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Abstract—This paper presents an improved Gap–based
Memetic Differential Evolution (GaMeDE2), the modification of
the GaMeDE method, which took second place in the GECCO
2020 Competition on Niching Methods for Multimodal Opti-
mization. GaMeDE2 has reduced complexity, fewer parameters,
redefined initialization, selection operator, and removed pro-
cessing phases. The method is verified using standard bench-
mark function sets (classic ones and CEC2013) and a newly
proposed benchmark set comprised of deceptive functions. A
detailed comparison to state-of-the-art methods (like HVCMO
and SDLCSDE) is presented, where the proposed GaMeDE2
outperforms or gives similar results to other methods. The
document is concluded by discussing various insights on the
problem instances and the methods created as a part of the
research.

I. INTRODUCTION

M
ULTIMODAL Optimization (MMO) is a well-

established problem in the literature (e.g.[1]). Due to

its practical applications, it has been studied over the years. In

real-world practical problems, the number of optimal solutions

is not known a priori. It means, that valuable results might be

ruled out by the assumption of sole optimal solution existence.

As a result of real–life unpredictability and constraints, the

optimal solution might not be feasible, and a suboptimal one

may be preferred. What is more, the knowledge of other

valuable solutions can support decision–making and allows for

agile switches without the need for running the optimization

process from the beginning with the risk of convergence to the

same optima, which is the drawback of the standard unimodal

optimization approaches.

The well-established competition in the multimodal opti-

mization area is the annual GECCO Conference and Com-

petition on Niching Methods for Multimodal Optimization

based on the benchmark function suit [2]. GaMeDE2 proposed

in this article is an extension of the GaMeDE [3] method,

which took second place in the 2020 competition edition. The

paper presents several modifications to boost the generality,

which has been shown on the additional benchmark suits.

Three other methods were selected to compare the final results.

Self–adaptive Double-Layer-Clustering Speciation Differential

Evolution (SDLCSDE) [4] is the recently published approach

and gives very promising results. Unfortunately, it has not been

evaluated on the GECCO Competition benchmark set, and the

source code was not available to carry out the experiments -

the results for another benchmark set of classical multimodal

functions [5] have been used. The next reference method

used is the Hill-Valley-Clustering-based VMO (HVcMO) [6],

a novel method based on the HillVallEA [7] - a winning

method in GECCO 2019 Competition on Niching Methods

for Multimodal Optimization. The third compared method is

the original GaMeDE approach.

The rest of the article is structured as follows. Section 2 cov-

ers the short literature review related to multimodal problems.

The proposed GaMeDE2 method is introduced in section 3.

The experimental setup, datasets descriptions, and results for

the evaluated methods with the discussion of the results are

given in Section 4. Lastly, the paper is concluded in section 5.

II. SCIENTIFIC BACKGROUND AND RELATED WORKS

A series of articles show the importance of multimodal

problems in multiple practical and various valuable areas,

such as Drug Scheduling Problem, Protein Structure Predic-

tion, Resource-Constrained Multiproject Scheduling Problem,

cosmological applications, and an iconic machine-learning

classification problem (e.g [8]) and many others. In literature,

multimodality tends to be combined with multi-objectiveness,

wherefore research in one area benefits both.

Besides real-world applications, sets of benchmark func-

tions for the MMO have been proposed over the years. They

are either manually fabricated to emphasise certain features or

forged by combining multiple unimodal benchmark functions.

Among the most recognizable in the literature [9] are mul-

timodal benchmark functions based on: Rastrigin’s function,

Shubert’s function, Vincent’s function, Griewank’s function,

Schwefel’s function, and Ackley’s function. As a result of

the number of combinations, a unified evaluation set has been

introduced [2]. It consists of highly varied functions in terms

of number of dimensions (1-20), domain and peak height

scale, number of local and global optima (0-many/1-216),
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optima distribution, and landscape variability. Additionally, it

contains a single instance of a deceptive function - the Five-

Uneven-Peak Trap. This set has been used in the GECCO 2020

Niching Competition on Multimodal Optimization and the

following editions. The alternative function composition has

been proposed in [10] which shows the flexibility of combining

the functions. Another benchmark set grounded in the litera-

ture [5] introduces new instances related to the competition

set and modifies the budget for the subset of those already

present. These functions are divided into six categories: De-

ceptive Functions, 1D Multimodal Functions, 2D Multimodal

Functions, >= 2D More Challenging Multimodal Functions,

Inverted Rastrigin Function, and Generic Hump Functions.

The added deceptive/trap functions are: 1D Two-Peak Trap

and 1D Central Two-Peak Trap. The deceptiveness factor is

an essential aspect of Multimodal Optimization [11]. There

are limited works related to high dimensional multimodal trap

functions. The one proposed approach is to apply function

composition [12], yet it has not been openly adapted as the

benchmark function, nor extended research in the area has

been found at the moment of writing this article.

As stated in the introduction, a diverse set of valuable solu-

tions is expected when solving a multimodal problem. For this

reason, an efficient exploratory method is crucial. Evolutionary

Computation is known to be effective in complex multimodal

optimization, e.g. [1][13][12][14]. A significant amount of

attention has been paid to Continues Multimodal Optimization,

where Differential Evolution (DE) [15] is a reference method.

It is still a widely used approach in the literature. Work

[16] introduces a Dual-Strategy Mutation, adaptive individual

selection, and converged individuals archive. Authors in [17]

proposed a novel mutation strategy based on the Local Binary

Pattern used for niche detection. Another modification was

introduced in [18], where Distributed Individual for Multiple

Peaks (DIMP) has been used to track optima. It has been

extended by adding two novel mechanisms. First, Lifetime

Mechanism is inspired by the natural phenomenon of organism

aging and limited lifespan. Second, Elite Learning Mechanism

(ELM) is introduced to refine the accuracy and efficiency of

the archiving mechanism.

High-quality solutions in the multimodal landscape may

often be found in different parts of the search space, com-

plicating the single population convergence. Niching’s [8]

technique was introduced to prevent this effect by dividing the

domain into multiple subsets called niches. The general idea

in multimodal optimization is to detect niches, ideally located

around the optima, and explore them separately. Niching is a

widely applied concept in MMO and several modifications can

be found in the literature. Nearest–neighbor niching introduced

in [19] aids in achieving a well-balanced species. Another

approach to increasing the solutions’ (swarm) diversity is

introducing the Equilibrium Factor to modify the individ-

ual’s velocity [20]. Parameter–less niching mechanism (affinity

propagation clustering) [21] is a valuable direction that reduces

the method’s parameter number and helps to locate the nearest

peak, which boosts the convergence. Double-layer-clustering

[4] has been proposed to increase the diversity and global

exploration to locate more global optima. The DE method is

applied on the niche level to support escaping local optima

and detecting new promising areas in the search space. It also

benefits from a self-adaptive strategy to reduce the number

of parameters by self-adapting the crossover probability and

scaling factor used by DE. On the other hand, it still requires

the population size defined per problem instance. Hill-VallEA

[22] is the GECCO 2019 Niching Competition on Multimodal

Optimization competition winner. It introduced the Hill-Valley

Clustering approach to adaptively cluster the search space in

niches residing around a single optimum. It utilizes the Hill-

Valley test [23] to determine whether two solutions belong

to the same niche. Combined with a core search algorithm

to optimize the niches and restart scheme, it outperformed its

competitors. Hill-Valley-Clustering-based VMO (HVcMO) [6]

merges the HillVallEA method with Variable Mesh Optimiza-

tion [24], which significantly boosted the optima detection and

improved the efficient use of budget.

The original GaMeDE [3] is a novel method, drawing

concepts from the MMO using DE as its base. It benefits

from GAP selection (and archive management mechanism) to

keep high diversity, clustering for identification of promising

areas, and local search optimization. Its core functionality is a

two-phase approach - the WIDE phase uses standard random

selection followed by the HillValley Clustering to split the

population into niches. Each niche is further optimized by

the AMaLGaM Univariate[25] local optimizer, and the best

individual per cluster is stored in the archive. FOCUS phase

uses two selections alternately - standard tournament selection

and GAP selection. The latter is a novel approach proposed

by the authors. It follows the idea of tournament selection, but

instead of fitness (or objective function value), it uses a ’gap’

distance. The ’gap’ distance is simply the Euclidean distance

to the nearest existing individual in the decision space. Its goal

is to guide the exploration of ’blank spaces’ of the landscape.

The last step of the FOCUS phase is the HillClimber local

optimization of new points in the archive. The method starts

with the FOCUS phase and switches to the WIDE when

no longer can find new optima.

III. PROPOSED METHOD

GaMeDE2 is a redesigned GaMeDE [3] method devel-

oped for the GECCO 2020 Competition on Niching Methods

for MMO. It means a high probability of overtunning and

overfitting for the competition benchmark suite. Experiments

conducted using new instances presented a lack of general-

ization and exposed the need for improvements in this area.

Mentioned results are shown in the experiments chapter. The

goal of modifications introduced in this work is to simplify

the original GaMeDE algorithm and improve its effectiveness

across multiple benchmark sets. The main objective of the

MMO aspects remains unchanged. In this article, it is defined

as the search for global optima only (in contrast to the search

for all, including local, optima), which is a common approach

in literature [3], [4], [25]. Each multimodal problem instance
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Fig. 1. A general schema of GaMeDE2

is being solved independently with an objective function

described as:

max
x

f(x) = y, x ∈ Rd (1)

The aim is to find as many different x vectors as possible

where the minimum distance between two optima is given.

In this section, GaMeDE2 with a set of introduced mod-

ifications has been described. The Algorithm 1 presents the

complete version of the GaMeDE2 pseudo-code, while Figure

1 illustrates the modifications described below.

GaMeDE2 is based mainly on a DE that explores/exploits

new areas in the problem landscape. DE is steered by the

archive (concept strictly incorporated from multi-objective

problems), which stores candidates for global optima, and

concentrates on ’gaps’ between already found solutions. DE

optimization is additionally boosted by a clustering mecha-

nism to identify promising areas. Subsequently, local search

speeds up the convergence in those areas. The HillClimbing

procedure further optimizes local optima.

GaMeDE2 initialization (see The Algorithm 1 or/and Figure

1) starts with a random initialization as presented in pseu-

docode line 3, the initial population is evaluated and used to

populate an archive. The archive is used to store the global

optima and promising individuals. The PopulateArchive

method tries to add each individual to the archive. It utilizes

the simplified HillValley Test[7] - creates the middle-point M

between the tested individual A and his nearest neighbor B)

in the archive. If the middle-point is worse than both points (A

and B), they are kept as there is a chance they come from two

different niches. Otherwise, only the best individual (A, B, or

C) is stored. In lines 6 and 12, distances between points in

the archive are calculated and stored for future usage. In lines

7 and 26, ArchiveManagement takes place. Its pseudocode

is presented in Algorithm 2 and remained unchanged from

the original GaMeDE version. It removes duplicates from

the archive, marks current optima, and truncates the archive

by sorting it and removing worst solutions until it fits the

MaxArchiveSize.

Algorithm 1 GaMeDE2 pseudocode

1: PrevGenOptima, i← 0
2: Optima← ∅
3: Pi ← InitRandomPop()
4: Evaluate(Pi)
5: A← PopulateArchive(Pi)
6: CalculateDistances(A)
7: ArchiveManagement(A,Optima)
8: Clusters← CompleteClustering(A)
9: LocalOptimization(Clusters,A, Pi)

10: while !StopCondition() do
11: i++;
12: CalculateDistances(A)
13: Pi ← ∅
14: while |Pi| != |Pi−1| do
15: if i % 2 == 0 then
16: Parents← GapSelection(A)
17: else
18: Parents← RandomSelection(Pi−1)
19: end if
20: Mutants←Mutate(Parents)
21: Children← Crossover(Mutants)
22: Pi ← Pi + Children
23: Evaluate(Pi)
24: A← UpdateArchive(Pi, A)
25: end while
26: ArchiveManagement(A,Optima)
27: if |Optima| - PrevGenOptima > MinNewOptima then
28: HillClimbing(A)
29: else
30: Clusters← Clustering(A)
31: LocalOptimization(Clusters,A, Pi)
32: end if
33: PrevGenOptima← |Optima|
34: end while
35: A← RemoveDuplicates(A)
36: Optima←MarkOptima(A)
37: Return: Optima

Before the first loop starts, CompleteClustering takes

place (see line 8). It applies for an additional clustering

pass as described in the modifications section. In line 9,

LocalOptimization utilizes AMaLGaM Univariate (as in the

original GaMeDE). Lines 10-34 present the main loop, which

runs until StopCondition is fulfilled - in this case, until the

budget (number of evaluated individuals) is fully used. A new,

empty population is initialized in line 13 and populated in

lines 14-25. It uses GapSelection and RandomSelection

alternately without the need for having any phases as described

in the modifications section.

Lines 20-23 present a standard DE process. New individuals

are processed in twos. Each of the two individuals returned
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from the selection undergoes the basic DE mutation process

(based on two different, randomly selected, individuals and

factor F). Genes are truncated to make sure all individuals

are feasible. In the end, Uniform Crossover is applied. In line

24, the archive is updated with the same procedure used in

PopulateArchive. Lines 27-32 present the local optimization

step, which takes place at the end of each algorithm iteration.

The default path is to run LocalOptimization for the promis-

ing clusters (see line 9). Alternative HillClimbing method is

used if many new optima candidates appear in this iteration.

Algorithm 2 ArchiveManagement pseudocode

1: Params: A,Optima
2: A← RemoveDuplicates(A)
3: Optima←MarkOptima(A)
4: A← ResizeArchive(MaxArchiveSize,Optima,A)

GaMeDE2 method is based on the original GaMeDE,

however it comprises several modifications that reduce the

complexity of the method.

A. GaMeDE2 – major proposed modifications

GaMeDE2 consists of several modifications as follows:

1) Skip first selection - In the GaMeDE, the first selection

took place right after the population initialization. Both

selection and initialization in GaMeDE are random,

which does not introduce any improvement other than

increasing the initial pool of random search. However,

the evaluation cost is doubled, which might significantly

reduce the number of further evaluations for the low-

budget problem instances.

2) Remove phase switching - Based on the conducted ex-

periments, it is not necessary to switch between WIDE

and FOCUS phases between generations. Local op-

timization performed by a HillClimber stays crucial

for a group of problems, but it does not have to be

paired with global algorithm phases. The condition to

run a HillClimber in Area investigation step remains

unchanged, but it is not propagated further to the next

steps.

3) Double initial clustering - An alternative clustering has

been proposed to be used in the initial generation. Its

purpose is to detect all the ’easy’ optima faster. In the

base algorithm, points found in the archive are spread

around the search space, and many lay in the same

niche. While it might increase the diversity in popu-

lation, it significantly increases the number of clusters

to search and the chance of crossing over the given

budget. In GaMeDE2, an alternative approach to cluster

generation uses candidates from the archive focusing on

new areas. Solutions are clustered using additional Hill-

Valley Clustering described in [7] to further reduce the

number of candidates from the same global optimum (as

an attractor). The Hill-Valley Test itself is simplified by

reducing the middle points count to one. Adding second

clustering was inspired by the approach in [4], where

performing another DE iteration, based on top of the

seeds found in the first pass, appeared to be successful.

However, in this work, only the clustering was repeated

with no additional DE run.

4) Selection type is not related to phase - Results of

experiments confirm that the selection phases do not

have to be bound to the WIDE/FOCUS phases.

However, the experiments showed that it is still crucial

to keep both Random and GAP selections. Those

two selections are used alternately through the sub-

sequent generations, which allows to fully drop the

need for defining two phases. The experiments showed

that such selection composition gives the best results:

one (Random) provides high diversity, while the other

(GAP ) focuses on search in poorly explored areas.

Both methods GaMeDE and GaMeDE2 are verified using

3 benchmark datasets, and the results are compared to two

state-of-the-art methods. The research results are presented in

the next section.

IV. EXPERIMENTS

Modifications proposed in GaMeDE2 have been experimen-

tally verified across three different test sets. Each problem

instance has been evaluated, and results are compared using

GaMeDE, GaMeDE2 and Hill-Valley-Clustering-based VMO

(HVcMO) [6]. For the second test set, results have also been

compared with the recently presented Double-layer-clustering

(SDLCSDE) [4]. Unfortunately, SDLCSDE cannot be used as

the reference method for all test sets – the source code was

not available to perform the experiments.

A. Setup

MMO aims to find as many global optima as possible in

a budget defined per each problem instance. The only metric

used is the Peak Ratio (PR) which is a fraction of the global

optima detected. Thus, the Success Rate (SR) has been calcu-

lated as the number of runs with all optima detected divided

by the number of all runs. To verify if the global optimum

has been reached, accuracy ë = 10−5 has been selected,

the same as in [7]. For the SDLCSDE, accuracy levels were

different across the test set. To compare performance precisely,

GaMeDE2 has been tested on the problem instances where

SDLCSDE accuracy levels were higher than the standard.

Both methods (GaMeDE and GaMeDE2) include non-

deterministic elements, and experiments were repeated 30

times on all problem instances to average the results. The

Wilcoxon signed-rank test has been applied to verify statistical

significance using averaged results. The key advantage of the

GaMeDE and GaMeDE2 is their generality, which means

they can be successfully applied to a set of different problem

instances without any configuration changes. Therefore, for

both methods, only a single configuration has been used – in

contrast to SDLCSDE, where the ’Population size’ parameter

was manually selected per each instance – which is not

efficient while solving new, unknown problem instances.
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To tune GaMeDE2 and find its optimal configuration, 5-

Level Taguchi [26] Parameter Design procedure has been

used. A set of experiment configurations was generated using

an orthogonal matrix, and each configuration was repeated

10 times. This procedure was further repeated for a subset

of test functions. The parameters with the highest Signal-

to-Noise change were fine-tuned first based on the average

results. All the parameters have been processed in that man-

ner, subsequently in the descending order of Signal-to-Noise

change. Table I presents selected values used by GaMeDE2.

The GaMeDE uses the configuration proposed in [3].

TABLE I
GAMEDE2 – BEST FOUND CONFIGURATION

Parameter Value

PopulationSize 1000 ∗ dim

TournamentSize 10

MaxArchiveSize 25 ∗ dim2

DiversityPhaseMinNewOptima 5
LocalOptInitialStep 0.01
MutationProbability 0.6
CrossoverProbability 0.2
F 0.01

All presented experiments were carried out on three test

sets, consisted of multimodal real–value problems.

B. Test sets

The key attributes of each instance are presented in tables

(see. Tab.II, Tab.III, Tab.IV and Tab.X) – it shows the num-

ber of global and local optima, number of dimensions and

fitness evaluation budget. Three test sets are used in research:

CEC2013, Classical Functions and Deceptive Functions, pre-

sented respectively in the rest of this section.

First test set - CEC2013 / GECCO2020 presented in Table

II is commonly used in literature benchmark (e.g. [6][3]) and

the same set which has been used in GECCO 2020 Compe-

tition on Niching Methods for Multimodal Optimization. It

contains a variety of functions with different properties such

as: deceptiveness (F1), wide spread of global optima count

(F3 vs F9), wide spread of local optima count (F4 vs F6),

composite functions (CF11 - CF20), flat and steep niches

(CF20).

The second test set, called Classical Functions presented

in Table III is a benchmark described in [5] and the one that

has been selected by the authors of SDLCSDE [4]. The test

set contains a number of functions already introduced in the

CEC2013 set, yet it significantly decreases the budget given

for each instance. The only fully repeated entries are B13 and

B14. It also introduces a few new variants: Two-Peak Trap,

Central Two-Peak Trap, Decreasing Maxima, Uneven Maxima,

and Shekel’s Foxholes. Due to the small budget, this set is used

to verify the efficiency of the algorithms.

The last test set (Deceptive Functions, see Table IV) has

been proposed to explore further the aspect of resistance to

deceptive traps, which is an essential aspect in the optimization

area. It is based on the Classical Functions set, and it consists

TABLE II
CEC2013 / GECCO2020 MULTIMODAL FUNCTION SET

# Function Name D #GOPT #LOPT Budget

F1 Five-Uneven-Peak Trap 1 2 3 50K
F2 Equal Maxima 1 5 0 50K
F3 Uneven Decreasing Maxima 1 1 4 50K
F4 Himmelblau 2 4 0 50K
F5 Six-Hump Camel Back 2 2 5 50K
F6 Shubert 2 18 many 200K
F7 Vincent 2 36 0 200K
F8 Shubert 3 81 many 400K
F9 Vincent 3 216 0 400K
F10 Modifier Rastrigin 2 12 0 200K
CF11 Composite Function 1 2 6 many 200K
CF12 Composite Function 2 2 8 many 200K
CF13 Composite Function 3 2 6 many 200K
CF14 Composite Function 3 3 6 many 400K
CF15 Composite Function 4 3 8 many 400K
CF16 Composite Function 3 5 6 many 400K
CF17 Composite Function 4 5 8 many 400K
CF18 Composite Function 3 10 6 many 400K
CF19 Composite Function 4 10 8 many 400K
CF20 Composite Function 4 20 8 many 400K

TABLE III
CLASSICAL MULTIMODAL BENCHMARK FUNCTION SET

# Function Name D #GOPT #LOPT Budget

B1 Two-Peak Trap 1 1 1 10K
B2 Central Two-Peak Trap 1 1 1 10K
B3 Five-Uneven-Peak Trap 1 2 3 10K
B4 Equal Maxima 1 5 0 10K
B5 Decreasing Maxima 1 1 4 10K
B6 Uneven Maxima 1 5 0 10K
B7 Uneven Decreasing Maxima 1 1 4 10K
B8 Himmelblau 2 4 0 10K
B9 Six-Hump Camel Back 2 2 2 10K
B10 Shekel’s Foxholes 2 1 24 10K
B11 Shubert 2 18 many 100K
B12 Vincent 1 6 0 20K
B13 Vincent 2 36 0 200K
B14 Vincent 3 216 0 400K

of three deceptive functions: Two-Peak Trap, Central Two-

Peak Trap and Five-Uneven-Peak Trap. All have been ex-

panded into the higher dimension number by using the simple

formula:

y =

∑D

i=1
f(xi)

D
(2)

The main difficulty introduced by those Deceptive Functions

is a small niche area for the global optima and their location

in the far ’corners’ of the domain, where niches for the local

optima are wide and located in the ’center’ of the search

space. Figure 2 illustrates selected function landscapes in 2D

versions.

The Deceptive Functions test set has been evaluated using

two budgets (see Table IV) for solving methods. The stan-

dard budget has been defined as more restrictive to create a

challenge for the methods. However, the experiments have

shown that so small number of births does not allow for

convergence for any of the researched methods. Hence, in

additional experiments extended budget has been used, where
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Fig. 2. Deceptive functions visualization. All three functions: Two-Peak
Trap, Central Two-Peak Trap, Five-Uneven-Peak Trap in 2D variants.

TABLE IV
DECEPTIVE MULTIMODAL FUNCTION SET

# Function Name D #GOPT #LOPT Budget Budget+

D1 Two-Peak 1 1 1 10K 10K
D2 Central Two-Peak 1 1 1 10K 10K
D3 Five-Uneven-Peak 1 2 3 10K 10K
D4 Two-Peak 2 1 3 20K 40K
D5 Central Two-Peak 2 1 3 20K 40K
D6 Five-Uneven-Peak 2 4 21 20K 40K
D7 Two-Peak 3 1 7 40K 200K
D8 Central Two-Peak 3 1 7 40K 200K
D9 Five-Uneven-Peak 3 8 117 40K 200K

examined methods were given enough ’time’ to converge and

stabilize the results.

C. Results

To measure the efficiency of the examined method, two

standard measures are used – PR and SR (defined in the

previous section). In Table V the values of PR and SR of the

GaMeDE and modified algorithms for the CEC2013 set are

given. It is worth mentioning that scores for GaMeDE do not

exactly match those achieved in the GECCO competition. The

results are slightly diverse because of the non-deterministic

character of GaMeDE but are within one standard deviation.

However, the average PR from all 20 problems maintains

second place in the GECCO competition leader board. The

GaMeDE2 managed to achieve comparable and even slightly

better performance than GaMeDE. SDLCSDE algorithm re-

sults have not been found for this test set.

The values of PR and SR of all three methods for the

Classical Functions set are given in Table VI. Results of

GaMeDE and GaMeDE2 were calculated for the ë = 10−5

accuracy level, where those for SDLCSDE algorithm have

been acquired from the original publication [4](see Table VIII)

and with matching accuracy levels. Results show that for

the functions B4, B5, B6, B7, B9, accuracy is higher (see

Table VIII), but it is either the same or lower for the rest.

To get more fair results, GaMeDE2 has been re-evaluated

on functions B4–B9 with a matching accuracy which was

presented in Table VII. Experiments on function 8 have been

repeated due to lower performance than SDLCSDE while

using higher accuracy. Thus, results show that GaMeDE2

achieves better results for B13 and B14 than SDLCSDE

algorithm while maintaining a higher or the same accuracy

level for all functions. Additionally, results show that GaMeDE

struggles with a number of functions.

TABLE V
RESULTS FOR THE CEC2013 / GECCO2020 MULTIMODAL FUNCTION

SET

GaMeDE GaMeDE2 HVCMO

# PR SR PR SR PR SR

F1 1.000 1.000 1.000 1.000 1.000 1.000
F2 1.000 1.000 1.000 1.000 1.000 1.000
F3 0.967 0.967 1.000 1.000 1.000 1.000
F4 1.000 1.000 1.000 1.000 1.000 1.000
F5 1.000 1.000 1.000 1.000 1.000 1.000
F6 1.000 1.000 1.000 1.000 1.000 1.000
F7 1.000 1.000 1.000 1.000 1.000 1.000
F8 1.000 1.000 1.000 1.000 0.967 0.000
F9 1.000 1.000 1.000 1.000 0.937 0.000
F10 1.000 1.000 1.000 1.000 1.000 1.000
CF11 1.000 1.000 1.000 1.000 1.000 1.000
CF12 0.983 0.867 1.000 1.000 1.000 1.000
CF13 0.994 0.967 1.000 1.000 1.000 1.000
CF14 0.806 0.033 0.761 0.033 0.861 0.267
CF15 0.750 0.000 0.750 0.000 0.750 0.000
CF16 0.667 0.000 0.667 0.000 0.689 0.000
CF17 0.750 0.000 0.750 0.000 0.750 0.000
CF18 0.667 0.000 0.667 0.000 0.667 0.000
CF19 0.554 0.000 0.575 0.000 0.575 0.000
CF20 0.496 0.000 0.500 0.000 0.488 0.000

Avg 0.882 0.642 0.883 0.652 0.884 0.563
stat = = ++ =

It is worth mentioning that GaMeDE2 results for the B8

instance have been achieved for the 0.00001 precision, while

SDLCSDE has been evaluated for the 0.0005 precision. After

re-evaluating (see Table VII) this instance on the same accu-

racy level, GaMeDE2 also achieved PR = 1.0 and SR = 1.0.

TABLE VI
RESULTS FOR THE CLASSICAL MULTIMODAL BENCHMARK FUNCTION

SET.

GaMeDE [3] GaMeDE2 HVCMO [6] SDLCSDE [4]

# PR SR PR SR PR SR PR SR

B1 0.933 0.933 1.000 1.000 1.000 1.000 1.000 1.000
B2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B5 0.900 0.900 1.000 1.000 1.000 1.000 1.000 1.000
B6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B7 0.833 0.833 1.000 1.000 1.000 1.000 1.000 1.000
B8 0.433 0.000 0.992

∗
0.967

∗ 1.000 1.000 1.000 1.000
B9 0.550 0.100 1.000 1.000 1.000 1.000 1.000 1.000
B10 0.067 0.067 1.000 1.000 0.967 0.967 1.000 1.000
B11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B13 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.940
B14 1.000 1.000 1.000 1.000 0.938 0.000 0.889 0.000

Avg 0.837 0.774 1.000 1.000 0.993 0.926 0.992 0.924
stat = ++ =

Results of experiments in Table IX present GaMeDE,

GaMeDE2 and HVCMO applications to the Deceptive Func-

tions set. GaMeDE2 proved to achieve better results for every

function except for D2 and D3 where both algorithms found

all the solutions. Due to the novelty (and lack of SDLCSDE

code) of this set there are no results for SDLCSDE.

In the methods evaluation process and experiments, there are

some suggestions that for the Deceptive Multimodal Function

Set it is worth extending the budget for several functions
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TABLE VII
RESULTS FOR CLASSICAL MULTIMODAL BENCHMARK FUNCTION SET

– REEVALUATION

# Accuracy PR SR

B4 0.000001 1.000 1.000
B5 0.000001 1.000 1.000
B6 0.000001 1.000 1.000
B7 0.000001 1.000 1.000
B8 0.0005 1.000 1.000
B9 0.000001 1.000 1.000

TABLE VIII
ACCURACY LEVELS FOR SDLCSDE [4]

# Accuracy

B1 0.05
B2 0.05
B3 0.05
B4 0.000001
B5 0.000001
B6 0.000001
B7 0.000001
B8 0.0005
B9 0.000001
B10 0.00001
B11 0.05
B12 0.0001
B13 0.001
B14 0.001

(especially for D7-D9) to explore the three-dimensional land-

scape more extensively. The standard and extended budgets

are presented in Table IV. In Table X the summary of results

for examined methods is presented.

Table X includes results with extended budgets for all

examined methods. It can be concluded that each method uses

the extended budget effectively and achieves better results.

However, GaMeDE2 is the most effective: PR = 1.0 and

SR = 1.0, as it solves each function and outperforms other

methods.

To summarise, the results for three test sets: CEC2013, Clas-

sic and Deceptive are presented in Table XI. Presented data

show the average values for PR and SR for four examined

methods: GaMeDE, GaMeDE2, HVCMO and SDLCSDE.

Results show that GaMeDE2 outperforms referenced methods.

The results presented in this section contain four methods

and three test sets. It gives a rather bird’s eye view of examined

methods. More detailed results, analysis and discussion, are

included in the next section.

D. Discussion

The GaMeDE2 maintained the average PR = 0.883
(W = 6 > Wρ<0.05) on the CEC2013 (see Table V) test set

but improved the SR for F3, F12, F13. CF14 is the only

instance where PR value decreased, but the improvement on

the remaining ones has balanced it. It was not expected to

observe any significant change in this benchmark set used for

the original GaMeDE method development. On the other hand,

it is a crucial result suggesting that proposed modifications

do not harm any original components. Difference between

GaMeDE2 and HVCMO PR = 0.884 is not a significant

TABLE IX
RESULTS FOR THE DECEPTIVE MULTIMODAL FUNCTION SET – STD.

BUDGETS

GaMeDE GaMeDE2 HVCMO

# PR SR PR SR PR SR

D1 0.900 0.900 1.000 1.000 1.000 1.000
D2 1.000 1.000 1.000 1.000 1.000 1.000
D3 1.000 1.000 1.000 1.000 1.000 1.000
D4 0.067 0.067 1.000 1.000 1.000 1.000
D5 0.167 0.167 1.000 1.000 1.000 1.000
D6 0.642 0.133 0.867 0.600 0.992 0.967
D7 0.333 0.333 1.000 1.000 1.000 1.000
D8 0.133 0.133 1.000 1.000 1.000 1.000
D9 0.238 0.000 0.267 0.000 0.479 0.033

Avg 0.498 0.415 0.904 0.844 0.941 0.889
stat ++ ++

TABLE X
RESULTS FOR THE DECEPTIVE MULTIMODAL FUNCTION SET – EXT.

BUDGETS

GaMeDE GaMeDE2 HVCMO

# PR SR PR SR PR SR

D1 0.900 0.900 1.000 1.000 1.000 1.000
D2 1.000 1.000 1.000 1.000 1.000 1.000
D3 1.000 1.000 1.000 1.000 1.000 1.000
D4 0.100 0.100 1.000 1.000 1.000 1.000
D5 0.367 0.367 1.000 1.000 1.000 1.000
D6 1.000 1.000 1.000 1.000 1.000 1.000
D7 0.667 0.667 1.000 1.000 1.000 1.000
D8 0.567 0.567 1.000 1.000 1.000 1.000
D9 0.554 0.233 1.000 1.000 0.996 0.967

Avg 0.684 0.648 1.000 1.000 1.000 0.996
stat = = = =

difference either (W = 7 > Wρ<0.05). In comparison to

the HVCMO method, the key advantage of the GaMeDE2

method is a SR difference, especially for functions F8 and

F9, where it found all optima in every run, while HVCMO

failed to do so even once. These two functions’ main feature

is the uneven distribution of high optima number (same as

B13 - see Figure 5). Later in this chapter, it is explained

which element is responsible for this improvement.

The second test set, containing Classical Multimodal

Benchmark Functions (see Table VI), introduces novel

instances for the GaMeDE. While some of the functions are

repeated, they have narrowed the evaluation budget. Plots in

Figure 3 visualize that selection in the first iteration doubles

the initial evaluation cost, which is the 80% for both B8

and B10. With only 20% budget left, it is unlikely for the

algorithm to locate all global optima. Skipping the first

selection proposed as the first modification reduced the initial

cost to 40% of the total budget.

Moreover, to fully take advantage of the extended evalua-

tion budget, the clustering procedure in GaMeDE2 has been

replaced with the initial iteration. In GaMeDE, the current

population is clustered around the set of archived points. Those

archive points are selected to reward unexplored areas. It is

a valuable mechanism. However, there is no application in

the first iteration, where the whole area is unexplored. The
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TABLE XI
SUMMARY RESULTS FOR CEC2013, CLASSIC AND DECEPTIVE SETS

GaMeDE GaMeDE2 HVCMO SDLCSDE

Set PR SR PR SR PR SR PR SR

CEC2013 0.882 0.642 0.883 0.652 0.884 0.563 - -
Classic 0.837 0.774 1.000 1.000 0.993 0.926 0.992 0.924

Deceptive (std) 0.498 0.415 0.904 0.844 0.941 0.889 - -
Deceptive (ext) 0.684 0.648 1.000 1.000 1.000 0.996 - -

Fig. 3. Modification #1 improvement. Budget used (FES) and Optima found (OPT) for B8 problem instance before and after skipping selection in initial
iteration. Similar effect can be observed for the instance B10.

alternative version introduces additional clustering of archive

points just before the current population is clustered around

them. It allows for filtering out archive points if there is a

probability that they lay in the same niche. The modification

results are presented on the Figure 4.

While having the explicit WIDE and FOCUS phases is

not crucial for GaMeDE2, it is still important to maintain

both types of selection: GAP and Random. The important

difference is that the former is archive-based, while the latter

is population-based. Based on the experiments, both selections

proved to be crucial. Using solely Random Selection gives

comparable results for most of the instances, except for those

with a high number of optima (F8, F9, B13, B14), where

method struggled with finding the narrow optima in far corners

of the search space. On the contrary, while using GAP

selection only, all the optima in mentioned instances have

been found. Figure 5 presents the difference in population

distribution after using Random or GAP selection. A draw-

back of this approach has been however observed in decreased

PR for high-dimensional instances (CF19, see Table V). It

confirms that using both alternately gives the best results.

Further research could support further simplification of the

method by limiting to GAP selection only. Statistical tests for

the Classical Functions Set (see Table VI) confirm all these

changes introduce a significant improvement of PR = 1.0
(W = 0 <= Wρ<0.05) and SR = 1.0 (W = 0 <= Wρ<0.05)

over the original GaMeDE method. It allowed achieving

similar effectiveness to the HVCMO method.

The proposed Deceptive Multimodal Function Set intro-

duces Trap functions in two- and three- dimensions. The es-

sential difficulty is the moderate budget scaling which creates

a challenge in three-dimension variants. Another difficulty is

the very steep global optima in the far corners of the search

space opposite the large area of deceptive local optima. The

GaMeDE struggles with those functions because a significant

fraction of the archive points lies on the local optima, and

there is a bigger chance of selecting them for optimiza-

tion. GaMeDE2 has been statistically verified to improve

the PR = 1.0 (W = 0 <= Wρ<0.05) and SR = 1.0
(W = 0 <= Wρ<0.05) in relation to the original GaMeDE

method for both budget sets (see Table IX and Table X).

V. CONCLUSIONS AND FUTURE WORK

Developing a method for a specific benchmark suite al-

lows to focus on the improvements and quickly verify their

effectiveness. However, it may lead to overfitting of the

proposed solution. The original GaMeDE could be such a

case. While very competitive on the CEC2013 benchmarks,
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Fig. 4. Modification #3 improvement. After additional archive points
clustering, the actual clusters (marked by grey spheres) and located around
the global optima (green spheres) instead of on their side.

Fig. 5. Random and GAP selection effects (B13 func.) population
distribution (red spheres) after Random or GAP selection

it does not maintain the effectiveness on novel instances. Two

additional test sets have been proposed to verify the method’s

generalization ability. First, two deceptive functions (Two-

Peak Trap, Central Two-Peak Trap), Decreasing Maxima,

Uneven Maxima, and Shekel’s Foxholes have been added.

Additionally, the computational budget for the number of al-

ready present functions has been limited. The second proposed

test set further explores the range of the deceptive function

– it expands three trap functions into 2 and 3 dimensions.

The Hill-Valley-Clustering-based VMO (HVcMO), a novel

solution based on the HillVallEA, has been selected to provide

a fair comparison.

In tuning procedure GaMeDE2, the Taguchi parameter

design procedure has been used to evaluate the GaMeDE

parameters and fine-tune them across all three sets. While

it provided a promising outcome for a single instance, it

could not point a one configuration valid for all instances

of the test suites. Such an outcome is that specific instances

introduce different challenges, sometimes overlapping each

other. For example, Vincent function has strongly irregularly

distributed yet smooth optima. Composition Functions such

as CF17/CF20 consist of two steep optima. Shekel’s Foxholes

is a nearly binary landscape with a minimal variety among

the optima. Furthermore, there is a wide span of provided

budget, even for the same functions: 50K evaluations for

Himmelblau in F4 and only 10K in B8. Decreasing the budget

might expose the weak spots of methods that otherwise work

successfully. Fine-tuning parameters per instance ensures the

best results yet requires far more studies of the problem and

time. However, the number of optima, their distribution, and

local landscape disturbance have not been known a priori.

For all those reasons, having a single configuration could be

a superior approach, and optimization methods that do not

require tuning many parameters are far more practical.

Based on the results of the experiments, a set of changes

has been proposed to improve the original method’s generality,

leading to better results for the two novel test sets. Moreover,

it maintains the CEC2013 benchmark functions’ competitive

level while using just a single parameter configuration. In

comparison to another state-of-the-art method – HVCMO,

GaMeDE2 manages to completely solve instances with a high

number of unevenly distributed optima (F8, F9, B14), while

maintaining the average PR at the same level. The only

case where introduces method has lower effectiveness is a

novel Deceptive Functions Set if a very restrictive budget is

provided.

The proposed GaMeDE2 method mainly addresses the

initialization and clustering process. Skipping the initial mu-

tation frees a significant amount of budget, which prevents

premature algorithm stopping for the low-budget instances.

The alternative (double) clustering in the first iteration allows

for faster exploring all the promising niches. While it has

low chances of finding narrow optima, it marks the ’easy’

ones. The idea is similar to the mechanism of two natural

metabolism phases (Anaerobic and Aerobic) in the human

body. The first is used in short, burst activity (a big number of

’easy’ optima). The second can be for long-duration activities

and far goals (narrow, ’hard’ steep optima). Additionally,

GaMeDE2 is further simplified by removing the selection

dependency from the phase.

The proposed Deceptive Functions set illustrates that Trap

functions are not a bigger challenge for the multimodal

solving methods. Multimodal optimization, by definition, does

not seek a sole solution, which makes it more resistant to

deceptiveness. Further research on the more irregular high-
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dimensional composition of different Trap Functions could be

valuable for further research direction.

Though GaMeDE2 uses a single configuration, its further

version could also benefit from adaptive parameters steering,

such as population size, archive size, mutation or crossover

probability. Moreover, simplifying the original method, e.g. the

parameter used in enabling HillClimbing step was not fully

eliminated – it requires further work to make it fully adaptive.

Indeed, improvements in clustering could be a promising

research area. At the current state, the first iteration allows

searching all the promising niches, leading to extensive use of

the evaluation budget. An efficient mechanism in balancing

and prioritizing the clusters to explore could introduce a

significant value.
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