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Abstract—In the contemporary finance the Monte Carlo and
quasi-Monte Carlo methods are solid instruments to solve various
problems. In the paper the problem of deriving the fair value
of European style options is considered. Regarding the option
pricing problems, Monte Carlo methods are extremely efficient
and useful, especially in higher dimensions. In this paper we show
simulation optimization methods which essentially improve the
accuracy of the standard approaches for European style options.

I. INTRODUCTION

THE Monte Carlo approach has become a popular compu-

tational tool to solve problems in quantitative finance [3].

New approaches have been designed to outperform classical

Monte Carlo ones in terms of numerical efficiency. It is

observed that there could be efficiency gains in using special

optimization stochastic approaches instead of the random

sequences distinctive for standard Monte Carlo [10]. The basic

definitions are taken form [5], [6], [8], [23], [25].

A European call option provides its holder with the right,

but not the obligation, to byu some quantity of a prescribed

asset (underlying) S at a prescribed price (strike or exercise

price) E at a prescribed time (maturity or expiry date) T .

A European put option has the same features as its call

counterpart, except that holder could sell the underlying rather

than buying it.

Risk neutrality is a feature of an investor who is indifferent

to the quantity of risk. This definition takes part in the forma-

tion of the risk-neutral evaluation formula. A more rigourous

approach, based on an appropriately defined probability space

of random variables could be found in [9], [17].
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The risk-free interest rate r is an abstract interest rate, used

to borrow or lend money at, which is sometimes implied from

the yields of T-bonds.

The Wiener process dX is a special type of Markov stochas-

tic process with the respective properties: dX ∼ N(0,
√
dt),

where N(µ, σ) is the Gaussian distribution with mean µ and

variance σ2.

The most fundamental problem in option pricing is ob-

taining a “fair” value of the option contract V (S, t), if the

following parameters are given: the exercise price E, the asset

price S(t), the expiry time T , the risk-free interest rate r and

the assumption on the dynamics model of S:

dS = µSdt+ σSdX, (1)

where dX is the increment of a Wiener process, µ is the drift

rate and σ is the volatility of the asset price, measuring the

average growth and level of fluctuations, respectively.

The celebrated Black-Scholes pricing formula for a Euro-

pean call option can be written ([2] or [25]) using the following

parabolic partial differential equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2)

with final condition

V (S, T ) = max(S − E, 0)

and Dirichlet boundary conditions

V (0, t) = 0, V (S, t) ∼ S − Ee−r(T−t), S → ∞.

The European put option price is governed by the same

equation as (2), but with terminal condition

V (S, T ) = max(E − S, 0),

and boundary conditions

V (0, t) = Ee−r(T−t), V (S, t) ∼ 0, S → ∞.

Fortunately, there exist explicit closed form solutions. The

call option is described by

V (S, t) := C(S, t) = SN(d1)− Ee−r(T−t)N(d2),
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where

d1 =
ln( S

E
) + (r + σ2

2 )(T − t)

σ
√
T − t

and

d2 =
ln( S

E
) + (r − σ2

2 )(T − t)

σ
√
T − t

and N(z) is the cumulative distribution function of the stan-

dard normal distribution. Considering put option,

V (S, t) := P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1),

where d1, d2, and N(z) remain the same.

There are two general approaches in Monte Carlo modelling

[7]. The first one is Monte Carlo simulation, where the

algorithms are used for direct simulation of the underlying

phenomena of the model. Thus Monte Carlo serves as a tool

to choose from the many possible outcomes in a particular

circumstance, and it solves probabilistic problems simulating

random variables and processes. The other direction is Monte

Carlo numerical methods, where the algorithms are used to

solve deterministic methods by manufacturing random vari-

ables. In the context of option pricing, the basic idea is to

represent the option premium as mathematical expectation of

the random variable (European option risk-neutral valuation

formula [17]):

V (S, t) = EQ(e
−r(T−t)h(S(T )) | S(t) = S, µ = r)

where EQ(·) is the expectation operator, h(S) is the payoff

function, in particular h(S) = max(S − E, 0) for a call and

h(S) = max(E − S, 0) for a put.

In this paper, we employ the first approach of Monte Carlo

simulation (of the Geometric Brownian motion (1)).

II. STOCHASTIC METHODS

One of the basic problems of the methods belonging to

Monte Carlo family is the fact that one realization which is

close to other ones does not bring a lot of new information

for the underlying problem. This could be solved by applying

variance-reduction techniques, one of which is the stratified

sampling. It splits the original integration domain in several

subdomains. It could be shown that the variance of stratified

sampling is never greater that the crude method sampling [24].

Latin Hypercube Sampling (LHS) is one of most pro-

nounced types of stratified sampling, originating from [20].

Similar procedure is described in [11]. An improved version of

LHS is proposed by [21], [22]. We briefly describe the method

in terms of numerical integration. The whole domain [0, 1]d is

split into md disjoint subdomains of volume m−d, and then a

single point is sampled from each subdomain. Let the point xk,

k = 1, . . . ,md has coordinates xk,j , j = 1, . . . , d. One of the

advantages of LHS is that it does not require more samples

in case of more dimensions. A sample scheme of random,

stratified and LHS in case of sixteen points is given on Fig. 1

[15].

We supply a weaker variant of the theorem from [20]:

Theorem 1: If f(x1, x2, . . . xd) is a monotonic function

w. r. t. each of its arguments, then Var(TL) ≤ Var(TR),
where TL is the approximation of

�

Ud f(x)dx derived by the

LHS method and TR is the approximation of the latter integral

derived by random sampling.

Let xi = (x
(1)
i , x

(2)
i , . . . , x

(s)
i ), i = 1, 2, . . .. Then the

discrepancy (star discrepancy) of the set is provided by the

formula:

D∗
N = D∗

N (x1, . . . , xN ) = sup
Ω⊂Es

�

�

�

�

#{xn ∈ Ω}
N

− V (Ω)

�

�

�

�

,

where Es = [0, 1)s.
Let the base b representation of n be given by the expression

[18]: n = . . . a3(n), a2(n), a1(n), n > 0, n ∈ Z.

Let the radical inverse sequence be defined as [19]:

n =
�∞

i=0 ai+1(n)b
i, φb(n) =

�∞

i=0 ai+1(n)b
−(i+1) and

its discrepancy satisfy: D∗
N = O

�

logN
N

�

. If b = 2, then the

Van der Corput sequence [19] is derived.

Halton sequence [13], [14] is defined as:

s(k)n =
∞
�

i=0

σ
(k)
i+1a

(k)
i+1(n)b

−(i+1)
k ,

where (b1, b2, . . . , bs) ≡ (2, 3, 5, . . . , ps), where pi designates

the i-th prime, and σ
(k)
i , i ≥ 1 is the set of permutations on

(0, 1, 2, . . . , pk − 1).

Sobol sequence [1], [4], [12] is defined as:

xk ∈ σi
(k), k = 0, 1, 2, . . . ,

where σi
(k), i ≥ 1 is the set of permutations on each 2k(k =

0, 1, 2, . . .) subsequent points of the Van der Corput sequence.

In case of binary we arrive on:

x
(k)
n =

�

i≥0

ai+1(n)vi, where vi, i = 1, . . . , s is a set of

direction numbers [16].

The following discrepancy estimate is valid for the Halton,

Sobol, Faure -based QMC algorithms:

D∗
N = O

�

logsN

N

�

.

The used implementation of the Sobol sequence (SOB) in

this paper is an adaptation of the idea of [1] and further mod-

ifies the INSOBL and GOSOBL procedures in ACM TOMS

Algorithm 647 [12] and ACM TOMS Algorithm 659 [4], [16].

Fig. 1. Example of random, stratified and LHS with sixteen points (d = 2,
m = 4).
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The standard M-dimensional Halton sequence (HAL) [13],

[14] comprises M 1-dimensional van der Corput sequences

and uses first M primes as bases.

Another variance reduction techniques consist of manipu-

lating the (quasi-)random sequence in such a way to improve

its desired probabilistic properties.

In a simple Monte Carlo simulation, the samples are in-

dependent and identically distributed. The idea of antithetic

variates is to reduce the variance by introducing samples that

are negatively correlated.

The concept of moment matching Monte Carlo follows

the idea that the generated samples from the Monte Carlo

method are expected to obey the same statistical properties

as the theoretical distribution. This simply means that the

empirical moments of the sample should equal their theoretical

counterparts. It may seem appealing at first glance, but it raises

concerns as well, the primary of which is that the distribution

is no longer the same.

III. NUMERICAL EXAMPLES AND RESULTS

In this section we will present some computational exper-

iments and simulations in order to demonstrate the effective-

ness of the proposed approach. We consider a European call

option with r = 0.05, σ = 0.2, K = 220 and T = 1 year

time to maturity. We assume that S0 = 200.

For reference values, we provide the results with the crude /

plain Monte Carlo method (Table I).

TABLE I
CRUDE MONTE CARLO METHOD

N Vexact V Error Time (sec)

1e2 12.0801762594485 11.395 0.68508 0.009731
1e3 12.0801762594485 11.54 0.54011 0.001870
1e4 12.0801762594485 12.045 0.034958 0.002909
1e5 12.0801762594485 12.159 0.078974 0.006350
1e6 12.0801762594485 12.114 0.033989 0.043681
1e7 12.0801762594485 12.089 0.0092241 0.326507
1e8 12.0801762594485 12.082 0.0016232 3.922560

A. Latin hypercube sampling

First we give the results with the LHS quasirandom se-

quence. For different number of random points, distributed

logequally from N = 1e2 to N = 1e8, we display the

results from the application of the sole LHS and consecutively

combined with antithetic variates and moment matching tech-

niques, see Tables II, III and IV.

TABLE II
LHS WITHOUT OTHER VARIANCE REDUCTION

N Vexact V Error Time (sec)

1e2 12.0801762594485 12.01 0.070212 0.001102
1e3 12.0801762594485 12.064 0.01657 0.001364
1e4 12.0801762594485 12.083 0.0026497 0.002349
1e5 12.0801762594485 12.08 5.5395e-05 0.010674
1e6 12.0801762594485 12.08 6.7257e-06 0.097699
1e7 12.0801762594485 12.08 2.7833e-08 0.992030
1e8 12.0801762594485 12.08 1.6933e-07 12.402776

TABLE III
LHS WITH ANTITHETIC VARIATES

N Vexact V Error Time (sec)

1e2 12.0801762594485 12.029 0.051276 0.001545
1e3 12.0801762594485 12.077 0.0031408 0.001317
1e4 12.0801762594485 12.08 0.00021551 0.002592
1e5 12.0801762594485 12.08 4.762e-05 0.011522
1e6 12.0801762594485 12.08 1.4455e-05 0.107597
1e7 12.0801762594485 12.08 1.975e-07 1.083230
1e8 12.0801762594485 12.08 9.3442e-08 14.027701

TABLE IV
LHS WITH MOMENT MATCHING

N Vexact V Error Time (sec)

1e2 12.0801762594485 12.027 0.052906 0.002450
1e3 12.0801762594485 12.067 0.01366 0.001866
1e4 12.0801762594485 12.08 0.00027461 0.003071
1e5 12.0801762594485 12.08 6.2304e-05 0.010709
1e6 12.0801762594485 12.08 6.9669e-06 0.102625
1e7 12.0801762594485 12.08 1.2712e-06 1.034859
1e8 12.0801762594485 12.08 1.2036e-07 14.027701

In general, the application of variance reduction techniques

takes 10%-15% more computational time. For small values of

N , the combined approach gives more accurate results that the

plain Halton sequence. For bigger values of N , this advantage

is not that pronounced, as the antithetic variates technique

appears to perform better than the moment matching one.

B. Halton sequence

We continue the simulations with the Halton sequence.

The results concerning the sole Halton and the additionally

applied antithetic variates and moment matching techniques

are presented on Tables V, VI and VII.

TABLE V
HALTON WITHOUT OTHER VARIANCE REDUCTION

N Vexact V Error Time (sec)

1e2 12.0801762594485 11.111 0.96902 0.004395
1e3 12.0801762594485 12.099 0.01904 0.005186
1e4 12.0801762594485 12.073 0.0068783 0.010478
1e5 12.0801762594485 12.081 0.00043392 0.064871
1e6 12.0801762594485 12.08 0.00010187 0.628980
1e7 12.0801762594485 12.08 2.9878e-05 6.310790
1e8 12.0801762594485 12.08 5.5002e-06 65.628562

TABLE VI
HALTON WITH ANTITHETIC VARIATES

N Vexact V Error Time (sec)

1e2 12.0801762594485 12.298 0.21807 0.002178
1e3 12.0801762594485 12.056 0.024416 0.003771
1e4 12.0801762594485 12.082 0.0021855 0.009744
1e5 12.0801762594485 12.08 0.00034855 0.065575
1e6 12.0801762594485 12.08 3.5754e-05 0.627989
1e7 12.0801762594485 12.08 2.9969e-05 6.493375
1e8 12.0801762594485 12.08 7.532e-06 67.408394

The conclusions about the Halton sequence are similar to

these of the LHS. For lower values of N , the results are

relatively bad. For higher, however, the accuracy improves
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TABLE VII
HALTON WITH MOMENT MATCHING

N Vexact V Error Time (sec)

1e2 12.0801762594485 11.669 0.41132 0.002109
1e3 12.0801762594485 12.084 0.0037734 0.003770
1e4 12.0801762594485 12.081 0.00079293 0.010174
1e5 12.0801762594485 12.08 3.4485e-05 0.064448
1e6 12.0801762594485 12.08 1.5061e-05 0.636945
1e7 12.0801762594485 12.08 4.5434e-07 6.388943
1e8 12.0801762594485 12.08 1.3984e-06 66.411237

significantly and the moment matching technique performs

best.

C. Sobol sequence

We conclude the experiments with tests with the Sobol

quasirandom sequence. The simulations follow the previous

pattern and the results are given in Tables VIII, IX and X.

TABLE VIII
SOBOL WITHOUT OTHER VARIANCE REDUCTION

N Vexact V Error Time (sec)

1e2 12.0801762594485 11.171 0.90959 0.003620
1e3 12.0801762594485 12.062 0.018076 0.006366
1e4 12.0801762594485 12.095 0.015131 0.008283
1e5 12.0801762594485 12.083 0.002552 0.051577
1e6 12.0801762594485 12.082 0.0015908 0.447782
1e7 12.0801762594485 12.08 0.00017189 4.461646
1e8 12.0801762594485 12.08 6.1323e-05 44.393839

TABLE IX
SOBOL WITH ANTITHETIC VARIATES

N Vexact V Error Time (sec)

1e2 12.0801762594485 11.021 1.0594 0.002160
1e3 12.0801762594485 12.125 0.044527 0.002771
1e4 12.0801762594485 12.091 0.010636 0.008956
1e5 12.0801762594485 12.083 0.0030839 0.050479
1e6 12.0801762594485 12.082 0.0016988 0.451211
1e7 12.0801762594485 12.08 0.00015271 4.522295
1e8 12.0801762594485 12.08 5.9658e-05 45.655215

TABLE X
SOBOL WITH MOMENT MATCHING

N Vexact V Error Time (sec)

1e2 12.0801762594485 12.05 0.030024 0.002263
1e3 12.0801762594485 12.001 0.079036 0.003115
1e4 12.0801762594485 12.093 0.012791 0.007114
1e5 12.0801762594485 12.08 0.0001421 0.049672
1e6 12.0801762594485 12.08 0.00012572 0.467593
1e7 12.0801762594485 12.08 5.1817e-05 4.473896
1e8 12.0801762594485 12.08 1.0556e-05 45.425531

Again the general implications remain valid. The antithetic

variates performance does not differ significantly from the

plain Sobol one, while they are outperformed by the moment

matching technique.

Finally, the best results are obtained by the combination of

Latin hypercube sampling with the antithetic variates.

IV. CONCLUSION

An efficient optimization technique for Monte Carlo meth-

ods has been presented. The proposed approach shows an

essential advantage over the well known stochastic approaches

based on the standard sequences. The improved accuracy

will be crucial for more reliable results for European option

pricing. What is more, the suggested approach could be used

in situations where the other deterministic methods fail – e. g.

in case of high dimensions, complex contract specifications,

etc.
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