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Abstract—Dirichlet’s principle, also known as a pigeonhole
principle, claims that if n ∈ N item are put into m ∈ N containers,
with n > m, then there is a container that contains more than
one item. In this work, we focus rather on an inverse Dirichlet’s
principle (by switching items and containers), which is as follows:
considering n ∈ N items put in m ∈ N containers, when n < m,
then there is at least one container with no item inside. Further-
more, we refine Dirichlet’s principle using discrete combinatorics
within a probabilistic framework. Applying stochastic fashion on
the principle, we derive the number of items n may be even
greater than or equal to m, still very likely having one container
without an item. The inverse definition of the problem rather than
the original one may have some practical applications, particu-
larly considering derived effective upper bound estimates for the
items number, as demonstrated using some applied mini-studies.

I. INTRODUCTION

W
HILE the Dirichlet’s principle is applied in various
fields such as number theory and calculus [1], data

compression [2], quantum mechanics [3] and many others, in
this work, we focus only on the original definition in a pure
discrete fashion, and mainly on a derived, inverse form. The
original version of the Dirichlet’s principle [4] claims that if
there are more items than containers so that the items are
put into the containers, then there is at least one container
containing two or more items. Thus, due to the idea’s relative
simplicity, applications of the original Dirichlet’s principle
are usually limited to rather fancy problems coming from
recreational mathematics.

Within the paper, going further, we refine the original
Dirichlet’s principle in an inverse form: when there are fewer
items than containers and put inside them, there is at least one
container with no items inside.

The estimate of a maximum number of items lower than the
number of containers is relatively poor in a stochastic fashion,
though. The inverse definition enables applying the pigeonhole
principle to some real-world situations and helps solve them
effectively. We demonstrate how the stochastic approach to
inverse Dirichlet’s principle, together with combinatorial cal-
culations of probabilities, helps to get more effective estimates
for selected problem parameters, as indicated above. To be
more specific, we applied stochastic-based inverse Dirich-
let’s principle to a real-world situation called an unoccupied

doubleseat problem, originated by the paper’s authors, where
an individual wants to know a probability of an unoccupied
doubleseat in a row of doubleseats when booking their seat.
The inverse Dirichlet’s principle would return a relatively poor
estimate of a maximum number of individuals who booked
their seats so far, ensuring there should be at least one un-
occupied doubleseat. However, the probabilistic approach can
show a substantially significant probability of an unoccupied
doubleseat even for more already booking individuals than
estimated using the pigeonhole principle.

II. AN INVERSE DIRICHLET’S PRINCIPLE DEFINITION AND

STOCHASTIC COMBINATORIAL APPROACH TO SELECTED

APPLICATIONS OF THE PRINCIPLE

A. An inverse Dirichlet’s principle definition

Assuming there are n ∈ N items put into m ∈ N containers,
with n < m, then there is for sure at least one container with
no items inside it.

A proof, built by contradiction, is clear and as follows.
Suppose that each of m ∈ N containers contains at least one of
all n ∈ N items inside, with n < m. Then there is minimally
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m·1 = m items, which is in contradiction with the assumption
of n < m items. ¥

We apply the inverse version of Dirichlet’s principle to
a real-world inspired problem called an unoccupied doubleseat

problem, where an individual wants to know how likely there
is an unoccupied doubleseat in a row of k of them (containers)
when n individuals (items) randomly occupied the seats before
him. Moreover, we show that Dirichlet’s principle can be
replaced by a stochastic approach, estimating the same output
as the inverse pigeonhole principle, i. e. a maximum number
of items so that there is (likely) an unoccupied container1.

B. An unoccupied doubleseat problem

Let us assume we have a row of k ∈ N doubleseats2 as
in Fig. 1 and n ∈ N ∪ {0} individuals who have randomly
occupied n of the seats, one seat per individual, with 0 ≤ n ≤
2k. If there is a newcomer who would like to sit down on one
of the seats not occupied so far, what is the probability that
there is at least one unoccupied3 doubleseat in the row4?

� �� �

k doubleseats

�
�
�
�

2

Fig. 1. A row of k ∈ N doubleseats, used in the unoccupied doubleseat

problem.

1) A solution by the inverse Dirichlet’s principle: The
pigeonhole principle is limited to offering only a discrete
solution. When the newcomer wants to know how likely there
are one or more unoccupied doubleseats, assuming there are
2k seats in total, arranged as k doubleseats (containers), and
n seats are already occupied (items). Applying the Dirichlet’s
principle, when there are n < k individuals taking the seats,
there must be at least one unoccupied doubleseat. Otherwise,
if there are n ≥ k individuals occupying the seats, no one can
assure whether there are one or more free doubleseats. For
n > 2k−2 sitting individuals, there is for sure no unoccupied
doubleseat.

2) A solution by a combinatorial stochastic approach: Let
us mark as p a probability there is at least one unoccupied
doubleseat, assuming a row of k doubleseats and n randomly
sitting individuals at the moment, 0 ≤ n ≤ 2k. When 0 ≤
n ≤ k − 1, then obviously, as claimed above, p = 1. For
k ≤ n ≤ 2k, we get

p = P (≥ 1 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1− P (0 unoccupied doubleseat | k ≤ n ≤ 2k). (1)

1Somewhat similar problem, bur using rather the original Dirichlet’s prin-
ciple, not the inverse one, is so-called birthday problem, [5].

2For example, in a bus, a train, or a plane.
3I. e., both seats of such a doubleseat are unoccupied.
4Newcomers, particularly when alone, prefer to sit down on an unoccupied

doubleseat to not sitting next to someone other.

The term P (0 unoccupied doubleseat | k ≤ n ≤ 2k) in
formula (1) could be estimated as follows – since the first n
individuals take their seats randomly, we may assume

p = P (≥ 1 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1− P (0 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1−
N

M
. (2)

While the denominator M of the term 1− p is straightfor-
ward, since a number of all ways how 2k seats can by taken
by n individuals is equal to M =

�
2k
n

�
, the numerator N is

tricky.
Assuming there is no unoccupied doubleseat, each of k dou-

bleseats is occupied by one or two of n individuals. Thus n−k
doubleseats must be fully occupied, while k−(n−k) = 2k−n
doubleseats are occupied only by one individual. The number
of ways n− k doubleseats of k in total are fully occupied, is
equal to

�
k

n−k

�
, while the number of ways 2k−n doubleseats

are occupied only by one individual is 22k−n. In total, the
numerator N of the 1 − p term, i. e. number of ways how
one or both seats per each of k doubleseats are taken by n

individuals, is equal to N =
�

k
n−k

�
· 22k−n. Putting things

together, we improve formula (2) as

p = P (≥ 1 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1− P (0 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1−
N

M
=

= 1−

�
k

n−k

�
· 22k−n

�
2k
n

� . (3)

What is worth mentioning is the probability p, i. e., there
are one or more unoccupied doubleseats for n already sitting
individuals, is close to 1.0 even for values n > k − 1, as we
can see in Table I and Fig. 2.

TABLE I
MAXIMUM NUMBERS n OF ALREADY SITTING INDIVIDUALS THAT STILL

ENSURE THERE IS ONE OR MORE UNOCCUPIED DOUBLESEAT WITH THE

PROBABILITY p FOR GIVEN TOTAL NUMBER k OF DOUBLESEATS.

k = 10 k = 20 k = 30

p n p n p n

1.00 9 1.00 19 1.00 29
> 0.99 10 > 0.99 24 > 0.99 40
> 0.95 11 > 0.95 26 > 0.95 43
> 0.90 12 > 0.90 28 > 0.90 45
> 0.80 13 > 0.80 29 > 0.80 47

3) A lower bound for the probability estimate coming from

the combinatorial stochastic approach: Considering formula
(3), one may try to derive a lower bound for the probability
there are one or more unoccupied doubleseats in a row of
k ∈ N doubleseats, assuming n ∈ N ∪ {0} seats are already
occupied. However, before the lower bound construction, we
introduce some lemmas to be applied.
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Fig. 2. Maximum numbers n of already sitting individuals that still ensure
there is one or more unoccupied doubleseats with the probability p for given
total number k of doubleseats. There are estimates of maximum n ensuring
≥ 1 unoccupied doubleseat by the inverse Dirichlet’s principle (the red dashed
line) and by the stochastic refining of the Dirichlet’s principle (the blue dashed
line, with p > 0.95). The black dashed line stands for the lower bound of
the probability estimate.

Lemma. Assuming real numbers 0 < d < r ≤ s, a fraction
r
s is greater than or equal to a fraction r−d

s−d , i. e. r
s ≥

r−d
s−d .

Proof. Since r ≤ s, it is also rd ≤ sd and −rd ≥ −sd, and,
eventually, rs−rd ≥ rs−sd. Thus, if rs−rd ≥ rs−sd, it is
also r(s− d) ≥ s(r− d), and since r− d > 0 and s− d > 0,
it is also r

s ≥
r−d
s−d . ¥

Lemma. Assuming real numbers 0 < di < r ≤ s for ∀i ∈
{1, 2, . . . ,m}, it is

m�

i=1

(r − di)(r + di)

(s− di)(s+ di)
≤
�r

s

�2m

. (4)

Proof. Considering the previous lemma, it is obviously
r2−d2

i

s2−d2

i

≤ r2

s2 for ∀i ∈ {1, 2, . . . ,m}, thus, it is also
�m

i=1
r2−d2

i

s2−d2

i

≤
�

r2

s2

�m

=
�
r
s

�2m
, and, finally, by reformu-

lation, it is
�m

i=1
(r−di)(r+di)
(s−di)(s+di)

≤
�
r
s

�2m
. ¥

Let us now derive a lower bound for the probability in
formula (3). We get

p = 1− P (0 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1−

�
k

n−k

�
· 22k−n

�
2k
n

� =

= 1−

k!
(n−k)!(2k−n)!

(2k)!
n!(2k−n)!

· 22k−n =

= 1−
n!k!

(n− k)!(2k)!
· 22k−n =

= 1−
n!

(n− k)!

k!

(2k)!
· 22k−n =

= 1−
n(n− 1) · · · (n− k + 1)

2k(2k − 1) · · · (2k − k + 1)
� �� �

k terms

·22k−n =

= 1−
(η + λ)(η + λ− 1) · · · η · · · (η − λ+ 1)(η − λ)

(κ+ λ)(κ+ λ− 1) · · ·κ · · · (κ− λ+ 1)(κ− λ)
· 22k−n,

where η = n − k−1
2 , κ = 2k − k−1

2 and λ = k−1
2 . Applying

the formula (4), we get

(k−1)/2
�

i=0

(η − (λ− i)) (η + (λ− i))

(κ− (λ− i)) (κ+ (λ− i))
≤
�η

κ

�k

,

so,

p = 1− P (0 unoccupied doubleseat | k ≤ n ≤ 2k) =

= 1−
(η + λ)(η + λ− 1) · · · η · · · (η + λ− 1)(η + λ)

(κ+ λ)(κ+ λ− 1) · · ·κ · · · (κ+ λ− 1)(κ+ λ)
· 22k−n ≥

≥ 1−
�η

κ

�k

=

= 1−

�

n− k−1
2

2k − k−1
2

�k

· 22k−n, (5)

which is the lower bound of the probability p. Counting
up all arithmetic operations in formulas (3) and (5), we
get asymptotic time complexity Θ(8k − n) for the precisely
calculated probability p while only Θ(3k − n + 7) for the
probability lower bound. Moreover, the lower bound formula
(5) minimizes the risk of over- or underfloating due to avoiding
terms with combinatorial coefficients of

�
a
b

�
type. Checking the

Fig. 2, we see the probability lower bound (the black dashed
line) is quite effective with limited possibility to be improved.

C. An unoccupied l-seat problem

Now, we generalize the unoccupied doubleseat problem in
terms of changing the doubleseats to l-seats for l ∈ N. Let
us assume we have a row of k ∈ N consecutive l-seats as in
Fig. 3 and n ∈ N ∪ {0} individuals who randomly sitting on
n of the seats, one seat per individual, with 0 ≤ n ≤ lk. What
is the probability there is an unoccupied5 l-seat?

� �� �

k of l-seats

�
�
�

�

l

Fig. 3. A row of k ∈ N consecutive l-seats, used in the unoccupied l-seat

problem.

5I. e., all l seats of such an l-seat are unoccupied.
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1) A solution by the inverse Dirichlet’s principle: Obvi-
ously, by applying the pigeonhole principle, assuming there
are k of l-seats (containers), and n seats are already occupied
(of lk in total) (items), if and only if there are n < k sitting
individuals, there is for sure one or more unoccupied l-seats.
On the other hand, for n > lk − l sitting individuals, there is
surely no unoccupied l-seat.

2) A solution by a combinatorial stochastic approach:

Again, by reformulation the probability p estimating there is
at least one unoccupied l-seat using formula (1), assuming k

of l-seats and n randomly sitting individuals at the moment,
k ≤ n ≤ lk (as far as for 0 ≤ n ≤ k−1 is the problem solved
using the Dirichlet’s principle), we get

p = P (≥ 1 unoccupied l-seat | k ≤ n ≤ lk) =

= 1− P (0 unoccupied l-seat | k ≤ n ≤ lk) =

= 1−
N

M
= 1−

N
�
lk
n

� , (6)

where the denominator M is how lk seats can be taken
by n individuals, i. e. M =

�
lk
n

�
; however, the numerator

N is analytically nontrivial and is calculated exhaustively
using Algorithm 1 with asymptotic time complexity roughly
Θ(2n(2l + k)).

Algorithm 1: Calculating a total number N of ways
all k of l-seats are occupied by n individuals, so that
there is at least one sitting individual on each l-seat

Data: k ∈ N of l-seats for l ∈ N, n individuals with
k ≤ n ≤ lk

Result: A total number N of ways all k of l-seats are
occupied by n individuals, so that there is at
least one sitting individual on each l-seat

1 N = 0;
2 for ∀ [d1, d2, . . . , dk] ∈ N

k :
�k

i=1 di = n do

3 if ∀i ∈ {1, 2, . . . , k} : 1 ≤ di ≤ l then

4 N ← N +
�k

i=1

�
l
di

�

5 end

6 end

Checking the Table II and Fig. 4, compared to Dirichlet’s
principle results, the stochastic approach still returns larger
estimates of the maximum number n of sitting individuals
ensuring (likely) an unoccupied l-seat; however, stochastically-
based maximum n’s seem closer to Dirichlet-based estimates
for the l-seats problem than for the doubleseat one.

III. CONCLUSION REMARKS

Refining the Dirichlet’s principle using a stochastic combi-
natorial approach enables us to improve estimates of the upper
number n of items randomly placed in k of l-containers, still
likely ensuring there is at least one l-container with no item in
it. On a more practical note, whenever someone books a seat
in a row of l-seats, even if the number of already booked seats

TABLE II
MAXIMUM NUMBERS n OF ALREADY SITTING INDIVIDUALS THAT STILL

ENSURE THERE IS ONE OR MORE UNOCCUPIED l-SEATS WITH THE

PROBABILITY p FOR GIVEN TOTAL NUMBER k OF l-SEATS.

k = 6, l = 3 k = 9, l = 3

p n p n

1.00 5 1.00 8
> 0.99 5 > 0.99 9
> 0.95 6 > 0.95 10
> 0.90 6 > 0.90 11
> 0.80 7 > 0.80 12
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Fig. 4. Maximum numbers n of already sitting individuals that still ensure
there is one or more unoccupied l-seats with the probability p for given
total number k of l-seats. There are estimates of maximum n ensuring ≥ 1

unoccupied l-seat by the inverse Dirichlet’s principle (the red dashed line) and
by the stochastic refining of the Dirichlet’s principle (the blue dashed line,
with p > 0.95).

is higher than the number of the l-seats, there is still a high
probability of an unoccupied l-seat, unexpectedly according to
the discrete inverse Dirichlet’s principle, though.
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