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Abstract—Autoencoder, an hourly glass-shaped deep neural
network capable of learning data representation in a lower
dimension, has performed well in various applications. However,
developing a high-quality AE system for a specific task heavily
relies on human expertise, limiting its widespread application. On
the other hand, there has been a gradual increase in automated
machine learning for developing deep learning systems without
human intervention. However, there is a shortage of automatically
designing particular deep neural networks such as AE. This study
presents the NiaNet method and corresponding software frame-
work for designing AE topology and hyper-parameter settings.
Our findings show that it is possible to discover the optimal AE
architecture for a specific dataset without the requirement for
human expert assistance. The future potential of the proposed
method is also discussed in this paper.

Index Terms—AutoML, autoencoder, deep learning, nature-
inspired algorithms, optimization

I. INTRODUCTION

DEEP neural networks (DNN)s have seen a surge in
popularity in recent years, with applications in vari-

ous domains. Their potential began with better-than-human
performance in tasks including image recognition, natural
language processing, and product recommendation [1]–[3] and
progressed to sophisticated tasks such as protein-folding, self-
driving cars, and weather forecasting [4]–[6]. Even if DNN-
based systems are not yet intelligent, we may employ them
wisely to tackle complex problems. It is projected that with
the current and future rise of computational resources and the
large availability of data, DNN will benefit. Greater computer
capabilities enable us to build more sophisticated and complex
DNN topologies, while larger datasets will improve training
performance.

Despite all the outstanding achievements and expectations
of employing DNNs, data scientists and researchers are still
dealing with DNN construction. The DNN construction phase
can be a resourcefully expensive process and contributes to the
global carbon footprint [7]. The construction phase specifies
DNN topology, which includes defining layers, neurons, and
connections. After the DNN topology has been designed,
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the optimum hyper-parameters must be chosen. Variables
such as topology and hyper-parameters influence the final
performance of DNN, and those variables are often limited
by the researcher’s prior knowledge and experience. The most
significant disadvantage is the time spent by a human expert
manually attempting to determine relevant variables for a
specific search space.

In the literature, we can find many studies tackling the
previously mentioned problem. The techniques presented in
the studies attempt to automatically optimize certain aspects of
the entire DNN creation process for a given search space [8].
One efficient method is to use an technique that employs
population-based nature-inspired algorithms (NIA)s [9], [10].
Mostly because such a method is good at optimizing highly
computationally expensive problems. When comparing the
scale of studies, we can see that they are focusing on either the
topology construction (without the weights) or topology with
the weights simultaneously [11]. This is to keep the search
space as small as possible. More details on the related work
will follow in the following sections.

Motivated by these methods, we propose NiaNet (Nature-
Inspired Algorithms for Deep Neural NeEtwork creaTion),
a method capable of auto-designing the novel autoencoder
(AE) model with only the dataset as input. The NiaNet is
simultaneously constructing the AE topology and setting the
optimal hyper-parameters. This process aims to optimally ex-
plore the search space by utilizing nature-inspired algorithms.
The success of our proposed method, NiaNet, is determined
by evaluating the best performing AE model with the fitness
function, where reconstruction error, training duration, and
topological simplicity are calculated. We find an advantage
in our proposed method’s ease of use and adaptation to varied
datasets while achieving promising results.

Altogether, the main contributions of this paper can be
summarized as follows:

• We propose a method NiaNet for constructing the autoen-
coder topology and hyper-parameter setting.

• We present the automated machine learning (AutoML)
framework capable of applying the NiaNet method on a
given dataset.
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• We test the NiaNet method on a well-known diabetes
dataset.

The remaining structure of this paper is as follows. Sec-
tion II briefly describes the related work. Section III and
Section IV presents the used framework and proposed method
NiaNet. Obtained results of the experiment are presented in
Section V. The last Section VI contains the conclusion.

II. RELATED WORK

In this section, we review relevant strategies for building
DNN models without the need for human intervention. Since
the construction of DNN is a highly complex problem that
can also be represented as an optimization problem, scientists
are looking for the potential of applying nature-inspired algo-
rithms to cope with this problem. These algorithms are highly
efficient in finding the solutions to multi-dimensional problems
such as DNN construction. This section looks at target opti-
mization problems that have received considerable attention in
the literature. All of these strategies aim to discover the DNN
topology efficiently in multiple dimensions. They vary in that
they may either search simply the DNN topology (neurons
and connections) or DNN topology and weights. The time
axis or computational resources can represent efficiency before
converging to the optimal solution.

A. Neuroevolution (NE)

A population of genetic encoding of artificial neural net-
works (ANN)s is evolved in neuroevolution to identify a
network that solves a given task. Each encoding in the pop-
ulation (a genotype) is chosen one at a time and decoded
into the neural network corresponding to it (a phenotype).
The performance of this network in the task is then measured
over time, yielding a fitness value for the relevant genotype.
As a result, the process resembles an intelligent parallel
search for superior genotypes, and it continues until a specific
fitness threshold value is found or evolution reaches a specific
generation limit [12]. Neuroevolution methods differ by type
of encoding genotype to phenotype:

• A direct encoding will explicitly specify the direct con-
nection between phenotype and genotype.

• An indirect encoding specifies the rules or parameters on
how the phenotype is built from the genotype.

The following evolutionary algorithms, i.e., genetic algorithm
(GA) [13], memetic algorithm (MA) [14], and particle swarm
optimization (PSO) [15], showed promising results when tack-
ling this problem.

Readers are invited to read a recent comprehensive study
that presents current trends and future challenges in neuroevo-
lution, as well as various types of neuroevolution and their
strengths, and limitations [16].

B. Evolutionary neural architecture search

Neural Architecture Search (NAS) is a technique that auto-
matically designs artificial neural networks. One of the many
modifications of this technique is Evolutionary NAS (ENAS).
It is a bio-inspired automated neural network architecture

design technique that follows the core principles of biological
evolution [17]. Its goal is to identify a network topology that
will give the best result on a given task. The three main
components of the NAS method are as follows [18]:

a) Search space: It defines the boundaries inside which
the search is allowed. This can be a set of rules for topology,
layer number, layer type, and optimizers. Its size represents
the set of all possibilities.

b) Search strategy: It defines the method for exploring
the search space. The majority of the work on the NAS
approach was focused on addressing this aspect. Since it is
always challenging to determine which optimization methods
work best and how to adapt or change them to yield better
results. ENAS technique is using evolving ANN (EANN) as a
search strategy. The EANN strategy is used to evolve ANN’s
connection weights, topology, and learning rules [19].

c) Evaluation strategy: Alternatively, sometimes called
performance estimation strategy, evaluates the ANN offspring.
Such evaluation is done prior to construction and training
phase. This method primarily depends on many factors, such
as search space size, datasets size, depth of topology, and
others. To accurately measure the ANN offspring performance
[18] many new methods have been proposed to reduce the
time, and computation resources [20].

C. Structure learning

The method of utilizing data to train the linkages of
a Bayesian network is known as structural learning. The
method’s goal is to represent the data in a graph format,
providing a good balance of expressive power and querying
performance. Bayesian networks are a type of structured
knowledge representation in which domain variables are rep-
resented as nodes in a graph whose structure encodes their
relationships [21]. However, these techniques need a lot of
computing power, making the solution unsuitable for most
applications with limited computing power and time.

III. AUTOMATED MACHINE LEARNING

As mentioned in the introduction, deep learning has been
applied in various fields to solve challenging artificial intel-
ligence (AI) tasks in recent years. Such diversification often
leads to specific cases where even field experts operate on
trial-and-error. This substantially increases the resources and
time needed to create well-performing DNN models [22]. To
reduce the development cost and automate the entire machine
learning pipeline, an AutoML methodology was introduced.
Its pipeline consists of data processing, feature engineering,
model generation, and model evaluation. The goal is to be
able to automate the complicated process of selecting pipeline
components so that a user only needs to specify a dataset and
an appropriate pipeline will be built automatically [23]. This
frees up a human specialist to concentrate on other areas of
the process.

This section introduces the AutoML framework, which
utilizes our proposed method, NiaNet, in a model generation
stage. In symbiosis, both the framework and method construct

110 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



a deep autoencoder topology and their hyper-parameters to
discover the best possible ML pipeline for an input dataset.
The framework (see. Fig. 1) is built using a layer-style layout
architecture with multiple components.

A. Data Ingestion

Collecting and importing data into the ML pipeline is known
as data ingestion. Acquiring data can be a complex component
and one of the most challenging tasks because we need to have
solid business and data understanding abilities [24]. The ML
pipeline components will be influenced by the dataset used.
The user performs this operation before the pipeline begins.

B. Dataset processing

Data processing is the first stage in the AutoML pipeline.
There are numerous approaches for processing data to be used
to build models. Real-world data is commonly skewed; there
is missing data, which is often noisy. As a result, processing
the data is required to make it clean and processed so that it
may be run through the ML algorithms. The yellow section
in Fig. 1 illustrates the data processing process. As authors in
paper [22] explained, it may be divided into three processes:
data collecting, data cleaning, and data augmentation. Data
collection is an important stage in creating a new dataset
or expanding an old one. The data cleaning process filters
noisy data so that subsequent model training is not affected.
Data augmentation is critical for increasing model robustness
and improving model performance. The three aspects will be
discussed in further depth in the following subsections. This
stage is not yet automated in our framework.

C. Feature engineering

Feature engineering is the next stage in our AutoML
pipeline. It usually consists of feature extraction, feature
selection, and feature construction. In our ML pipeline, only
the process feature selection is utilized. This process builds a
feature subset based on the original set by reducing irrelevant
or redundant features. This simplifies the model, preventing
over-fitting and boosting model performance [22]. There are
many manuals or automated ways of selecting the optimal
feature set for a given dataset [10].

D. Model generation

Model generation is divided into two components, search
space and optimization method, as shown in the 3rd section
in Fig. 1. Where search space defines the AE topology and
hyper-parameters. The AE architecture refers to a complete
blueprint of DNN components such as:

• Topology shape (symmetrical, asymmetrical)
• Size of input, hidden and output layers
• Number of hidden layers
• Number of neurons in hidden layers

On the other side, in our AutoML framework, the following
hyper-parameters are available in the search space:

• Activation function
• Number of epochs

• Learning rate
• Optimizer

Another component in the model generation stage is the
optimization method. This component is responsible for find-
ing the optimal solution within the edges of search space -
parameter values to construct and train a given AE model.
The solution is a one-dimensional array of elements from the
above search space dimensions, each representing one of the
parameters we are trying to optimize. The task of choosing the
optimum solution is an iterative process. In this process, we are
using the micro-framework NiaPy [25], which is an excellent
tool for using the collection of nature-inspired algorithms
for optimizing a given problem, such as ours. Each returned
solution array from NiaPy framework is mapped according to
equations [2-8]. More details are presented in section Proposed
method. The AE model is created and trained in PyTorch using
mapping rules that are controlled by the proposed method.

E. Model evaluation

The performance of an AE model must be evaluated after it
has been constructed. The first process in the model evaluation
phase is to use the DNN training and testing technique to
evaluate each solution produced by the proposed method.
However, this process requires a significant amount of time
and computation resources. Once the AE model has been
trained, the reconstruction loss and model complexity are
evaluated based on the equations 10 and 11. In addition,
the fitness function 11 is calculated, and the fitness value is
passed back to the optimizer algorithm, which generates a new
solution. Sections 3 and 4 of Fig. 1 show the communication
flow between model generation and model evaluation.

F. Fittest AE model

After our iterative AutoML pipeline is completed, the fittest
AE model is returned. To put it simply, the proposed model is
optimal in terms of reconstruction loss and model complexity.

IV. PROPOSED METHOD

In the following section, we present in detail our proposed
method, NiaNet 1. This research will study whether an AE
neural network with topology and hyper-parameters set by
our proposed method will provide better encoding perfor-
mance than AE designed manually. We believe that a nature-
inspired search can discover a novel solution that may be
hidden by human experts who are limited by their previous
experience and knowledge. Our proposed method leans to be
very straightforward and utilized on different datasets. This
allows users to automatically perform some ML steps when
using our AutoML framework, without manually searching for
the right AE building blocks.

The method is based on applying the nature-inspired op-
timizer (we use a collection of algorithms in the NiaPy
framework) to the problem of constructing AE typed neural
networks. The solution is a one-dimensional array of seven

1https://github.com/SasoPavlic/NiaNet
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Fig. 1: A high-level overview of our AutoML pipeline, including data preparation (Section 1), feature engineering (Section 2), model
generation (Section 3), and model evaluation (Section 4).

elements; each one represents one of the parameters we are
attempting to optimize. The first three represent AE topology,
and the last four represent hyper-parameters. The solution
produced by the optimizer method is then mapped into the
AE model using those representations. After the AE model has
been built, it is evaluated using a fitness function that measures
its performance. The fitness value represents the quality of the
discovered solution. The fitness value is then reported back to
the optimizer algorithm in the last step, allowing the search
for the best optimal solution to continue. The algorithm is
presented in Alg. 1.

Algorithm 1 Proposed method
Input: Dataset, parameters for NiaNet and NiaPy
Output: The fittest AE model

1: NiaNet.init()

2: NiaPy.init()

3: while terminationConditionNotMet do

4: solution ± NiaPy.getBestSolution()

5: shape ± NiaNet.mapShape(solution[0])

6: layerStep ± NiaNet.mapLayerStep(solution[1])

7: layers ± NiaNet.mapLayers(solution[2])

8: activation ± NiaNet.mapActivation(solution[3])

9: epochs ± NiaNet.mapEpochs(solution[4])

10: LR ± NiaNet.mapLearningRate(solution[5])

11: optimizer ± NiaNet.mapOptimizer(solution[6])

12: fitness ± NiaNet.ModelEvaluation()

13: NiaPy.generateNewSolution(fitness)

14: end while

15: fittestModel ± NiaNet.model(NiaPy.getBestSolution())

16: return fittestModel

A. Representation of individuals

Individuals in NiaNet are presented as real-valued vectors:

χ
(j)
i =

�

x
(j)
i,0 , . . . , x

(j)
i,n

�

, for i = 0, . . . ,Np - 1 (1)

where each element of the solution is in the interval χ(j)
i,1 *

[0, 1]. Real values in interval are then mapped according to
equations [2-8], where y1 stands for topology shape, y2 for
number of neurons per layer, y3 for number of layers, y4 for
activation function, y5 for number of epochs, y6 for learning
rate, y7 for optimizer algorithm.

y1 = +x[i],; y1 * [0, 1] (2)

y2 = +
x[i]

features
,; y2 * [0, features] (3)

y3 = +
x[i]

maxLayers
,; y33 * [0,maxLayers] (4)

y4 = +x[i],; y4 * [0, 1] (5)

y5 = +x[i] 7 10 + 100,; y5 * [100, 200] (6)

y6 = +
x[i]

1000
,; y6 * [10−3, 10−0] (7)

y7 = +x[i],; y7 * [0, 1] (8)

The solution array is separated into two groups of indices, as
shown in Fig. 2 . The first three indices are used for topology
mapping, while the fourth is utilized for hyper-parameter
mapping. Together they form a complete solution that is
subsequently used to build an AE model, as demonstrated in
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y1 y2 y3 y4 y5 y6 y7

Topology

Hyper-parameters
Fig. 2: An illustration of how indices in a solution array are allocated
to variables [y1-y7].

the algorithm 1. Each of these solutions is retrieved from the
NiaPy library during the iterations of the NiaNet algorithm,
with the goal of finding the most optimal solution. The fitness
function determines the most optimal solution on a given
dataset.

Topology representation: As we can see in Fig. 2 the first
three elements in solution array are used for constructing the
AE topology based on an element value. The first element
y1 is used to determinate the topology shape, which can be
symmetrical or asymmetrical. This defines the shape relation-
ship between the encoder and decoder parts. The number of
neurons per layer is calculated using the second element y2.
This is dependent on the number of features in dataset. Once
we have the number of neurons y2 we can calculate the number
of layers y3 in AE model. In the case of an asymmetrical AE
model, the element value y3 is used to set a random number
of encoder layers before setting the remaining decoder layer
number.

Hyper-parameters representation: Second part of solution
array as seen in Fig. 2 is used for determining the hyper-
parameters values which are utilized throughout the model
training. The fourth y4 and seventh y7 elements are used for
determining the activation function and optimizer algorithm
based on a list of possible values. The fifth y5 and sixth y6
elements are used for number of epochs and learning rate
depending on a defined range.

B. Encoding strategy

Once the real-valued solution array is proposed by the
NiaPy framework, the real values are then mapped into the
AE model according to the equations [2-8]. The element
mapping value of solution array is determined with the binning
process for all variables [y1-y7]. The bins are created in
interval * [0, 1]. Where each bin represents the possible
mapping value. For example when mapping the AE’s shape
y1, the encoding algorithm takes the element’s real value from
solution array and map it to corresponding bin (symmetrical
or asymmetrical). This can be seen in equation 9.

y1 =

�

symmetrical if x[i] f 0.5
asymmetrical otherwise

(9)

C. Fitness function

We defined the fitness function, which measures the in-
dividual solution by calculating its reconstruction error and

DNN complexity using equations 10 and 11. This enables us
to analyze the encoding effectiveness and complexity of its
topology.

E = (
D
�

i=1

(xi 2 x̂i)
2 7 1000) (10)

C =
(y5)

2 + (y3 7 100) + (bottleneck dim 7 10)

100
(11)

f(χ
(j)
i ) = minE + C (12)

Where E represents the reconstruction error, C topology
complexity and f(χ

(j)
i ) represents the fitness value of an

individual in evolution. Since equation 12 is designed to seek
the global minimum, the fittest individual will be the one with
the lowest fitness value. Furthermore, with the variable C, we
address the issue of over-fitting. Less complex models are less
likely to over-fit during the training process [26].

D. Training conditions

Due to research limitations, some parameters of the con-
structed AE model were static during the training phase. One
of them is batch size, which is always set to 1, and another is
the activation function, which remains the same once selected,
across all encoder and decoder layers.

E. Data conditions

The data structure that the NiaNet method can process is
limited to tabular data with only numerical values. As a result,
any other type of data must be transformed first. We plan to
expand our research in the near future to include time-series
data as well.

V. EXPERIMENTS AND RESULTS

A. Introduction to dataset

In our experiments, we used a dataset that includes phys-
iological data about the patients which are identified to have
diabetes. The dataset is publicly available for everyone [27].
For each of the 442 diabetic patients, ten baseline characteris-
tics, including age, gender, BMI, average blood pressure, and
six blood serum measures, as well as the response of interest,
a quantitative measure of disease progression one year after
baseline, were collected. The eleventh feature is measuring
the diabetes level. The dataset’s feature values are represented
solely by numerical values, with no missing values and a weak
correlation (mean is 0.2). We standardized the data for each
feature before using it, so that the distribution has a mean of
0 and a standard deviation of 1. This enables the DNN to be
generated later with weights that are more similar across the
features, resulting in more uniform topologies. Furthermore,
the dataset was divided into the training and testing subset in
a ratio 3:1.
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B. Enviromental setup

The environment must be properly set up before running
our AutoML framework with proposed method NiaNet [28].
In this section, we list the software components and configu-
ration parameters that are utilized in a configuration file. All
experiments were carried out using the Python programming
language together with the libraries: NiaPy [25] for nature-
inspired algorithms, Scikit-learn [29] for evaluating DNN
models with metrics, NumPy [30] for working with arrays,
PyTorch for DNN initialization [31]. Following computational
resources were used for development and training environ-
ment: Razer Blade 15 Advanced (Early 2021 model - RZ09-
036) with Intel i7-10875H CPU, Nvidia GeForce RTX 3080
with 8 GB GDDR6 memory and 6144 CUDA cores GPU,
and 32 GB DDR4 RAM. Running on Windows 11 / Ubuntu
20.04.2 LTS.

C. Experimental settings

We utilized the values in Table I for NiaPy algorithm initial-
ization settings.With parameters supplied, specified methods
are utilized to search for optimal values in the encoded
solution, which is expressed in equations [2-8]. The algorithms
used in our experiment are: PSO [32], Differential Evolution
(DE) [33], Firefly Algorithm (FA) [34], Self-adaptive Differ-
ential Evolution (jDE) [35], GA [36].

TABLE I: Used parameter values for NiaPy algorithms.

Parameter Value

Dimensionality problem 7

Population size default
Max evaluations 100

Runs 2

Lower bound 0.0

Upper bound 1.0

The following is an explanation for selected parameter
values in table I: Dimensionality problem is set to 7 based
on the solution array length, Population size is set to default,
allowing NiaPy algorithms to have their own default value,
Max evaluations is specifying number of evaluations on each
algorithm separately, Runs is specifying number of repetitions
(low number due to limited computational resources), Lower

bound and Upper bound are borders within the real value
number that can be represented in solution array.

Next we set the list of available activation functions and
optimizers, which can be selected based on the mapping rules
of y4 and y7 variables. Table II shows the activation functions,
whereas table III shows the optimizers used in our experiment.
All of the listed activation functions and optimizers, are
available in PyTorch library, therefore any other ones that are
not in the list can be easily added or removed.

TABLE II: List of activation functions in NiaNet method.

Activation function name

ELU
RELU
Leaky RELU
RRELU
SELU
CELU
GELU
Tanh

TABLE III: List of optimizers in NiaNet method.

Optimizer name

Adam
Adagrad
SGD
RAdam
ASGD
Rprop

D. Fittest Autoencoder architecture

We present the fittest AE model in this section, which was
built and trained using the proposed NiaNet method in the
AutoML framework. The experiment was carried out with the
diabetes dataset with the above experimental parameter values.
Produced solutions by the NiaNet method were evaluated by
the fitness function in equation 12, where PSO produced the
fittest solution.

Topology: The proposed solution array was mapped into
the AE model based on the encoding strategy. The proposed
model was a symmetrical AE, having a single-layer encoder
and decoder. The encoder was built to take a 10-D input
vector and compress it into an 8-D latent vector. The decoder
was a mirrored encoder that took an 8-D latent vector as
input and decompressed it back to a 10-D output vector. This
indicates that the initial 10-D vector was compressed by the
20%. Another good indication can be seen in a simplicity of
a model in terms of AE deepness (see. Fig. 3).

Hyper-parameters: When mapping up the elements in
solution, we got the hyper-parameters for the previously
mentioned topology. Where an activation function = RRELU ,
number of epochs = 110, learning rate = 0.11 and optimization
algorithm = RAdam.

Achieved performance: On the testing dataset, we applied
the root mean squared error (RMSE) to objectively quantify
the fittest AE model’s performance. It allows us to examine
how close the reconstructed data examples (output) are from
the ground truth (input) on average. The closest the result of
RMSE metric is to zero, the smaller the difference between
input and output. In our case, the fittest AE model reached
the value of 0.11, which can be the starting point for future
research.

E. Results by optimization algorithm

The following are the findings of our more in-depth analysis.
Each of the fittest solutions produced by algorithms PSO, DE,
FA, jDE, and GA is listed in table IV. The PSO algorithm
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Algorithm
Fitness
value RMSE

Bottleneck
size Topology shape

number of neurons
per layer

Layers
in AE

Activation
function Epochs

Learning
rate

Optimizer
algorithm

PSO 231 0.11 8 symmetrical En[8], De[10] 2 RRELU 110 0.11 RAdam
FA 353 0.15 8 symmetrical En[8], De[10] 2 SELU 140 0.26 Adagrad
jDE 523 0.40 5 symmetrical En[5], De[10] 2 RRELU 110 0.38 Adagrad
GA 553 0.40 9 symmetrical En[9], De[10] 2 TANH 120 0.04 ASGD
DE 556 0.26 9 symmetrical En[9], De[10] 2 CELU 170 0.06 RAdam

TABLE IV: The NiaNet fittest solutions found by selected algorithms

achieved a significantly higher fitness value, closely followed
by the FA algorithm. Whereas all other algorithms ended
up with very comparable fitness values, despite arriving at
different solutions in AE model building blocks. This can be
explained by looking at the formulation of our fitness function,
equation 12. When looking at the proposed bottleneck sizes,
we see the values span from 5 to 9. Since the input shape
is 10 for the selected dataset, this is relatively considerable
variability between algorithms. While the variables such as
topology shape, epochs, and number of layers are nearly
identical. All the algorithms found the optimal solution in
those variables for this problem. The number of neurons in
each layer varies between algorithms, since it is related to
the size of the bottleneck. Multiple solutions for activation
function, learning rate and optimizers were also proposed.

Linear layer: 
input:10 
output:8

x�1

x�3

x�3

x�4

x�5

x�6

x�7

x�8

x�9

x�10
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input:8 

output:10
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z3

z4

z5

z6
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z8

Encoder Decoder

Output vector

Latent vector

Fig. 3: Fittest autoencoder topology, designed by PSO algorithm.

VI. CONCLUSION

This paper presented NiaNet, a novel method for building
AE models based on the AutoML methodology. The method
sets up the topology and the hyper-parameters based on the
solutions designed by nature-inspired algorithms. The results
gathered in experiments are indicating a promising avenue that
has to be further explored. This could help reduce the human
resources needed in the model generation stage of AutoML.

Based on these exciting findings, we plan to expand our
research toward finding an optimal solution for a broader

range of training parameters and AE topologies with various
depth, width, and layer types. The objective for the future
is to compare our proposed method to existing AutoML
methodologies in a more extensive performance comparison
using a variety of datasets. Having numerous solutions for
various datasets could provide us with insights into how to
build optimal AE models in the future.
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