88 | 0.88 | 0.86 | 090 | 090 | 0.88 | 0.88 | 0.90
FASTXT | 0.68 | 071 | 074 | 072 | 0.69 | 075 | 0.67 | 0.73 | 0.98 | 097 | 0.87 | 095 | 098 | 0.87 | 099 | 0.90
BLSMOTE(OD)
TFIDF 0.89 [ 092 [ 092 [ 094 | 093 [ 092 | 093 [ 092 [ 092 | 092 [ 091 | 093 [ 093 | 09 [ 094 [ 0.92
CBOW | 066 | 0.67 | 0.80 | 0.73 | 067 | 0.76 | 0.67 | 0.76 | 0.8 | 0.99 | 092 | 0.96 | 1.00 | 0.93 | 1.00 | 095
SKG 0.79 | 080 | 0.87 | 083 | 0.87 | 0.88 | 0.82 | 0.86 | 0.75 | 0.94 | 092 | 091 | 0.84 | 090 | 0.84 | 0.90
GLOVE | 09 | 093 | 092 | 093 | 093 | 093 | 091 | 092 | 093 | 093 | 092 | 094 | 092 | 093 | 094 | 093
GW2v 095 | 095 | 095 | 089 | 096 | 095 | 0.87 | 095 | 095 | 094 | 095 | 095 | 094 | 094 | 095 | 0.94
FASTXT | 0.77 | 0.74 | 0.76 | 0.72 | 073 | 0.75 | 069 | 0.73 | 0.87 | 090 | 0.85 | 0.84 | 0.83 | 0.84 | 091 | 0387
BLSMOTE(ANOVA)
TFIDF 0.87 | 092 | 0.89 | 091 | 091 | 0.89 | 091 | 090 | 094 | 095 | 095 | 095 | 095 | 095 | 095 | 0.96
CBOW | 067 | 067 | 067 | 067 | 067 | 067 | 067 | 069 | 1.00 | 1.00 | 095 | 1.00 | 1.00 | 098 | 1.00 | 098
SKG 074 | 083 | 089 | 0.83 | 079 | 085 | 083 | 090 | 097 | 090 | 090 | 089 | 092 | 091 | 088 | 087
GLOVE | 0.87 | 093 | 095 | 095 | 093 | 095 | 092 | 092 | 094 | 094 | 092 | 093 | 092 | 091 | 094 | 093
GW2V 094 | 095 | 095 | 094 | 094 | 096 | 093 | 095 | 095 | 095 | 095 | 095 | 095 | 095 | 096 | 095
FASTXT | 0.74 | 074 | 083 | 0.78 | 0.77 | 0.86 | 0.73 | 0.81 | 090 | 092 | 0.83 | 0.85 | 091 | 0.78 | 094 | 086
BLSMOTE(OneR_ATR)
TFIDF 0.80 | 0.81 [ 079 | 0.81 | 081 | 0.75 [ 0.76 | 0.73 | 094 [ 095 | 095 [ 095 | 095 | 097 | 098 | 098
CBOW | 067 | 067 | 073 | 070 | 067 | 068 | 067 | 067 | 1.00 | 099 | 0.94 | 097 | 1.00 | 099 | 1.00 | 099
SKG 0.70 | 069 | 0.69 | 068 | 0.69 | 069 | 067 | 068 | 095 | 0.97 | 095 | 097 | 095 | 097 | 1.00 | 0.8
GLOVE | 0.77 | 075 | 080 | 0.76 | 0.74 | 0.70 | 0.69 | 0.75 | 0.92 | 0.96 | 09 | 0.95 | 097 | 095 | 0.98 | 091
GW2v 0.74 | 076 | 0.75 | 078 | 0.76 | 078 | 0.73 | 0.77 | 0.89 | 0.88 | 0.89 | 0.90 | 0.90 | 0.90 | 0.94 | 0.87
FASTXT | 067 | 067 | 0.70 | 0.70 | 0.67 | 0.69 | 0.67 | 0.68 | 098 | 098 | 095 | 094 | 099 | 096 | 099 | 098
Word-Embedding Techniques: Null Hypothesis: different feature selection techniques and all features.
There is no significant difference between the models . . .
trained by using features extracted by different em- ° D ata Samp ling Techmques. Null Hypothesis: There
bedding techniques. is no significant difference between the models trained
on sampled data and original data.
Feature Selection Techniques: Null Hypothesis: e Deep-Learning Techniques: Null Hypothesis: There

There is no significant difference between the mod-
els trained by using selected sets of features using

is no significant difference between the models trained
using different variants of deep-learning techniques.
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TABLE II: AppReviews: Accuracy and AUC

Accuracy | AUC
DLi | D2 | DL3 | DI4 | DI5 | DL6 | DI7 | DI | DLI | DL2 | D3 | DL4 | DL5 | DL | DL7 | DI8
ORGDATA(OD)
TFIDF 83.87 81.52 80.65 82.11 82.11 80.94 81.82 82.4 0.89 0.85 0.85 0.85 0.84 0.83 0.84 0.82
CBOW 64.22 70.67 64.81 64.52 65.69 72.43 62.46 64.52 0.63 0.7 0.73 0.69 0.71 0.78 0.64 0.67
SKG 71.55 79.77 77.42 77.71 80.65 76.54 75.07 77.13 0.81 0.87 0.85 0.85 0.88 0.86 0.83 0.86
GLOVE 83.58 81.82 82.11 82.7 84.16 80.65 83.28 82.4 0.91 0.9 0.89 0.9 0.91 0.89 0.9 0.89
GW2V 81.82 81.52 82.7 83.58 79.77 82.4 83.28 81.52 0.91 0.91 0.89 0.91 0.9 0.87 0.91 0.87
FASTXT 67.45 67.45 69.21 67.16 69.5 66.28 63.64 66.86 0.76 0.77 0.75 0.75 0.74 0.74 0.71 0.77
ORGDATA(ANOVA)
TFIDF 84.46 86.22 85.63 85.92 84.75 84.75 85.04 84.16 0.91 0.9 0.87 0.89 0.88 0.85 0.88 0.85
CBOW 61.88 62.46 70.38 67.74 67.45 64.52 62.17 64.52 0.59 0.75 0.73 0.74 0.74 0.65 0.69 0.52
SKG 77.13 78.59 75.95 73.61 80.35 78.59 78.01 78.59 0.84 0.86 0.84 0.85 0.85 0.86 0.84 0.85
GLOVE 82.4 81.23 81.52 81.82 80.35 82.7 80.65 82.4 0.89 0.88 0.88 0.88 0.88 0.89 0.88 0.88
GW2v 84.46 84.16 84.16 81.82 85.92 84.16 81.52 84.46 0.92 0.92 0.9 0.91 0.92 0.9 0.9 0.89
FASTXT 71.85 75.07 70.97 72.73 71.85 71.55 70.09 67.74 0.73 0.82 0.78 0.79 0.79 0.77 0.78 0.75
ORGDATA (OneR_ATR)
TFIDF 83.58 83.58 84.16 84.75 80.94 76.25 75.07 61.88 0.85 0.84 0.83 0.84 0.81 0.77 0.76 0.47
CBOW 61.88 61.58 64.81 67.45 64.22 70.38 61.88 61.88 0.68 0.79 0.71 0.78 0.77 0.78 0.75 0.48
SKG 68.92 71.26 69.5 68.62 70.38 70.97 61.88 67.45 0.74 0.75 0.72 0.71 0.73 0.76 0.6 0.67
GLOVE 80.65 79.47 78.59 78.01 79.77 73.61 78.3 64.52 0.88 0.88 0.86 0.88 0.85 0.77 0.85 0.55
GW2V 80.65 81.52 80.65 80.65 80.65 70.67 78.3 77.71 0.88 0.88 0.86 0.87 0.87 0.75 0.85 0.85
FASTXT 61 65.98 68.04 64.52 63.64 63.93 63.64 59.53 0.64 0.71 0.71 0.69 0.69 0.64 0.69 0.54
SMOTE(OD)
TFIDF 86.2 90.14 88.17 90.14 90.86 89.25 90.14 89.43 0.92 0.92 0.89 0.92 0.91 0.9 0.92 0.9
CBOW 58.96 68.28 77.6 71.68 67.74 79.21 66.67 73.66 0.62 0.74 0.79 0.82 0.74 0.81 0.66 0.81
SKG 66.67 85.3 85.66 82.62 82.62 84.41 83.69 82.26 0.77 0.9 0.91 0.87 0.88 0.91 0.89 0.86
GLOVE 83.51 90.68 89.25 89.43 91.4 90.86 87.81 90.14 0.9 0.94 0.95 0.94 0.96 0.93 0.94 0.93
GW2V 92.83 92.47 91.94 89.96 91.58 9247 92.11 92.29 0.97 0.97 0.95 0.95 0.94 0.94 0.94 0.94
FASTXT 75.81 74.01 76.52 73.12 74.55 76.34 72.4 73.3 0.81 0.77 0.82 0.76 0.77 0.79 0.73 0.78
SMOTE(ANOVA)
TFIDF 88.53 91.22 90.14 91.04 91.04 90.5 92.11 88.89 0.92 0.94 0.91 0.94 0.94 0.91 0.94 0.9
CBOW 66.67 66.67 67.03 66.67 66.67 66.31 66.67 67.38 0.57 0.65 0.68 0.68 0.7 0.57 0.67 0.59
SKG 78.49 82.8 85.13 83.69 82.97 85.66 81.36 84.77 0.84 0.88 0.92 0.88 0.88 0.9 0.86 0.9
GLOVE 86.38 91.4 90.86 90.14 89.07 90.68 91.22 92.11 0.92 0.95 0.95 0.94 0.94 0.95 0.96 0.95
GW2v 91.94 91.58 92.65 92.29 91.76 92.83 90.86 93.01 0.97 0.97 0.96 0.97 0.96 0.97 0.96 0.94
FASTXT 73.84 77.42 77.96 77.06 78.32 79.39 80.29 80.11 0.73 0.79 0.83 0.81 0.81 0.81 0.82 0.83
SMOTE(OneR_ATR)
TFIDF 82.8 84.95 84.95 83.69 83.15 74.01 78.67 72.76 0.83 0.82 0.84 0.83 0.82 0.7 0.79 0.69
CBOW 66.67 66.67 67.03 68.28 72.94 66.67 66.67 66.85 0.49 0.63 0.75 0.78 0.78 0.49 0.4 0.5
SKG 70.07 70.43 70.79 69.89 67.74 69.89 66.67 65.77 0.69 0.71 0.7 0.71 0.71 0.61 0.69 0.55
GLOVE 77.42 77.6 78.49 80.29 77.42 70.43 70.43 73.48 0.83 0.83 0.84 0.85 0.83 0.62 0.59 0.69
GW2V 75.63 76.16 75.81 78.49 78.67 79.57 76.52 72.4 0.81 0.83 0.81 0.83 0.83 0.84 0.82 0.74
FASTXT 68.1 70.97 71.15 72.58 69.71 72.22 67.2 70.97 0.64 0.7 0.71 0.72 0.67 0.72 0.69 0.69
BLSMOTE(OD)
TFIDF 87.28 89.78 88.17 91.22 90.86 88.53 91.22 89.25 0.92 0.92 0.91 0.93 0.93 0.91 0.92 0.91
CBOW 58.6 67.56 79.21 73.12 67.03 75.45 66.67 76.52 0.6 0.72 0.82 0.77 0.71 0.77 0.54 0.8
SKG 70.07 80.65 85.3 81.9 81.54 84.95 76.7 83.69 0.78 0.9 0.91 0.88 0.88 0.9 0.86 0.89
GLOVE 87.99 90.68 89.25 91.22 90.14 90.5 89.78 89.96 0.93 0.94 0.93 0.94 0.95 0.94 0.92 0.93
GW2v 93.55 92.83 93.55 89.25 93.01 92.65 87.28 92.83 0.97 0.97 0.97 0.94 0.97 0.96 0.92 0.95
FASTXT 73.84 71.51 72.4 67.74 68.64 70.79 67.03 70.25 0.77 0.74 0.75 0.73 0.71 0.74 0.69 0.74
BLSMOTE(ANOVA)
TFIDF 86.92 91.22 89.25 90.68 90.86 89.25 91.04 90.14 0.91 0.93 0.9 0.93 0.92 0.89 0.92 0.91
CBOW 66.67 66.49 66.31 66.85 66.67 67.03 66.67 69 0.58 0.67 0.67 0.68 0.64 0.56 0.65 0.66
SKG 75.63 81.36 86.02 80.65 78.49 83.87 79.93 84.59 0.84 0.88 0.91 0.88 0.87 0.89 0.85 0.91
GLOVE 86.92 90.86 91.04 92.47 90.5 90.68 90.86 89.78 0.93 0.95 0.94 0.95 0.94 0.93 0.94 0.94
GW2V 92.47 93.19 93.73 92.47 92.65 93.91 92.83 93.55 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.95
FASTXT 72.22 73.3 77.6 74.55 76.16 76.88 73.12 77.06 0.73 0.8 0.83 0.81 0.79 0.82 0.8 0.81
BLSMOTE(OneR_ATR)
TFIDF 80.65 82.26 79.75 82.08 81.72 76.7 78.32 74.37 0.75 0.75 0.75 0.76 0.76 0.72 0.76 0.63
CBOW 66.67 66.31 73.12 70.25 66.67 68.82 66.67 67.38 0.53 0.64 0.71 0.75 0.72 0.53 0.58 0.54
SKG 69.18 69 68.64 67.74 68.82 68.82 66.67 67.56 0.64 0.64 0.65 0.62 0.71 0.63 0.56 0.55
GLOVE 76.7 75.63 78.67 76.88 75.27 69 69.35 73.84 0.79 0.79 0.8 0.82 0.8 0.6 0.74 0.74
GW2v 71.86 74.01 72.94 75.99 74.73 76.34 73.12 74.19 0.78 0.79 0.78 0.8 0.8 0.8 0.77 0.77
FASTXT 67.2 66.67 70.07 68.64 66.49 68.28 66.49 68.28 0.58 0.66 0.67 0.66 0.67 0.57 0.58 0.51

A. Word-Embedding

In this work, six different types of word embedding ap-
proaches such as TFIDF, CBOW, GLOVE, GW2V, SKG, and
FASTXT have been used to find the numerical vectors of
software text comments. To find the best embedding approach,
we exploited performance evaluators- Accuracy, Precision,
AUC, and Recall, which are computed for models trained

by taking the above embedding techniques as input and
trained using different variants of deep-learning with 5-fold
cross-validation techniques on sampled as well as original
data. Figure 4 visually depicts the model’s ability to predict
sentiments using different word-embedding techniques, and
Table III depicts descriptive statistics of different embedding in
terms of accuracy, AUC, precision, and Recall. From Figure
4, it is visible that the models trained by taking numerical
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Fig. 4: Performance Box-Plot Diagram:

vectors computed using google word to vector (GW2V) have
better capability to predict sentiment as compared to other
embeddings. The models trained using GW2V achieved 0.86
average AUC, 0.89 average Recall, 0.85 average precision,
and 84.03 average accuracy. Similarly, From Table III, we
observed that the models trained using CBOW have the worst
performance with 0.60 average AUC, 0.78 average Recall, 0.66
average precision, and 67.49 average accuracy.

TABLE III: Descriptive Statistics: Different Word Embedding

[ Min | Max [ Mean | Q2 [ Q1 [ Q3
Accuracy
TFIDF 47.72 | 95.83 80.39 83.51 | 71.58 | 88.20
CBOW 11.87 | 88.13 67.49 66.67 | 65.73 | 69.05
SKG 46.86 | 92.66 75.30 7222 | 66.67 | 85.26
GLOVE 45.60 | 96.62 81.46 82.70 | 72.63 | 89.71
GW2v 63.29 | 98.11 84.03 85.02 | 76.92 | 90.38
FASTXT | 58.06 | 89.78 74.66 71.96 | 68.00 | 82.59
Precision
TFIDF 0.00 1.00 0.82 0.84 0.72 0.93
CBOW 0.00 1.00 0.66 0.67 0.64 0.72
SKG 0.00 0.98 0.77 0.75 0.67 0.88
GLOVE 0.00 0.99 0.82 0.85 0.74 0.90
GW2vV 0.61 0.99 0.85 0.86 0.80 0.91
FASTXT 0.57 0.94 0.76 0.74 0.69 0.84
Recall
TFIDF 0.00 1.00 0.87 0.94 0.82 0.98
CBOW 0.00 1.00 0.78 0.99 0.59 1.00
SKG 0.00 1.00 0.87 0.93 0.78 1.00
GLOVE 0.00 1.00 0.89 0.92 0.87 0.96
GW2V 0.43 1.00 0.89 0.90 0.87 0.95
FASTXT 0.22 1.00 0.84 0.89 0.73 0.96
AUC
TFIDF 0.43 0.98 0.78 0.80 0.65 0.89
CBOW 0.40 0.91 0.60 0.56 0.50 0.70
SKG 0.43 0.97 0.70 0.70 0.55 0.86
GLOVE 0.43 0.99 0.82 0.83 0.73 0.95
GW2vV 0.52 1.00 0.86 0.87 0.80 0.96
FASTXT 0.45 0.96 0.74 0.73 0.66 0.83

Table IV shows the mean ranks using the Freidman test for
the various word embedding techniques. We have evaluated

Performance of Different Word Embedding

the considered null hypothesis at 0.05 with five degrees of
freedom on four different performance parameters such as
accuracy, recall, precision, and AUC. The lower value of
mean rank represents the best word-embedding techniques
for sentiment analysis of software engineering comments.
According to information present in Table IV, the models
trained using different embedding techniques are significantly
different. Similarly, according to information present in Table
IV, the models trained using GW2V have a lower mean rank,
i.e., 1.91 for accuracy, 1.92 precision, 3.61 recall, and 1.37
AUC representing that the developed models have better pre-
diction capability as compared to other embedding techniques.

B. Feature Selection

In this work, six different types of features selection
techniques: significant features calculation using ANOVA
test, un-correlated sets of features using PCA, best sets
of features using the gain ratio(GAIN_RAT), information
gain(INFO_GAIN), oneR attribute evaluation (OneR_ATR),
correlation attribute selection (CORR_ATR) have been used
to find the best combination of relevant features for software
engineering sentiment analysis. We exploited performance
evaluators- Accuracy, Precision, AUC, and Recall to find the
best feature selection technique that gives us the best sets of
features for models trained using different variants of deep-
learning with 5-fold cross-validation techniques on sampled
as well as original data. Figure 5 visually depicts the model’s
ability to predict sentiments using different feature selection
techniques and Table V depicts descriptive statistics of differ-
ent feature selection techniques in terms of accuracy, AUC,
precision, and Recall. From Figure 4, it is quite evident that
the models trained by taking significant sets of features using
the ANOVA test have better capability to predict sentiment as
compared to other feature selection techniques. The models
trained using ANOVA features achieved 0.85 average AUC,
0.88 average recall, 0.84 average precision, and 83.21 average
accuracy. Similarly, From Table V, we observed that the
models trained using features selection from OneR_ATR have
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TABLE 1V: Friedman test : Mean Rank

[ Accuracy | AUC [ Precision | Recall
DL
DL1 4.69 4.48 4.60 4.80
DL2 3.83 3.20 4.03 4.27
DL3 3.49 3.15 3.39 5.17
DL4 3.46 3.07 3.68 4.69
DL5 4.12 3.70 4.32 4.04
DL6 5.01 5.62 4.79 4.78
DL7 5.62 6.03 5.67 3.65
DL8 5.78 6.75 5.51 4.60
P<0.05 P<0.05 P<0.05 P<0.05
Word-Embedding
TFIDF 2.74 3.25 2.43 3.52
CBOW 5.27 5.58 5.39 3.07
SKG 4.17 4.49 4.16 3.15
GLOVE 2.60 223 2.74 3.46
GW2vV 1.91 1.37 1.92 3.61
FASTXT 4.32 4.07 4.37 4.19
P<005 | P<0.05 | P<0.05 | P<005
Feature Sets
OD 2.44 2.09 2.39 4.02
ANOVA 2.27 1.72 2.21 3.77
PCA 4.49 4.72 4.74 3.59
GAIN_RAT 4.83 4.93 4.80 4.10
INFO_GAIN 4.56 4.46 4.48 4.15
OneR_ATR 4.91 5.35 4.90 4.10
CORR_ATR 4.50 4.73 4.48 4.28
P<0.05 | P<0.05 | P<0.05 | P0.05
OD and SMOTE
ORGDATA 1.69 2.28 1.83 2.34
SMOTE 2.02 1.73 1.88 1.87
BLSMOTE 2.29 1.98 2.29 1.79
P<0.05 P<0.05 P<0.05 P<0.05

the worst performance with 0.70 average AUC, 0.84 average
Recall, 0.75 average precision, and 74.39 average accuracy.
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Fig. 5: Performance Box-Plot Diagram: Performance of Dif-
ferent Sets of Features

Table IV shows the mean ranks using the Freidman test for
the various feature selection techniques. We have evaluated the
considered null hypothesis at 0.05 with six degrees of freedom
on four different performance parameters such as accuracy,
recall, precision, and AUC. According to information present
in Table IV, the models trained using different feature selection
techniques are significantly different. Similarly, information

PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE V: Descriptive Statistics: Different Sets of Features

[ Min [ Max [ Mean [ Q2 | Q1 | Q3

Accuracy
oD 48.66 | 98.11 83.40 87.24 | 74.69 | 91.96
ANOVA 11.87 | 97.64 83.21 86.80 | 78.16 | 92.17
PCA 48.43 | 94.60 74.83 73.67 | 66.67 | 84.63

GAIN_RAT 48.11 90.93 74.51 7291 66.67 | 82.54
INFO_GAIN | 46.54 | 90.28 75.08 7285 | 67.62 | 84.16
OneR_ATR 4725 | 91.36 74.39 72.10 | 67.14 | 83.61
CORR_ATR 45.60 | 90.50 75.12 73.05 | 67.37 | 85.06

Precision
oD 0.37 0.99 0.85 0.88 0.79 0.93
ANOVA 0.00 0.99 0.84 0.88 0.80 0.93
PCA 0.00 1.00 0.75 0.74 0.67 0.88
GAIN_RAT 0.00 0.98 0.76 0.75 0.67 0.85
INFO_GAIN 0.00 1.00 0.76 0.75 0.68 0.87

OneR_ATR 0.00 0.98 0.75 0.73 0.67 0.86
CORR_ATR 0.00 1.00 0.76 0.75 0.68 0.86

Recall
OD 0.01 1.00 0.88 0.92 0.86 0.96
ANOVA 0.00 1.00 0.88 0.92 0.87 0.96
PCA 0.00 1.00 0.86 0.93 0.84 1.00

GAIN_RAT 0.00 1.00 0.84 0.91 0.76 1.00
INFO_GAIN 0.00 1.00 0.85 0.92 0.78 0.99
OneR_ATR 0.00 1.00 0.84 0.93 0.78 0.99

CORR_ATR 0.00 1.00 0.84 0.91 0.78 0.99
AUC

OD 0.47 1.00 0.83 0.91 0.74 0.96

ANOVA 0.44 1.00 0.85 0.90 0.78 0.96

PCA 0.43 0.98 0.71 0.71 0.55 0.85

GAIN_RAT 0.43 0.96 0.71 0.73 0.59 0.82

INFO_GAIN 0.43 0.96 0.73 0.74 0.63 0.83
OneR_ATR 0.40 0.96 0.70 0.71 0.58 0.83
CORR_ATR 0.43 0.96 0.72 0.72 0.61 0.83

present in Table IV shows that the models trained by taking
selected significant features using ANOVA as an input have a
lower mean rank, i.e., 2.27 for accuracy, 2.21 precision, 3.77
recall, and 1.72 AUC, represent that the developed models
have better prediction capability as compared to other features
selection techniques.

C. Classification Techniques

The sentiment prediction models for software engineering
comments are trained using different variants of deep-learning
techniques with a 5-fold cross-validation approach. These
trained models’ capability is compared using performance
parameters such as accuracy, precision, recall, and AUC. Fig-
ure 6 depicts the box-plot diagrams of different performance
parameters for the models trained using different variants of
deep learning. Table VI shows the descriptive statistics in terms
of Mean, Median, Min, Max, Q1, and Q3 for different deep-
learning techniques. It can be seen from Figure 6 and Table
VI that the models trained using DL2, DL3, DL4, and DLS5
have similar average values of AUC, i.e., 0.78. Similarly, the
DLS classifier produces models with a minimum average AUC
of 0.67.

In this paper, we have also compared the effectiveness of
different variants of deep learning using the Friedman test
with a significance level of 0.05 and six degrees of freedom
on four different performance parameters such as accuracy,
recall, precision, and AUC. Table IV shows the mean ranks
using the Freidman test for different variants of deep learning.
According to the results of the Friedman test, we observed
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Fig. 6: Performance Box-Plot Diagram: Different Variants of Deep Learning

TABLE VI: Descriptive Statistics: Different Variants of DL
| Min | Max | Mean | Q2 | Q1 ‘ Q3
Accuracy
DL1 | 49.61 | 98.11 | 77.97 | 7881 | 68.09 | 87.93
DL2 | 4929 | 97.88 | 7896 | 79.53 | 68.79 | 88.09
DL3 | 48.82 | 97.64 | 7919 | 79.62 | 70.07 | 88.07
DL4 | 4921 | 97.17 | 79.07 | 79.66 | 69.89 | 88.09
DL5 | 48.66 | 98.11 | 78.69 | 79.32 | 68.40 | 88.09
DL6 | 11.87 | 97.64 | 7530 | 73.82 | 67.00 | 86.07
DL7 | 11.87 | 9725 | 7541 | 7437 | 66.67 | 87.28
DL8 | 11.87 | 9741 | 73.15 | 7025 | 66.67 | 84.77
Precision
DLI | 000 | 1.00 | 079 | 081 | 069 | 0.88
DL2 | 040 | 099 | 080 | 082 | 070 | 0.88
DL3 | 048 | 099 | 081 083 | 073 | 088
DL4 | 049 | 1.00 | 08I 082 | 072 | 088
DL5 | 000 | 099 | 080 | 082 | 069 | 0.88
DL6 | 000 | 098 | 076 | 075 | 067 | 0.88
DL7 | 000 | 099 | 076 | 075 | 067 | 0.88
DL8 | 000 | 1.00 | 073 | 071 | 067 | 088
Recall
DLI | 000 | 1.00 | 086 | 091 | 083 | 098
DL2 | 001 | 1.00 | 088 | 093 | 085 | 099
DL3 | 001 | 1.00 | 086 | 090 | 083 | 096
DL4 | 000 | 1.00 | 087 | 091 | 083 | 097
DL5 | 000 | 1.00 | 088 | 092 | 084 | 099
DL6 | 000 | 1.00 | 083 | 092 | 0.78 | 098
DL7 | 000 | 1.00 | 085 | 095 | 082 | 1.00
DL8 | 0.00 | 1.00 | 081 093 | 075 | 099
AUC

DLI | 043 | 1.00 | 076 | 078 | 0.63 | 0.0
DL2 | 043 | 1.00 | 078 | 080 | 0.68 | 0.0
DL3 | 044 | 1.00 | 078 | 080 | 0.69 | 0.90
DL4 | 044 | 1.00 | 078 | 080 | 0.69 | 0.90
DL5 | 043 | 099 | 078 | 0380 | 0.68 | 089
DL6 | 043 | 099 | 072 | 071 | 059 | 085
DL7 | 040 | 1.00 | 073 | 074 | 058 | 0.86
DL8 | 043 | 099 | 067 | 063 | 051 | 080

that the performance of software sentiment prediction models
significantly depends on the architecture of the deep-learning

models. Similarly, the models trained using DL4 have better
capability to predict sentiment as compared to other deep-
learning techniques.

D. SMOTE

In this study, we have used two different variants of
SMOTE techniques to handle the class imbalance nature of
data. We have used box-plot and descriptive statistics of
performance parameters to find the impact of data sampling
techniques on sentiment analysis for software engineering
comments. Figure 7 presents a visual representation of the
predictive capability of models trained on a balanced dataset
versus models learned on an imbalanced dataset. Table VII
shows the descriptive statistics in terms of min, max, Mean,
Median, Q1, and Q3 for models trained on sampled data
and original data. From Figure 7, and Table VI, it can be
seen that the models trained on sampled data have better
performance as compared to the original data. The trained
prediction models on sampled data have 0.76 average AUC,
0.88 average recall, 0.78 average precision, and 76 average
accuracies. While, models trained on original data have 0.73
average AUC, 0.81 average recall, 0.82 average precision, and
81.51 average accuracy.

In this paper, the Friedman test with a significance level of
0.05 and two degrees of freedom has been considered to find
the significant impact of sampling techniques on model per-
formance. Table IV shows the mean ranks using the Freidman
test for SMOTE, BLSMOTE, and original data. The smaller
value of P represents that the models trained on sampled data
have significant improvement in performance as compared to
the original data. Similarly, the models trained on SMOTE
sampled data have better capability to predict sentiments as
compared to BLSMOTE and original data.
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Fig. 7: Performance Box-Plot Diagram: Performance of Orig-
inal Data and SMOTE

TABLE VII: Descriptive Statistics: OD and SMOTE

| Min | Max ‘ Mean | Q2 | Q1 | Q3
Accuracy
ORGDATA 11.87 | 95.57 81.51 85.86 | 76.24 | 88.13
SMOTE 3333 | 97.25 76.00 73.99 | 66.81 85.09
BLSMOTE | 33.33 | 98.11 74.16 71.01 66.67 | 82.43
Precision
ORGDATA 0.00 1.00 0.82 0.88 0.80 0.88
SMOTE 0.00 0.99 0.78 0.76 0.67 0.89
BLSMOTE 0.00 0.99 0.75 0.73 0.67 0.83
Recall
ORGDATA 0.00 1.00 0.81 0.89 0.76 1.00
SMOTE 0.00 1.00 0.88 0.92 0.86 0.97
BLSMOTE 0.00 1.00 0.87 0.93 0.86 0.98
AUC
ORGDATA 0.43 0.99 0.73 0.75 0.59 0.87
SMOTE 0.40 1.00 0.76 0.79 0.64 0.90
BLSMOTE 0.44 1.00 0.75 0.76 0.64 0.88
VII. CONCLUSION

Sentiment analysis prediction models for software engi-
neers help in various engineering tasks like analyzing devel-
opers’ sentiments, evaluating app reviews, users’ sentiments
of software products, etc. The work presented in this pa-
per is a successful effort in the direction of development
of software sentiment models by using different variants of
embedding techniques, different methods to find important
features, different methods to handle the imbalanced nature
of the dataset, and finally, different variants of deep-learning
for model development. The performance of the developed
models is computed and compared using accuracy, precision,
AUC, and recall. We have also applied the Friedman test
to statistically examine the performance of models developed
using a different combination of features. The major findings
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are summarized as follows:

The high value of AUC for the trained models con-
firms the capability of the models to predict sentiment

based on text comments.

The use of sampling techniques like SMOTE and
BLSMOTE significantly helps in improving the per-
formance of software sentiment prediction models.

The models trained by using selected sets of features
using ANOVA achieved better performance as com-
pared to other techniques.

The deep learning with one dropout layer and two hid-
den layers achieved better performance as compared
to other combinations.
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