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Abstract—Software requirement classification is becoming
increasingly crucial for the industry to keep up with the demand
of growing project sizes. Based on client feedback or demand,
software requirement classification is critical in segregating user
needs into functional and quality requirements. However, because
there are numerous machine learning (ML) and deep-learning
(DL) models that require parameter tuning, the use of ML
to facilitate decision-making across the software engineering
pipeline is not well understood. Five distinct word embedding
techniques were applied to the functional and quality software
requirements in this study. The imbalanced classes in the dataset
are balanced using Synthetic Minority Oversampling technique
(SMOTE). Then, to reduce duplicate and unnecessary features,
feature selection and dimensionality reduction techniques are
used. Dimensionality reduction is accomplished with Principal
Component Analysis (PCA), while feature selection is accom-
plished with the Rank-Sum Test (RST). For binary categorization
into functional and non-functional needs, the generated vectors
are provided as inputs to eight distinct Deep Learning classifiers.
The findings of the research show that using a combination of
word embedding and feature selection techniques in conjunction
with various classifiers can accurately classify functional and
quality software requirements.

Keywords—Functional Requirements, Non-Functional Require-
ments, Deep Learning, Data Imbalance Methods, Feature Selection,
Classification Techniques, Word Embedding.

I. INTRODUCTION

SOFTWARE requirements classification deals with segre-
gating the clients’ requirements and demands found in

the Software Requirements Specification (SRS) document into
functional and non-functional requirements. It is a key step
in the software development pipeline which can be automated
using Machine Learning techniques. This allows the industry
to save on labor expenses, as a domain expert is often required,
while also optimizing the process and saving crucial time [1].
A key problem that needs to be addressed during requirements
classification is that of the inconsistency in terminology used
by the clients and the software engineers. This may lead to
misclassification of the software requirements.

Functional requirements are the demands that the end-user
defines as critical characteristics that the system should supply

and that can be observed immediately in the finished result.
This is how the input to the system, the action to be taken, and
the intended output are all defined or stated. The system’s basic
quality standards, often known as non-functional requirements,
include factors like reliability, maintainability, security, and
portability [2].

Another problem faced during software requirements clas-
sification is the imbalance between the number of instances
of functional and non-functional requirements classes. Data
imbalance means that the number of instances of minority class
are much lower than those of the majority class. Because of
the unbalanced distribution of data, classifiers are misled while
learning the minority class, resulting in biased and erroneous
findings [3]. A good software requirements categorization
model will be one that has been trained on a similar distribution
of functional and non-functional requirement classes. In this
study, this problem is addressed using oversampling through
Synthetic Minority Oversampling Technique(SMOTE).

In this paper, we look to solve the above problem, and cre-
ate highly accurate software requirements classification models
which can be reliably used in the industry. The following are
the research questions (RQs) that will be used to attain the
aforementioned goals.

• RQ1: Which feature extraction technique can best
capture the unstructured, textual data present in the
SRS document, and convert it to structured data in
the form of numerical vectors?

• RQ2: Which feature selection techniques are the
best at getting rid of redundant and irrelevant features
which may affect the performance of the classification
models?

• RQ3: For what structure of the deep learning classi-
fiers do the software requirements classification mod-
els achieve the best results?

• RQ4: How does the application of class balancing
technique through oversampling affect the perfor-
mance of the models?
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The criteria used to evaluate the performance of the var-
ious models are F-measure, accuracy, and Area under the
ROC curve (AUC). The Friedman test was used to determine
whether an ML technique resulted in a substantial difference in
performance. The PROMISE dataset[4] was used in this study,
which contains 625 labeled criteria from 15 different projects.
The contributions of the study are as follows:

• An extensive comparison of various word embedding
techniques for the purpose of feature extraction is
provided to analyze which technique is best suited for
the SRS document.

• A thorough investigation on the effect of various
feature selection techniques on the performance of
classification models in software engineering is pre-
sented.

• Deep learning classifiers are employed to increase the
accuracy of software requirements classification from
previous studies, with variations in number of layers,
and type of layer being analyzed to find the best deep
learning model out of the eight distinct DL classifiers
used in this study.

• The study evaluates and analyses the performance
of requirements classification models using relevant
performance metrics. The study includes a thorough
statistical analysis to back up the findings with statis-
tical testing, unlike previous studies.

• The effect of class-balancing techniques on software
datasets to build more accurate models is examined.

The remainder of the paper is structured as detailed here:
Section II presents a literature review on software requirement
classification and various word embedding approaches that
are used in this study. Section III describes the experimental
dataset collection as well as the various machine learning
algorithms used. The research methodology is described in
Section IV using an architecture framework. In Section V,
the results of the experiments, along with their analysis, are
presented. Section VI shows a comparison of models created
using various word-embedding approaches, sets of features,
and machine learning models. Finally, Section VII summarizes
the information provided and offers directions for further
research.

II. RELATED WORK

A. Software Requirements Word Embeddings

Navarro-Almanza et al. [5] explore Word2Vec using Skip-
Gram to get structured representation for the textual software
requirements dataset. The purpose of the Skip-gram model is
to anticipate context words. The projection from Skip-Gram
is a continuous vector space rendition of the word with a low
dimensionality. The models developed achieved a maximum
of 0.8 precision, 0.785 recall, and 0.77 F-measure.

To improve how well the word embeddings capture the
content of the text, Marcacini et al. [6] analyze the impact of
using contextual word embeddings for software requirements.
They use the RE-BERT model to obtain the structured data
to feed into their hierarchical clustering classifier. BERT is

built on the Transformers architecture and uses a deep neural
network. To address the sequence of occurrence of the tokens,
a positional embedding is used. Static word embeddings, such
as word2vec and FastText, on the other hand, have the issue
of having the same embedding regardless of context, which
makes structured modeling of software requirements difficult.

B. Classifying Software Requirements

Ott [7] employ two classifiers, Multinomial Naive Bayes,
and Support Vector machine for software requirements clas-
sification. The classification techniques are applied on two
datasets, out of which one is confidential and the other is
public. The maximum recall achieved by the Naive Bayes
classifier is 0.94, whereas the Support Vector machine achieves
a precision of 0.86 in the best model. Baker et al. [8] work
on classification of non-functional requirements into their sub-
categories. The authors compare the performance of the CNN
model with that of an ANN model and results indicate that the
CNN model outperforms the ANN on most performance met-
rics. The ANN consists of one hidden layer of 20 neurons. The
ANN model has a precision of 82% to 90%, a recall of 78%
to 85%, and the greatest F-score of 84%.With the maximum
F-score of 92%, the CNN model obtains precision between
82% and 94%, and recall between 76% and 97%. Rahimi et
al. [9] focus on further classifying the functional requirements
into six different categories: policy, action constraint, solution,
definition, attribute constraint, and enablement. The authors
use the ensemble approach which combined five distinct clas-
sifiers: support vector classification, support vector machine,
decision tree, logistic regression, and Naïve Bayes. For each
class, accuracy per class as a weight is used to find the most
optimal classifier. The best results are obtained using LR, SVC,
SVM as the classifiers, which perform better than using all
classifiers. An accuracy of 99.45% is achieved in classifying
600 functional requirements.

III. STUDY DESIGN

This section presents the details regarding various design
setting used for this research.

A. Experimental Dataset

Cleland-Huang and his team [4] used the same datasets to
validate the proposed software requirement solution. Cleland-
Huang and his team extracted this data with the help of
MS students from DePaul University and rendered it for
public research via the PROMISE repository. The functional
and non-functional attributes are shown below in Figure 2.
The first observation to be made about Figure 2 is that
the PROMISE repository is uneven in number of functional
and non-functional requirements, with quality requirements
accounting for 382 of the 625 total.

B. Training of Models from Imbalanced Data Set:

Several ML algorithms have the issue of neglecting the
minority class in unbalanced datasets, despite the reality that
performance on those is often what matters. In order to
use future ML techniques, it was essential to implement the
SMOTE technique on the imbalanced classes in our dataset.
SMOTE [10] (Synthetic Minority Oversampling Approach) is
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Fig. 2: Data-Sets

a data augmentation technique that duplicates existing minority
class instances or generates new minority class instances. It
solves the imbalance problem without adding any new data to
the dataset, allowing us to employ machine learning techniques
afterwards.

C. Word Embedding:

The dataset’s textual data must be expressed as vectors
in respect to one another. The dataset was subjected to five
different word embedding techniques: Term Frequency and
Inverse Document Frequency (TF-IDF), Continuous Bag of
Words (CBOW)1, Skip-Gram (SKG), Global Vectors for Word
Representation (GLOVE)2, and Google news Word to Vector
(GW2V). The aim of these techniques, such as GLOVE,
CBOW, etc., is to capture the semantic information in the text,
which is not possible with other word-embedding techniques
such as TF-IDF. The textual data was represented as a vector
in an n-dimensional space using these techniques. Before
applying the word embedding techniques, all characters in the
requirements are converted to lowercase letters. We deleted
any stopwords, bad symbols, and spaces. These will now be

1https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b
2https://nlp.stanford.edu/projects/glove/

utilized to create models that will classify the requirements
into functional and non-functional [11].

D. Feature Selection Techniques

We identify critical feature vectors that impact the perfor-
mance of the models after doing word embedding on the data.
To eliminate redundant and unnecessary features that may have
a detrimental impact on the models’ performance, the Rank
Sum Test (RST) and Principal Component Analysis (PCA)
are used. To see the difference, the performance of models
with these features is compared to the performance of models
without these features. This phase aids in the reduction of over-
training and training time [12].

E. Classification Technique:

The dataset is divided into training and testing subsets and
categorized using eight deep learning models using K-Fold
Cross-validation with a k value of 5. The structure of the
various models is presented below. All models have an input
layer with number neurons equal to the number of features of
input data. For each subsequent hidden layer, the number of
neurons is halved. All layers involved in the Deep Learning
models are either Dense layers or Dropout layers. In a Dense
layer, each neuron in the layer receives input from all neurons
of the previous layer. On the other hand, a Dropout layer
randomly selects and omits a certain number of neurons in the
layer while training the Deep Learning model. In this work, a
dropout value of 0.2 is used. Dropout layers are used to solve
the problem of overfitting models. Finally, the output layer
consists of only one neuron which contains a binary value
corresponding to the binary classification to either functional or
non-functional requirements. The activation function for each
layer is the rectified linear activation function or ReLU, except
the output layer which uses a sigmoid activation function.
Binary cross entropy is the loss function that is utilized to train
the models with Adam as the optimizer. Figure 3 shows the
architecture of the considered deep learning model1, model2,
model3, and model4 (DL1, DL2, DL3, and DL4). Similarly, we

TFIDF CBOW
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Rank-SUM Test

All Features

Principal component
analysis

DL1

DL2
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DL4

DL5
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DL7
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Performance
Analysis
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SMOTE

Data Set

Fig. 1: Framework of proposed work
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are increasing the number of hidden layers for four more deep
learning models. The above considered models are validated
using 5-fold cross-validation with batch size=30, epochs=100
, and Dropout=0.2.

IV. RESEARCH METHODOLOGY

Figure 1 provides a full outline of our proposed effort.
We started by extracting the software requirements dataset
from the PROMISE repository. This data contains labels of
the software requirement category it falls under, i.e. functional
or non-functional requirements. The data was then subjected
to pre-processing techniques like converting all characters
to lowercase, removing non-alphanumeric and non-symbol
characters, eliminating frequently used words like ‘the’, and
‘a’, and other words with lengths less than or equal to two
as they do not make a significant impact in the classification.
Then, all of the phrases were tokenized to words.

To extract features from this unstructured, pre-processed
data, five different word embedding techniques were applied
to best capture the information. To account for the imbalance
in classes due to 382 instances of quality requirements out of
625, a data oversampling technique in the form of SMOTE
was used. Models were trained on both the balanced and
imbalanced datasets to compare the effectiveness of the class-
balancing. The features acquired after the word embeddings
and class balancing needed to be refined to remove redundant
and irrelevant features. Feature selection technique in the form
of Rank-Sum test, and dimensionality reduction technique in
the form of Principal Component Analysis were employed.
These two sets of features as well as the set of original features
were fed to the Deep Learning classifiers. This was done to
help understand the importance of feature selection.

The eight different DL classifiers were trained using 5-
fold cross validation. The classifiers have varying layer sizes,
and layer types, but certain attributes like the optimizer, loss
function, etc. remain constant across the different classifiers.
These classifiers are named DL1, DL2, DL3, and so on till
DL8. Finally, the performance of the various models developed
was measured using accuracy, F-measure, and AUC. This
performance was statistically analyzed using box-plots for
visual representation, with statistics like mean, maximum,
minimum, Q1, and Q3 for each performance metric. Further,
any conclusions derived were statistically supported using the
Friedman test.

V. EMPIRICAL RESULTS AND ANALYSIS

To categorize software needs into functional or non-
functional, we used five distinct word embedding approaches,
a class balance strategy, two feature selection strategies, and
eight different classification techniques. As a result, a total
of 480 [5 word-embedding techniques × 2 requirements
datasets(1 functional requirements dataset + 1 non-functional
requirements dataset) × (1 imbalanced dataset + 1 balanced
dataset) × 3 sets of features × 8 DL classifiers] models
were generated. As shown in Tables I and II, the predictive
performance of these trained models is assessed using the F-
measure, accuracy and Area Under Curve (AUC) performance
metrics.

• The high value of AUC confirms that the developed
models have the ability to accurately classify the soft-
ware requirements into functional and non-functional
as almost all the performance values seen on the right
side of Table I are greater than 0.75 AUC.

• The models developed using the Deep Learning struc-
ture of DL3 have better performance as compared to
other classifiers.

• The models trained using neural network with ADAM
(NNADAM) training algorithm have better predictive
ability as compared LBFG, and SGD training algo-
rithms.

• Simply by observing the values in Table I, we can
see the difference SMOTE provides in improving the
performance.

VI. COMPARATIVE ANALYSIS

The various models created with using word embed-
ding techniques, class balancing approaches, feature selection
strategies, and different classifiers are compared in this section.
The comparison is based on statistics such as the area under the
ROC curve (AUC), F-measure, and accuracy, with box plots
serving as a visualization of the comparative performance. The
Friedman test was used in this research to verify the findings.
The Friedman test is used to accept or reject the following
hypothesis.

• Null Hypothesis- There is no substantial difference in
the predictive performance of software classification
models constructed using different machine learning
approaches.

• Alternate Hypothesis- The prediction power of soft-
ware classification models constructed using various
ML approaches varies significantly.

With degrees of freedom of 4 for word embedding, 1 for
class balancing, 2 for feature selection, and 7 for distinct DL
classifier comparisons, the Friedman test was performed with
a significance threshold of α = 0.05.

A. RQ1: Which feature extraction technique can best capture
the unstructured, textual data present in the SRS document, and
convert it to structured data in the form of numerical vectors?

In this work, five distinct word embedding approaches were
utilized to compute the numerical vector of the functional
and quality requirements: TF-IDF, Skip-Gram (SKG), Global
Vectors for Word Representation (GloVe), W2V and Bag of
Words (CBOW). To assess the prediction abilities of models
generated using various word embedding techniques, the AUC,
accuracy, and F-measure statistics were used.

1) Box-plot: Word-Embedding: Figure 4 illustrates the re-
sult of several word embedding algorithms. Models developed
with the word embedding generated by TF-IDF are more
reliable than other models, as shown in Figure 4. CBoW
models exhibit poor prediction performance when compared to
other methodologies. The mean AUC value of TF-IDF models
is 0.91, with a maximum AUC of 0.98 and a Q3 accuracy of
0.96, implying that 25% of TF-IDF models have an AUC value
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Fig. 3: Deep Learning Architecture

of more than 0.96. The accuracy data and F-measure of these
models confirm these findings, revealing that classification
techniques based on TF-IDF outperform classification models
based on alternative word-embedding techniques.

2) Friedman Test: Word-Embedding: In this work, the
Friedman Test is also utilized to examine the predictive power
of the models created using different word embedding meth-
ods. The goal of the test is to see if the null hypothesis is
correct. The null hypothesis asserts that "the various word
embedding techniques have no discernible impact on the
performance of the classification models." Table IV shows the
mean ranks for the various word embedding techniques. The
lower the mean rank, the better the models’ performance. TF-
IDF has the lowest mean rank of 1.88, while CBoW has the
highest mean rank of 4.88. With a mean rank of 1.96, W2V
provides comparable performance to TF-IDF. It’s probable
that the high performance of the TF-IDF is due to the fact
that requirements papers contain numerous comparable phrases
and terms. Because of its method of giving weights to each
term, TF-IDF can effectively minimize frequent terms used in
requirements from creating an effect on classification better
than other word-embedding algorithms.

T
F
ID

F

C
B

O
W

S
K

G

G
L
O

V
E

W
2
V

60

65

70

75

80

85

90

95

A
c
c
u

ra
c
y

T
F
ID

F

C
B

O
W

S
K

G

G
L
O

V
E

W
2
V

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

c
is

io
n

T
F
ID

F

C
B

O
W

S
K

G

G
L
O

V
E

W
2
V

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
ll

T
F
ID

F

C
B

O
W

S
K

G

G
L
O

V
E

W
2
V

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
U

C

Fig. 4: Performance Box-Plot Diagram: Performance of Dif-
ferent Word Embedding

SANIDHYA VIJAYVARGIYA ET AL.: SOFTWARE REQUIREMENTS CLASSIFICATION USING DEEP-LEARNING APPROACH 899



TABLE I: Precision and Recall

Precision Recall

OD(AF)

DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8

TFIDF FUN 0.85 0.84 0.85 0.85 0.85 0.83 0.84 0.87 0.8 0.84 0.85 0.86 0.85 0.87 0.85 0.85

TFIDF QUA 0.8 0.93 0.93 0.93 0.93 0.93 0.94 0.92 0.98 0.93 0.92 0.92 0.92 0.91 0.9 0.94

CBOW FUN 0.74 0.76 0.78 0.76 0.75 0.72 0.76 0.8 0.73 0.81 0.76 0.8 0.76 0.8 0.79 0.73

CBOW QUA 0.74 0.87 0.88 0.86 0.87 0.85 0.84 0.87 0.94 0.83 0.85 0.88 0.86 0.86 0.77 0.84

SKG FUN 0.82 0.76 0.79 0.79 0.76 0.79 0.82 0.76 0.69 0.79 0.79 0.75 0.81 0.75 0.77 0.78

SKG QUA 0.85 0.89 0.89 0.88 0.88 0.89 0.84 0.88 0.91 0.9 0.88 0.86 0.93 0.87 0.94 0.84

GLOVE FUN 0.8 0.79 0.79 0.78 0.8 0.76 0.8 0.78 0.74 0.82 0.82 0.81 0.8 0.82 0.82 0.79

GLOVE QUA 0.85 0.88 0.87 0.84 0.88 0.88 0.84 0.85 0.87 0.84 0.87 0.9 0.86 0.84 0.89 0.87

W2V FUN 0.8 0.78 0.81 0.83 0.78 0.81 0.8 0.82 0.83 0.79 0.79 0.75 0.81 0.77 0.75 0.79

W2V QUA 0.9 0.91 0.87 0.91 0.91 0.89 0.89 0.89 0.88 0.87 0.89 0.87 0.87 0.9 0.89 0.85

OD(RST)

TFIDF FUN 0.88 0.87 0.84 0.85 0.86 0.84 0.86 0.85 0.75 0.82 0.82 0.81 0.8 0.81 0.8 0.8

TFIDF QUA 0.81 0.91 0.9 0.9 0.9 0.9 0.9 0.88 0.98 0.92 0.91 0.93 0.93 0.92 0.92 0.93

CBOW FUN 0.73 0.79 0.77 0.74 0.77 0.81 0.75 0.8 0.82 0.79 0.78 0.84 0.79 0.7 0.79 0.75

CBOW QUA 0.77 0.87 0.82 0.86 0.84 0.84 0.87 0.82 0.92 0.86 0.92 0.87 0.88 0.88 0.85 0.92

SKG FUN 0.78 0.76 0.75 0.79 0.78 0.75 0.82 0.77 0.77 0.83 0.83 0.82 0.78 0.8 0.77 0.79

SKG QUA 0.84 0.89 0.86 0.88 0.89 0.88 0.9 0.89 0.9 0.9 0.91 0.91 0.91 0.89 0.9 0.88

GLOVE FUN 0.78 0.79 0.81 0.8 0.83 0.79 0.79 0.79 0.79 0.83 0.8 0.8 0.76 0.81 0.79 0.82

GLOVE QUA 0.84 0.85 0.9 0.9 0.88 0.87 0.88 0.87 0.87 0.89 0.85 0.87 0.89 0.9 0.88 0.88

W2V FUN 0.81 0.81 0.75 0.85 0.83 0.81 0.79 0.79 0.83 0.82 0.84 0.75 0.77 0.8 0.82 0.82

W2V QUA 0.87 0.88 0.9 0.9 0.9 0.88 0.88 0.9 0.89 0.93 0.9 0.91 0.88 0.88 0.91 0.9

OD(PCA)

TFIDF FUN 0.69 0.77 0.75 0.78 0.7 0.76 0.76 0.7 0.79 0.75 0.77 0.7 0.82 0.78 0.72 0.79

TFIDF QUA 0.74 0.88 0.83 0.9 0.84 0.85 0.85 0.86 0.94 0.83 0.9 0.85 0.88 0.85 0.88 0.85

CBOW FUN 0.63 0.66 0.69 0.67 0.66 0.71 0.68 0.68 0.7 0.69 0.78 0.72 0.67 0.73 0.67 0.78

CBOW QUA 0.64 0.76 0.82 0.78 0.85 0.82 0.76 0.81 0.91 0.82 0.85 0.84 0.67 0.74 0.85 0.83

SKG FUN 0.76 0.79 0.75 0.75 0.81 0.74 0.8 0.74 0.68 0.79 0.78 0.85 0.79 0.82 0.75 0.82

SKG QUA 0.71 0.89 0.9 0.9 0.85 0.89 0.89 0.89 0.97 0.87 0.88 0.86 0.9 0.85 0.85 0.86

GLOVE FUN 0.8 0.77 0.77 0.8 0.75 0.8 0.77 0.8 0.69 0.78 0.77 0.78 0.8 0.79 0.79 0.75

GLOVE QUA 0.75 0.85 0.88 0.87 0.86 0.87 0.84 0.87 0.91 0.87 0.86 0.85 0.85 0.88 0.91 0.86

W2V FUN 0.78 0.78 0.76 0.77 0.77 0.76 0.81 0.77 0.71 0.8 0.83 0.81 0.79 0.78 0.74 0.77

W2V QUA 0.79 0.88 0.88 0.88 0.88 0.87 0.87 0.88 0.95 0.86 0.86 0.86 0.87 0.86 0.87 0.83

SMOTE(AF)

TFIDF FUN 0.84 0.84 0.84 0.84 0.85 0.83 0.84 0.81 0.8 0.84 0.85 0.85 0.85 0.84 0.84 0.84

TFIDF QUA 0.88 0.94 0.94 0.95 0.95 0.95 0.95 0.94 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.93

CBOW FUN 0.78 0.75 0.75 0.8 0.7 0.76 0.66 0.77 0.46 0.8 0.76 0.73 0.86 0.76 0.78 0.65

CBOW QUA 0.86 0.89 0.89 0.77 0.86 0.89 0.85 0.89 0.69 0.85 0.85 0.86 0.85 0.84 0.8 0.81

SKG FUN 0.75 0.8 0.77 0.71 0.78 0.73 0.77 0.73 0.84 0.71 0.74 0.82 0.8 0.81 0.83 0.81

SKG QUA 0.87 0.9 0.92 0.85 0.93 0.89 0.91 0.87 0.87 0.85 0.89 0.9 0.82 0.87 0.91 0.93

GLOVE FUN 0.81 0.81 0.78 0.79 0.77 0.81 0.81 0.79 0.78 0.82 0.85 0.77 0.8 0.81 0.73 0.82

GLOVE QUA 0.88 0.92 0.92 0.9 0.92 0.92 0.93 0.87 0.84 0.85 0.86 0.88 0.86 0.86 0.81 0.89

W2V FUN 0.79 0.83 0.83 0.82 0.75 0.81 0.79 0.79 0.73 0.82 0.78 0.81 0.89 0.81 0.8 0.81

W2V QUA 0.9 0.92 0.92 0.88 0.91 0.91 0.91 0.8 0.87 0.88 0.87 0.89 0.91 0.93 0.87 0.92

SMOTE(RST)

TFIDF FUN 0.85 0.85 0.85 0.82 0.83 0.83 0.85 0.85 0.73 0.83 0.82 0.84 0.83 0.83 0.84 0.82

TFIDF QUA 0.85 0.92 0.91 0.92 0.92 0.9 0.93 0.92 0.92 0.9 0.91 0.9 0.91 0.91 0.91 0.93

CBOW FUN 0.77 0.79 0.8 0.77 0.76 0.78 0.79 0.78 0.77 0.79 0.75 0.8 0.82 0.75 0.8 0.78

CBOW QUA 0.79 0.86 0.84 0.86 0.88 0.92 0.89 0.86 0.88 0.87 0.87 0.9 0.86 0.83 0.83 0.86

SKG FUN 0.75 0.79 0.8 0.83 0.78 0.79 0.77 0.75 0.81 0.81 0.83 0.75 0.8 0.81 0.82 0.84

SKG QUA 0.86 0.91 0.92 0.93 0.88 0.87 0.9 0.93 0.86 0.85 0.83 0.79 0.9 0.89 0.85 0.83

GLOVE FUN 0.78 0.81 0.83 0.79 0.84 0.79 0.77 0.71 0.79 0.83 0.79 0.78 0.78 0.81 0.82 0.85

GLOVE QUA 0.86 0.9 0.91 0.91 0.9 0.91 0.87 0.91 0.85 0.88 0.86 0.85 0.87 0.9 0.89 0.86

W2V FUN 0.79 0.8 0.79 0.79 0.85 0.82 0.83 0.78 0.83 0.84 0.83 0.81 0.78 0.84 0.77 0.8

W2V QUA 0.88 0.92 0.93 0.93 0.93 0.92 0.9 0.88 0.88 0.85 0.87 0.88 0.87 0.88 0.88 0.91

SMOTE(PCA)

TFIDF FUN 0.67 0.76 0.72 0.74 0.72 0.74 0.62 0.73 0.48 0.69 0.79 0.77 0.79 0.77 0.77 0.8

TFIDF QUA 0.86 0.88 0.91 0.87 0.88 0.81 0.9 0.92 0.87 0.92 0.86 0.84 0.93 0.92 0.83 0.86

CBOW FUN 0.6 0.7 0.71 0.74 0.73 0.7 0.68 0.77 0.56 0.69 0.85 0.78 0.71 0.79 0.69 0.75

CBOW QUA 0.73 0.85 0.87 0.87 0.88 0.81 0.77 0.88 0.63 0.78 0.81 0.72 0.77 0.84 0.81 0.77

SKG FUN 0.78 0.76 0.78 0.78 0.76 0.83 0.8 0.79 0.65 0.82 0.77 0.81 0.76 0.69 0.73 0.74

SKG QUA 0.85 0.88 0.92 0.9 0.92 0.9 0.9 0.88 0.88 0.9 0.87 0.87 0.9 0.9 0.92 0.9

GLOVE FUN 0.74 0.77 0.77 0.76 0.74 0.78 0.78 0.76 0.77 0.78 0.78 0.8 0.83 0.77 0.77 0.8

GLOVE QUA 0.87 0.9 0.89 0.89 0.89 0.9 0.91 0.91 0.82 0.85 0.88 0.89 0.89 0.87 0.88 0.85

W2V FUN 0.74 0.79 0.78 0.78 0.8 0.8 0.78 0.74 0.73 0.83 0.74 0.84 0.78 0.78 0.77 0.84

W2V QUA 0.87 0.92 0.91 0.91 0.92 0.94 0.91 0.89 0.87 0.87 0.87 0.87 0.88 0.83 0.87 0.9

B. RQ2: Which feature selection techniques are the best at
getting rid of redundant and irrelevant features which may
affect the performance of the classification models?

In the proposed study, we use Rank Sum test and PCA as
feature selection procedures, and we use all of the original

features for developing predictive models for requirements
categorization in a third set of models. These feature selection
procedures were applied to both the functional and quality
requirements datasets.
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TABLE II: Accuracy and AUC

Accuracy AUC

DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8

OD(AF)

TFIDF FUN 83.2 84.32 85.12 85.60 85.12 84.80 84.80 85.92 0.9 0.91 0.92 0.92 0.92 0.91 0.91 0.91

TFIDF QUA 83.52 91.36 91.04 91.20 90.88 90.40 90.40 91.20 0.93 0.96 0.96 0.96 0.96 0.96 0.96 0.95

CBOW FUN 73.6 77.44 77.12 77.44 76.00 74.88 76.80 77.44 0.8 0.85 0.84 0.85 0.84 0.83 0.84 0.84

CBOW QUA 76 81.92 83.68 83.68 83.36 82.40 76.96 82.88 0.83 0.89 0.9 0.88 0.89 0.89 0.84 0.89

SKG FUN 77.12 77.60 79.04 77.76 77.76 77.76 80.16 77.12 0.86 0.86 0.86 0.86 0.85 0.87 0.87 0.85

SKG QUA 84.16 87.52 85.92 84.64 87.68 84.96 85.44 83.68 0.91 0.93 0.93 0.92 0.92 0.91 0.92 0.91

GLOVE FUN 78.08 80.48 80.32 79.20 80.16 78.24 80.96 78.88 0.86 0.87 0.87 0.86 0.87 0.87 0.85 0.87

GLOVE QUA 82.88 83.20 84.32 83.04 84.32 82.88 82.88 82.4 0.9 0.91 0.92 0.9 0.91 0.9 0.91 0.89

W2V FUN 81.44 78.88 80.64 80.00 79.36 79.84 78.08 80.64 0.89 0.88 0.88 0.88 0.87 0.86 0.87 0.87

W2V QUA 86.72 87.04 85.60 87.04 86.72 87.52 86.56 84.8 0.92 0.93 0.93 0.94 0.93 0.93 0.93 0.92

OD(RST)

TFIDF FUN 82.56 84.80 83.20 83.36 83.52 82.88 83.84 83.36 0.89 0.92 0.92 0.92 0.91 0.91 0.91 0.91

TFIDF QUA 84.64 89.28 88.80 89.12 89.28 88.64 89.28 88.16 0.93 0.95 0.95 0.95 0.95 0.94 0.95 0.93

CBOW FUN 76 79.04 77.44 77.44 77.92 76.96 76.48 78.24 0.84 0.87 0.86 0.86 0.86 0.86 0.85 0.86

CBOW QUA 78.08 83.68 82.88 82.88 82.72 82.24 83.20 82.88 0.86 0.9 0.9 0.89 0.91 0.85 0.9 0.91

SKG FUN 77.60 78.72 77.92 80.32 78.08 76.8 80.32 77.60 0.85 0.88 0.86 0.86 0.86 0.85 0.86 0.85

SKG QUA 83.04 86.88 85.60 87.20 87.36 85.92 87.20 86.08 0.9 0.92 0.92 0.92 0.92 0.91 0.92 0.91

GLOVE FUN 78.24 80.32 80.80 80.32 80.48 79.84 79.20 80.48 0.86 0.88 0.88 0.88 0.88 0.87 0.87 0.88

GLOVE QUA 81.92 83.84 84.80 86.24 85.76 85.76 85.28 84.80 0.89 0.91 0.91 0.92 0.92 0.92 0.92 0.9

W2V FUN 81.44 81.76 78.24 81.12 80.96 80.64 80.16 80.16 0.89 0.9 0.89 0.9 0.9 0.89 0.88 0.89

W2V QUA 85.12 88.16 87.84 88.32 86.72 85.76 86.88 87.36 0.93 0.94 0.94 0.94 0.93 0.93 0.93 0.93

OD(PCA)

TFIDF FUN 71.52 76.80 75.84 75.04 73.60 76.64 74.56 73.12 0.78 0.85 0.84 0.83 0.82 0.84 0.81 0.82

TFIDF QUA 76.16 82.56 82.56 85.12 82.24 81.60 83.36 82.72 0.82 0.91 0.9 0.92 0.89 0.89 0.85 0.89

CBOW FUN 64.48 67.04 71.84 68.80 66.56 71.52 67.84 70.56 0.68 0.75 0.79 0.77 0.74 0.78 0.74 0.77

CBOW QUA 63.2 73.60 79.36 76.16 72.64 74.24 74.24 78.08 0.65 0.81 0.85 0.83 0.81 0.82 0.8 0.85

SKG FUN 73.6 79.04 76.64 78.40 80.00 76.96 78.56 76.48 0.8 0.86 0.85 0.87 0.86 0.86 0.87 0.86

SKG QUA 74.56 85.44 86.40 86.08 84.64 84.16 84.32 84.48 0.89 0.92 0.93 0.92 0.91 0.91 0.91 0.92

GLOVE FUN 76.16 77.12 76.96 79.36 76.80 79.68 77.76 78.08 0.84 0.85 0.84 0.85 0.85 0.86 0.84 0.85

GLOVE QUA 76.48 82.40 84.32 83.04 82.24 84.80 84.00 83.52 0.86 0.9 0.91 0.9 0.9 0.91 0.9 0.89

W2V FUN 75.84 78.72 78.72 78.40 77.92 77.12 78.40 77.12 0.84 0.85 0.86 0.86 0.86 0.86 0.84 0.84

W2V QUA 81.6 84.80 84.16 84.64 84.96 83.68 83.84 82.72 0.9 0.92 0.92 0.92 0.92 0.92 0.9 0.91

SMOTE(AF)

TFIDF FUN 82.22 84.13 84.29 84.60 85.08 83.65 84.29 82.22 0.89 0.91 0.91 0.91 0.91 0.91 0.9 0.89

TFIDF QUA 90.05 93.32 93.19 93.98 94.11 94.24 93.59 93.32 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98

CBOW FUN 66.51 76.35 75.40 77.62 74.60 76.03 69.05 73.17 0.79 0.84 0.83 0.83 0.84 0.84 0.77 0.83

CBOW QUA 78.93 87.17 87.30 79.97 85.60 86.91 83.12 85.47 0.9 0.92 0.92 0.88 0.92 0.92 0.89 0.92

SKG FUN 77.62 76.83 76.03 74.44 78.73 75.71 79.21 75.71 0.85 0.85 0.83 0.84 0.86 0.84 0.85 0.83

SKG QUA 87.17 87.83 90.31 87.04 88.35 88.22 90.71 89.66 0.93 0.95 0.96 0.93 0.96 0.94 0.95 0.95

GLOVE FUN 80.16 81.43 80.63 78.25 77.94 80.95 78.25 80.16 0.87 0.89 0.88 0.87 0.87 0.89 0.87 0.87

GLOVE QUA 86.39 88.61 89.14 88.87 89.14 88.87 87.83 88.09 0.93 0.95 0.96 0.95 0.95 0.94 0.94 0.94

W2V FUN 76.67 82.54 80.95 81.43 79.84 80.79 79.21 79.37 0.85 0.9 0.89 0.9 0.9 0.88 0.88 0.87

W2V QUA 88.48 89.92 89.79 88.48 90.97 91.49 89.01 84.16 0.95 0.96 0.96 0.95 0.96 0.96 0.96 0.94

SMOTE(RST)

TFIDF FUN 80.32 83.81 84.13 82.86 83.49 83.17 84.60 83.81 0.9 0.92 0.92 0.92 0.92 0.91 0.92 0.91

TFIDF QUA 87.43 90.97 91.10 91.23 91.62 90.71 92.02 92.41 0.94 0.97 0.97 0.97 0.97 0.97 0.97 0.97

CBOW FUN 76.51 79.05 77.94 77.94 78.10 76.67 79.21 78.10 0.84 0.87 0.86 0.85 0.87 0.86 0.87 0.86

CBOW QUA 82.2 86.39 85.47 87.57 87.30 87.57 86.13 86.26 0.89 0.93 0.93 0.93 0.93 0.94 0.92 0.92

SKG FUN 76.83 79.68 80.79 79.52 78.41 79.52 78.89 78.41 0.85 0.88 0.88 0.87 0.87 0.88 0.87 0.86

SKG QUA 86.13 88.35 88.09 86.65 89.27 88.22 87.43 88.35 0.92 0.95 0.96 0.95 0.95 0.95 0.95 0.95

GLOVE FUN 78.57 81.59 81.43 78.57 81.27 79.52 78.57 75.56 0.86 0.88 0.89 0.88 0.88 0.87 0.87 0.84

GLOVE QUA 85.47 89.01 88.74 88.22 88.61 90.58 87.96 88.87 0.93 0.94 0.95 0.94 0.95 0.95 0.94 0.93

W2V FUN 80.16 81.75 80.48 80.00 82.06 82.70 80.63 78.57 0.89 0.9 0.91 0.9 0.91 0.9 0.9 0.88

W2V QUA 88.22 88.48 90.05 90.97 90.18 90.31 89.14 89.27 0.94 0.96 0.97 0.97 0.97 0.97 0.96 0.95

SMOTE(PCA)

TFIDF FUN 62.38 73.97 74.44 75.08 73.81 74.92 65.24 74.76 0.71 0.83 0.82 0.84 0.82 0.83 0.73 0.82

TFIDF QUA 86.78 89.66 89.14 85.99 90.05 85.08 86.65 88.87 0.94 0.96 0.96 0.94 0.96 0.93 0.93 0.95

CBOW FUN 59.68 69.52 75.56 75.40 72.22 72.54 68.25 76.19 0.64 0.77 0.84 0.83 0.8 0.81 0.76 0.81

CBOW QUA 70.16 82.07 84.29 80.50 82.98 82.07 78.80 83.51 0.76 0.89 0.91 0.89 0.88 0.89 0.86 0.9

SKG FUN 73.17 77.78 77.94 79.05 76.19 77.30 77.30 77.30 0.81 0.85 0.85 0.86 0.85 0.85 0.85 0.84

SKG QUA 86.13 88.87 89.79 88.87 91.10 90.31 91.23 89.14 0.93 0.95 0.95 0.95 0.96 0.95 0.95 0.95

GLOVE FUN 74.92 77.30 77.30 77.78 76.98 77.78 77.46 77.30 0.84 0.86 0.86 0.86 0.85 0.86 0.85 0.84

GLOVE QUA 84.95 87.57 88.48 89.14 89.27 88.74 89.27 87.96 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93

W2V FUN 73.65 80.32 76.83 80.16 78.89 79.21 77.62 77.30 0.81 0.88 0.86 0.88 0.87 0.87 0.86 0.86

W2V QUA 86.91 89.53 89.40 88.87 90.18 89.01 89.01 89.14 0.94 0.96 0.95 0.96 0.96 0.96 0.95 0.95

1) Box-plot: Feature Selection: RST seems to select a
better subset of features than any other technique, per Figure
5. RST has an average AUC of 0.91, with a lowest of 0.84 and
a peak of 0.97. The features created using PCA performed the
worst of the three sets of features, with a mean AUC of 0.87.

2) Friedman Test: Feature Selection: We also utilized the
Friedman test to evaluate the various feature selection pro-
cedures based on their ability to predict model performance
metrics generated with three distinct sets of features. The null
hypothesis, that must be evaluated based on the Friedman

SANIDHYA VIJAYVARGIYA ET AL.: SOFTWARE REQUIREMENTS CLASSIFICATION USING DEEP-LEARNING APPROACH 901



TABLE III: Descriptive Statistics: Different Word Embedding

Min Max Mean Q2 Q1 Q3

Accuracy

TFIDF 62.38 94.24 84.52 84.62 82.56 89.47

CBOW 59.68 87.57 77.80 77.77 74.74 82.88

SKG 73.17 91.23 82.34 80.56 77.76 87.19

GLOVE 74.92 90.58 82.42 81.51 78.57 85.76

W2V 73.65 91.49 83.50 82.62 79.92 88.00

Precision

TFIDF 0.62 0.95 0.85 0.85 0.83 0.90

CBOW 0.60 0.92 0.79 0.78 0.75 0.86

SKG 0.71 0.93 0.83 0.83 0.78 0.89

GLOVE 0.71 0.93 0.83 0.84 0.79 0.88

W2V 0.74 0.94 0.84 0.84 0.79 0.90

Recall

TFIDF 0.48 0.98 0.85 0.85 0.82 0.92

CBOW 0.46 0.94 0.79 0.80 0.75 0.85

SKG 0.65 0.97 0.83 0.83 0.79 0.89

GLOVE 0.69 0.91 0.83 0.84 0.80 0.87

W2V 0.71 0.95 0.84 0.84 0.80 0.88

AUC

TFIDF 0.71 0.98 0.91 0.92 0.90 0.96

CBOW 0.64 0.94 0.85 0.86 0.83 0.89

SKG 0.80 0.96 0.89 0.89 0.86 0.93

GLOVE 0.84 0.96 0.89 0.89 0.87 0.93

W2V 0.81 0.97 0.91 0.91 0.88 0.94

TABLE IV: Friedman test : Mean Rank

Accuracy Precision Recall AUC

DL

DL1 7.33 6.28 5.17 7.28

DL2 3.53 3.94 4.39 3.25

DL3 3.69 4.02 4.28 3.16

DL4 3.83 4.13 4.35 3.65

DL5 3.84 4.13 4.13 3.65

DL6 4.45 4.43 4.44 4.23

DL7 4.51 4.33 4.88 5.22

DL8 4.83 4.75 4.36 5.58

P≤0.05 P≤0.05 P≤0.05 P≤0.05

Word-Embedding

TFIDF 1.95 2.18 2.01 1.88

CBOW 4.82 4.51 4.09 4.88

SKG 2.96 3.02 2.98 3.05

GLOVE 3.02 2.99 3.11 3.24

W2V 2.25 2.30 2.81 1.96

P≤0.05 P≤0.05 P≤0.05 P≤0.05

Feature Sets

AF 1.74 1.71 1.83 1.81

RST 1.58 1.76 1.74 1.47

PCA 2.68 2.53 2.43 2.73

P≤0.05 P≤0.05 P≤0.05 P≤0.05

OD and SMOTE

OD 1.74 1.64 1.47 1.77

SMOTE 1.26 1.36 1.53 1.23

P≤0.05 P≤0.05 P≤0.05 P≤0.05

test, is that "the requirements classification models developed
using different feature sets do not have a significant difference
in their prediction capacity." With two degrees of freedom
and a significance threshold of α= 0.05, the Friedman test
was conducted. Table IV shows the mean ranks of the three
feature sets. The mean ranks of the Friedman test can be used
to differentiate between different feature selection techniques.
Lower mean ranks imply better achievement as compared
to others. The models trained with the set of RST features
had the lowest mean rank (1.47), followed by those trained
with the original set of features (1.81), and finally PCA
(2.73). The mean ranks show that models perform better when

TABLE V: Descriptive Statistics: Different Sets of Features

Min Max Mean Q2 Q1 Q3

Accuracy

AF 66.51 94.24 83.14 83.20 78.91 87.17

RST 75.56 92.41 83.59 83.28 79.92 87.43

PCA 59.68 91.23 79.62 78.64 75.84 84.64

Precision

AF 0.66 0.95 0.84 0.84 0.79 0.89

RST 0.71 0.93 0.84 0.85 0.79 0.89

PCA 0.60 0.94 0.80 0.80 0.76 0.88

Recall

AF 0.46 0.98 0.84 0.84 0.80 0.88

RST 0.70 0.98 0.84 0.84 0.80 0.89

PCA 0.48 0.97 0.81 0.82 0.77 0.87

AUC

AF 0.77 0.98 0.90 0.90 0.87 0.93

RST 0.84 0.97 0.91 0.91 0.88 0.93

PCA 0.64 0.96 0.87 0.86 0.84 0.92

RST features are included, whereas dimensionality reduction
approaches like PCA just regress the models’ performance.

C. RQ3: For what structure of the deep learning classifiers
do the software requirements classification models achieve the
best results?

The study used eight different Deep Learning classifiers
to categorize the software requirements. These classifiers
are employed in conjunction with various word-embedding
techniques and feature selection techniques. The DL binary
classification models include models with different layer sizes,
and layer types. Hyperparameters such as optimizer, activation
function for specific layers, loss function, etc. are kept consis-
tent across different models.

1) Box-plot: Classification Techniques: Figure 6 depicts
the accuracy, precision, recall, and AUC statistics for the
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Fig. 5: Performance Box-Plot Diagram: Performance of Dif-
ferent Sets of Features
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Fig. 6: Performance Box-Plot Diagram: Different Variants of
Deep Learning

different classifiers used, including Mean, Median, Min, Max,
Q1, and Q3. With a mean AUC of 0.9, the models trained
with the DL2, DL3, DL4, and DL5 exhibited relatively similar
performance and surpassed the others. The DL1 classifier
performed the worst in comparison to other classifiers, with a
mean AUC of 0.86. The DL3 classifier produces models with
a maximum AUC of 0.98, a minimum of 0.79, a Q1 AUC
of 0.86, and a Q3 AUC of 0.94. A box plot is insufficient to
discriminate between the DL2, DL3, DL4, and DL5 classifiers.

2) Friedman Test: Classification Techniques: The Fried-
man test is also performed on the performance metrics of
the various classifiers in order to statistically compare the
models’ performance and help differentiate the models where
box-plot failed. The goal of the test is to see if the null
hypothesis is correct. The null hypothesis for this test is
that "the requirements classification models developed utilizing
the different classifiers do not have a significant variation in
their prediction abilities." With 7 degrees of freedom and a
significance level of α= 0.05, the Friedman test was performed.
The mean rank of various classifiers after the Friedman test is
shown in Table IV. Table IV shows that DL3 has the lowest
mean rank of 3.16, followed by DL2 with 3.25, DL4, and DL5
with 3.65. DL1 and DL8 performed significantly worse with
mean ranks of 7.28, and 5.58, respectively.

D. RQ4: How does the application of class balancing tech-
nique through oversampling affect the performance of the
models?

Based on the data utilized to train the models, there are two
types of models presented in this study. One dataset contains
imbalanced classes, while the class-balanced dataset is used to
train the other set of models.

1) Box-plot: SMOTE: Figure 7 presents a visual represen-
tation of the predictive ability of models trained on a balanced

TABLE VI: Descriptive Statistics: Different Variants of DL

Min Max Mean Q2 Q1 Q3

Accuracy

DL1 59.68 90.05 79.06 79.55 76.00 84.40

DL2 67.04 93.32 82.79 82.55 78.96 87.55

DL3 71.84 93.19 82.93 83.44 78.09 87.57

DL4 68.80 93.98 82.67 82.87 78.49 87.04

DL5 66.56 94.11 82.70 82.85 78.09 87.52

DL6 71.52 94.24 82.54 82.55 77.77 87.22

DL7 65.24 93.59 82.02 83.00 78.33 86.77

DL8 70.56 93.32 82.22 82.72 77.84 86.17

Precision

DL1 0.60 0.90 0.80 0.80 0.75 0.85

DL2 0.66 0.94 0.84 0.85 0.79 0.89

DL3 0.69 0.94 0.84 0.84 0.78 0.90

DL4 0.67 0.95 0.84 0.85 0.78 0.90

DL5 0.66 0.95 0.83 0.85 0.78 0.89

DL6 0.70 0.95 0.83 0.83 0.79 0.89

DL7 0.62 0.95 0.83 0.84 0.79 0.89

DL8 0.68 0.94 0.83 0.84 0.78 0.88

Recall

DL1 0.46 0.98 0.81 0.83 0.74 0.88

DL2 0.69 0.93 0.83 0.83 0.81 0.87

DL3 0.74 0.92 0.84 0.85 0.79 0.87

DL4 0.70 0.93 0.83 0.84 0.80 0.87

DL5 0.67 0.93 0.84 0.85 0.79 0.88

DL6 0.69 0.93 0.83 0.84 0.80 0.88

DL7 0.67 0.94 0.83 0.83 0.78 0.88

DL8 0.65 0.94 0.83 0.84 0.80 0.87

AUC

DL1 0.64 0.96 0.86 0.89 0.84 0.92

DL2 0.75 0.98 0.90 0.90 0.87 0.94

DL3 0.79 0.98 0.90 0.91 0.86 0.94

DL4 0.77 0.98 0.90 0.90 0.86 0.94

DL5 0.74 0.98 0.90 0.91 0.86 0.93

DL6 0.78 0.98 0.90 0.90 0.86 0.93

DL7 0.73 0.98 0.89 0.90 0.85 0.93

DL8 0.77 0.98 0.89 0.89 0.86 0.93

dataset versus models learned on an imbalanced dataset. In
most box plot measures, models trained with SMOTE out-
performed models trained on the original dataset. SMOTE-
trained models had a mean AUC of 0.9, a maximum of 0.98,
a minimum of 0.64, and a Q3 of 0.95.

TABLE VII: Descriptive Statistics: OD and SMOTE

Min Max Mean Q2 Q1 Q3

Accuracy

OD 63.20 91.36 81.20 81.84 77.76 84.80

SMOTE 59.68 94.24 83.03 83.50 78.18 88.68

Precision

OD 0.63 0.94 0.82 0.83 0.78 0.88

SMOTE 0.60 0.95 0.84 0.84 0.78 0.90

Recall

OD 0.67 0.98 0.83 0.84 0.79 0.88

SMOTE 0.46 0.93 0.83 0.84 0.79 0.87

AUC

OD 0.65 0.96 0.88 0.89 0.86 0.92

SMOTE 0.64 0.98 0.90 0.91 0.86 0.95

2) Friedman Test: SMOTE: To evaluate the performance
of the two sets of models, the Friedman test is applied to
their performance measures on class-balanced and imbalanced
datasets. The goal of this test is to accept or reject the null
hypothesis, which states that "there is no substantial difference
in performance between models trained with balanced or
imbalanced classes." With a significance threshold of α = 0.05
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Fig. 7: Performance Box-Plot Diagram: Performance of Orig-
inal Data and SMOTE

and degrees of freedom of 1, the Friedman test was performed.
The models trained on the class-balanced dataset have the
lower mean rank of 1.23, while those trained on the imbalanced
dataset have the higher mean rank of 1.77.

VII. CONCLUSION

The Deep Learning classifiers used in this work, in con-
junction with the word embedding, feature selection, and class
balancing techniques have produced a very high accuracy for
software requirements classification. The best models can be
deployed in industry to do away with the manual classification,
which is ailed by the problem of inconsistencies between
client and software engineer terminologies [13]. Industry can
benefit from the lower costs, and higher efficiency. The key
conclusions that we arrived at were as follows:

• Models that utilized features extracted from TF-IDF
word embedding performed considerably better than
other models.

• Out of the eight DL classifiers used, the models trained
with the DL3 classifier had the best results, with the
DL2 and DL4 classifiers performing similarly.

• The Rank Sum test-selected features outperformed any
other group of characteristics utilized in this work.

• SMOTE-based class balancing improved the perfor-
mance of requirements categorization models.

According to the results of this study, DL classifiers are critical
for more accurate software requirement classification. Future

research can extend this work by classifying the requirements
into the subcategories of functional and non-functional re-
quirements. Researchers can also focus on other parts of the
software development pipeline, and use the models developed
in this work for the requirements classification step.
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