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Abstract—In this paper we propose a novel rough-fuzzy hy-
bridization technique to feature selection and feature ranking
problem. The idea is to model the local preference relation
between pair of features by intuitionistic fuzzy values and search
for a feature ranking that is consistent with those constraints.
We apply the techniques used in group decision making where
constraints are presented in form of intuitionistic fuzzy prefer-
ence relation. The proposed method has been illustrated by some
simple examples and verified on a benchmark dataset.

Index Terms—Intuitionistic fuzzy matrix, feature ranking,
reducts, rough sets.

I. INTRODUCTION

D
ECISION making plays an extremely important role

in the real life problems. With trong development of

datasets having a great deal of features, recognizing preferred

features is a challenging task. In recent years, rough-fuzzy

hybridation becomes a hot trend with great success in machine

learning, data mining, decision making, etc. [1].

Usually, a group decision-making process must collect all

decision-makers’s opinions, establish a suitable method for

measuring them, obtain the final scores of all alternatives,

and then rank them. Decision makers have to rank the al-

ternatives, find the most preferred feature in order to make

decision. So, preference relations are effective techniques

to gather the overviews of a group of decision makers.

Recently, many researchers have developed many methods

of preference relations [2], [3], [4], [5], [6][7]. To solve

decision-making problems with uncertain information or not

precise judgments, preference relations with Zadeh’s fuzzy

sets are proposed. There are two number values to measure

the degree of membership and nonmembership in Zadeh’s

fuzzy theory with sum is one, but ignore the decision maker’s

hesitation in the decision making process. The Atanassov’s

intuitionistic fuzzy sets consider fully expressing affirmation,

negation and hesitation. Particularly, the usage of intuitionistic

fuzzy preference relation to affirmative, negative and hesitant

characteristics makes the research problem more and more

attractive and competitive.

Real world problems may have numerous irrelevant fea-

tures, and in such cases feature selection can help deci-

sion makers choose important information hidden in the full

dataset. Feature selection (FS) method belongs to one of the

three main groups: embedded, filter or wrapper methods and

can be defined as selecting a subset of available features in

a dataset that is associated with the response variables by

excluding irrelevant and unnecessary features. An alternative

to FS for dimensionality reduction is feature extraction (FE)

in which original features are united and then projected into a

new feature space with smaller dimensionality. In this paper,

we interpret the feature selection and feature ranking as

decision making problems and apply the recent techniques for

solving it.

In the process of group making decisions, there are of-

ten many different opinions of defining the degree of cer-

tainty, uncertainty or hesitation among decision makers (DMs).

Therefore, it’s necessary to define an intuitionistic fuzzy pref-

erence relation which have the capability of representing all

selections. The consistency of intuitionistic fuzzy preference

relations (IFPRs) and the priority weights of DMs gathered

from these preference relations play a vital role in group

making decision to lead to the most best result. In some works,

the consequences of additive consistent and multiplicative con-

sistent IFPRs on priority weights is examined and considered

to calculate the priority weights. Numerical analyses have

shown that the ranking of the individual priority weights do not

differ seriously despite of the different priority weight vectors

of the individual priority weights. The intuitionistic fuzzy

preference relation is introduced as an indispensable tool for

enabling decision-makers to judge the superiority or inferiority

of one object to another, in the presence of fuzziness. Ranking

methods for alternatives with intuitionistic fuzzy information

are expressed straightforwardly and efficiently to get the

solution of group decision problems.

The paper is organized as follows: in Section II we recall

some basic notions in intuitionistic fuzzy set theory and rough

set theory. Section III describes ranking methods that are

consistent or semi-consistent with one or more intuitionistic

fuzzy preference relations. In Section IV, we present a rough-

fuzzy hybridization method for feature ranking and illustrate

the proposed method on the base of some simple examples.

The results of experiments on the accuracy of the feature

ranking methods in the context of classification task are

reported in Section V. The conclusions and plan for future

research are presented in Section VI.
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II. BASIC NOTIONS

In this section we present some fundamental knowledge

about intuitionistic fuzzy set, intuitionistic fuzzy relation and

feature reduction in rough set theory.

A. Intuitionistic fuzzy sets and Intuitionistic fuzzy matrices

Fuzzy set (FS) theory which was introduced by Zadeh

in 1975 [8] just considers the problems with the degree

of membership and non-membership without mentioning the

degree of hesitation of no decision-making. The Atanassov’s

intuitionistic fuzzy set (IFS) theory [9] considers fully express-

ing affirmation, negation and hesitation of decision-makers.

Therefore, with real-life situations, IFS theory solves the

problems more successfully than FS theory. In this part, some

basic notions related to IFS are recalled.

Definition 1 (IFS [9]). Let X = {x1, x2, ..., xm} be a finite

universal set. An intuitionistic fuzzy set in X is a set A =
{(xi, µA(xi), νA(xi)) : xi * X}, where µA(xi), νA(xi) *
[0, 1] and 0 f µA(xi) + νA(xi) f 1 for any xi * X . The

functions µA : X ³ [0, 1] and νA : X ³ [0, 1] are called the

membership and non-membership functions, respectively.

The value πA(xi) = 1 2 µA(xi) 2 νA(xi) is called the

intuitionistic index of the element xi in the set A. It describes

a degree of hesitation (or uncertainty) whether xi is in A or

not. For any xi * X , we have 0 f πA(xi) f 1.

The class of IFS in a universe X is denoted by IFS(X).

Let F be the set of tuples (a1, a2), where a1, a2 * [0, 1]
and a1 + a2 f 1, i.e.,

F = {(a1, a2) * [0, 1]2 : a1 + a2 f 1}.

A partial order fF over F defined by:

(a1, a2) fF (b1, b2) ô a1 f b1 and a2 g b2.

The elements of F are called the intuitionistic fuzzy values

(IFV), of which (0, 1) is the least element and (1, 0) is the

greatest element. The operations in (F ,fF ) are defined by

(a1, a2) ( (b1, b2) = (max{a1, b1},min{a2, b2}).

(a1, a2) ' (b1, b2) = (min{a1, a2},max{b1, b2})

(a1, a2)
c = (a2, a1).

Each IFS of a universe X is in fact a map from X to F .

If A and B are two IFSs defined by (µA, νA) and (µB , νB),
correspondingly, then the union, intersection and complement

are defined as follows:

(µA*B , νA*B) = (µA, νA) ( (µB , νB)

= (max{µA, µB},min{νA, νB})

(µA+B , νA+B) = (µA, νA) ' (µB , νB)

= (min{µA, µB},max{νA, νB})

(µAc , νAc) = (µA, νA)
c = (νA, µA)

A ¦ B ô (µA, νA) fF (µB , νB)

Relations (between two sets X and Y ) in traditional set

theory are defined as subsets of the Cartesian product X ×Y .

It is quite natural to define intuitionistic fuzzy relations as IFSs

in X×Y . If X = {x1, · · · , xm} and Y = {y1, · · · , yn}, then

any intuitionistic fuzzy relation in X×Y can be represented by

an m× n matrix R = (ρij)m×n, where ρij = (µij , νij) * F
is the IFV describing the membership and non-membership of

(xi, yj) to this relation.

Definition 2 (Intuitionistic fuzzy matrices - IFM). Any matrix

P of order n×m with values from F = {(a1, a2) * [0, 1]2 :
a1 + a2 f 1} is called Intuitionistic Fuzzy Matrices. An IFM

is said to be square intuitionistic fuzzy matrix (SIFM) if the

number of rows is equal to the number of columns. Moreover:

1) An identity IFM I of order n is the square intuitionistic

fuzzy matrix (SIFM) of order n with all diagonal entries

(1, 0) and non-diagonal entries (0, 1).
2) A null intuitionistic fuzzy matrix (IFM) O of order n is

the square intuitionistic fuzzy matrix (SIFM) of order n

with all entries (0, 1).

The concepts of intuitionistic fuzzy relation and intuition-

istic fuzzy matrix (IFM) have been studied by many authors

[10], [11], [12]. IFM is a generalization of Fuzzy Matrix and

has been useful in dealing with decision-making, clustering

analysis, relational equations, etc.

Since IFM is an extension of FM by replacing the values

from [0, 1] by IFV, i.e. elements of F = {(a1, a2) * [0, 1]2 :
a1+a2 f 1}, and the fuzzy operations ( and ' were extended

for the elements of F . Most of operations on fuzzy matrices

can be also extended for IFMs. In particular, if A = (aij), B =
(bij) * Fm×n, where aij = (µa

ij , ν
a
ij), bij = (µb

ij , ν
b
ij), for

i = 1, · · · ,m; j = 1, · · · , n then

" disjunction and conjunction are defined by:

A (B = (aij ( bij)m×n = (δij)m×n

where δij = (min{µa
ij , µ

b
ij},max{νaij , ν

b
ij}).

A 'B = (aij ' bij)m×n = (γij)m×n

where γij = (max{µa
ij , µ

b
ij},min{νaij , ν

b
ij}).

" Comparison: A f B ô aij f bij for all i = 1, 2, ...,m
and j = 1, 2, ..., n.

" The tranpose of A = (aij)m×n is AT = (xij)n×m, where

xij = aji.

" The composition of two relations or the product of two

matrices A * Fm×n and C * Fn×l is the matrix D =
(dij) * Fm×l, where

dij =
n
�

k=1

(aik ' ckj) =

�

n
�

k=1

(µa
ik ' µc

kj),
n
�

k=1

(νaik ( νckj)

�

=

�

max
k=1,..,n

{min{µa
ik, µ

c
kj}}, min

k=1,..,n
{max{νaik, ν

c
kj}}

�

.

This operation is denoted by D = A ç C.

B. Feature selection and feature ranking problem

In machine learning, a classification task is defined as the

problem of learning the partition of a set of objects into subsets

called decision classes (or briefly classes). The partition should
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be expressed in terms of object features. Let U be a set of

objects. Any function a : U ³ Va, where Va is the domain

(the set of possible values) of a, is called a feature or attribute

for U . If a is a measurement such as a person’s weight, height,

blood pressure or the weather temperature, i.e. Va is a real

interval, then a is called the numeric or quantitative feature.

Otherwise, if the values in Va are not comparable, or if they

can not be ordered in a linear order, then a is called categorical,

symbolic or qualitative feature.

Decision table is a tuple T = (U,A * {d}), where

U = {u1, u2, · · · , un} is a finite set of objects, A =
{a1, a2, · · · am} is a finite set of features called conditional

attributes and d is the decision attribute, i.e. the attribute

defining the partition of objects into decision classes. Any

decision table T = (U,A * {d}) stores a training data set

D = {(x1, y1), · · · , (xn, yn)} for machine learning algo-

rithms, where xi = (a1(ui), · · · , am(ui)) and yi = d(ui).
The goal of the feature selection (FS) problem for deci-

sion table T = (U,A * {d}) is to determine the minimal

subsets of A satisfying a particular classification performance

requirement. Feature ranking problem is to order the feature

in a ranking list so that the more important features are at the

beginning of the ranking list while the less important features

are at the end of the ranking list.

C. Rough Sets and feature selection problem

In rough set theory, the FS problem is formulated as a

problem of searching for reducts. Intuitively, reducts of a

decision table T = (U,A*{d}) are the minimal subsets (with

respect to inclusion) of the set of all attributes A that guarantee

the classification performance of the reduced decision table.

In the pioneering paper in rough set theory [13], [14], [15],

the classification performance was defined in terms of the

discernibility between the objects. Formally, for any subset

B ¢ A and two objects u, v * U , we say that

B discerns u and v (or u, v are discernible by B)

ô there exists b * B such that b(u) ;= b(v)

The set B ¢ A is called the reduct of decision table T if

" For any u, v * U , if u, v are discernible by A and

discernible by {d} then u, v are discernible by B;

" No proper subset of B satisfies the previous condition.

This original concept of reducts has been generated by many

researchers [16], [17], [18]. However, the solution space for the

problem of searching for the reduct with minimal cardinality

is 2m 2 1 where m = |A|.
The first approach to minimal reduct problem has been

proposed in [14]. For the given decision table T = (U,A*{d})
with U = {u1, u2, · · · , un} and A = {a1, a2, · · · am}, the

authors constructed a discernibility matrix M(T ), which is in

fact a function M(T ) : U ×U ³ P(A), where P(A) denotes

the power set of A. For each two objects ui, uj * U , we

denote M(T )(ui, uj) = Sij , where

Sij =

�

' if d(xi) = d(xj)

{a * A : a(xi) ;= a(xj)} otherwise

The example of discernibility matrix is presented in Table II.

One can notice that a subset of attributes B ¢ A discerns

a pair of objects ui, uj * U if and only if B + Sij ;= '.

Let us notice that for any ui, uj * U we have Sij = Sji.

That’s why, in case of the decision table with two decision

classes, the discernibility matrix can be simplified into p × q

matrix where p and q are the cardinalities of the two decision

classes.

Since minimal reduct calculation problem is NP-hard, many

heuristics algorithms are using random permutations of fea-

tures [16], [19] as a nondeterministic policy and the algorithm

is searching for the reduct according to the attribute order

defined by the given permutations.

III. FROM INTUITIONISTIC FUZZY PREFERENCE RELATION

TO RANKING.

In this Section we present a method of using Intuitionstic

Fuzzy Sets to approximate the concept of fuzzy preference

[20] [21], [22].

Definition 3 (intuitionistic fuzzy preference relation). An intu-

itionistic fuzzy preference relation B on X = {x1, · · · , xn} is

defined as a matrix B = (bij)n×n, where bij = (µij , νij) for

all i, j = 1, 2, · · · , n is an intuitionistic fuzzy value, composed

by the certainty degree µij to which xi is preferred to xj and

the certainty degree vij to which xi is non-preferred to xj ,

and πij = 12µij 2 νij is interpreted as the hesitation degree

to which xi is preferred to xj . Moreover, µij and νij satisfy

the following conditions:

µij + νij f 1, µij = νji, µii = νii = 0.5

for all i, j = 1; 2; · · · , n.

Usually, the intuitionistic fuzzy preference relation ex-

presses the opinions of the decision makers about each pair of

choices (alternatives), but we would like to convert this relation

into a linear order (a ranking list). We can do it by assigning

a weight wi to the i-th choice so that the higher weight means

the more preferred choice. Without lost of generality, we can

assume that the weight vector can be determined in form of a

probability vector, i.e. a vector w = (w1, w2, . . . , wn)
T

such

that wi * [0, 1] for i = 1, · · · , n and
�n

i=1 wi = 1. We can

define the concept of consistent preference relation as follows:

Definition 4 (Additive consistent preference relation). An

intuitionistic fuzzy preference relation B = ((µij , νij))n×n
on

X = {x1, · · · , xn} is an additive consistent preference rela-

tion if there exists a probability vector w = (w1, w2, . . . , wn)
T

satisfying the condition:

µij f 0.5(wi 2 wj + 1) f 12 νij (1)

for all 1 f i < j f n.

It is obvious that not every intuitionistic fuzzy preference

relation is also an additive consistent relation. In this case the
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condition in Eq. (1) can be relaxed by introducing the non-

negative deviation variables lij and rij for 1 f i < j f n

such that

µij 2 lij f 0.5(wi 2 wj + 1) f 12 νij + rij (2)

for all 1 f i < j f n. As the deviation variables lij and rij
become smaller, B becomes closer to an additive consistent

intuitionistic fuzzy preference relation. Therefore, in order to

find the smallest deviation variables one can developed the

following linear optimization model [23], [21]:

Model (A1):

δ = min
n21
"

i=1

n
"

j=i+1

(lij + rij)

s.t.

ù

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

û

0.5(wi 2 wj + 1) + lij g µij

0.5(wi 2 wj + 1)2 rij f 12 νij

lij , rij g 0

ü

ü

ý

ü

þ

(*)

wi g 0 for i = 1, · · · , n,
�n

i=1 wi = 1

where (*) must be true for all 1 f i < j f n.

Let δo be the optimal value and let loij and roij for 1 f i <

j f n be optimal deviation values of the optimization model

(A1). One can see that if δo = 0 then B is an additive con-

sistent intuitionistic fuzzy preference relation. Otherwise, we

can improve the additive consistency of B by defining the new

intuitionistic fuzzy preference relation B̊ = ((µ̊ij , ν̊ij))n×n,

where

µ̊ij =

ù

ü

ú

ü

û

µij 2 loij if i < j

0.5 if i = j

ν̊ij if i > j

ν̊ij =

ù

ü

ú

ü

û

νij 2 roij if i < j

νij = 0.5 if i = j

µ̊ij if i > j

Based on matrix B̊ we can calculate the priority weight vector

w = (w1, . . . , wn)
T

by establishing the weight intervals

[w2

k , w
+
k ] for each k = 1, · · · , n. In order to do that, we solve

the following optimization models

Model (A2): for each k = 1, 2, · · · , n:

(w2

k , w
+
k ) =(minwk,maxwk)

s.t.

ù

ü

ü

ü

ú

ü

ü

ü

û

0.5(wi 2 wj + 1) g µ̊ij

0.5(wi 2 wj + 1) f 12 ν̊ij

�

(7)

wi g 0 for i = 1, · · · , n,
�n

j=1 wj = 1.

where (*) must be true for all 1 f i < j f n.

It has been shown [23] that if B̊ is additive consistent then

Model (A2) will return an unique solution for the considered

optimization problem.

Definition 5 (Multiplicative consistent preference relation:).

An intuitionistic fuzzy preference relation B = ((µij , νij))n×n

on X = {x1, · · · , xn} is an multiplicative consistent pref-

erence relation if there exists a probability vector w =
(w1, w2, . . . , wn)

T
satisfying the condition:

µij f
wi

wi + wj

f 12 νij for all 1 f i < j f n. (3)

Checking for the multiplicative consistency is quite similar

to the additive consistency. In this case, we can establish

the optimization model (M1). In contrast to model (A1), this

model is nonlinear.

Model (M1):

δ = min
n21
"

i=1

n
"

j=i+1

(lij + rij)

s.t.

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

wi

wi + wj

+ lij g µij

wi

wi + wj

2 rij f 12 νij

lij , rij g 0

ü

ü

ü

ü

ü

ü

ý

ü

ü

ü

ü

ü

þ

(*)

wi g 0 for i = 1, · · · , n,
�n

i=1 wi = 1

where (*) must be true for all 1 f i < j f n.

Let δ7 be the optimal value and let l7ij and r7ij for 1 f
i < j f n be optimal deviation values of the optimization

model (M1). One can see that if δ7 = 0 then B is an mul-

tiplicative consistent intuitionistic fuzzy preference relation.

Otherwise, we can improve the multiplicative consistency of

B by defining the new intuitionistic fuzzy preference relation

B7 = ((µ7
ij , ν

7
ij))n×n, where

µ7
ij =

ù

ü

ú

ü

û

µij 2 l7ij if i < j

0.5 if i = j

ν7ij if i > j

ν7ij =

ù

ü

ú

ü

û

νij 2 r7ij if i < j

0.5 if i = j

µ7
ij if i > j

Based on matrix B7 we can calculate the priority weight vector

w = (w1, . . . , wn)
T

by establishing the weight intervals

[w2

k , w
+
k ] for each k = 1, · · · , n. In order to do that, we solve

the following optimization models

Model (M2): for each k = 1, 2, · · · , n:

(w2

k , w
+
k ) =(minwk,maxwk)

s.t.

ù

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

û

wi

wi + wj

g µ7
ij

wi

wi + wj

f 12 ν7ij

ü

ü

ü

ý

ü

ü

þ

(7)

wi g 0 for i = 1, · · · , n,
�n

j=1 wj = 1.

where (*) must be true for all 1 f i < j f n.

IV. HYBRID METHOD FOR FEATURE RANKING PROBLEM

In this section we present a rough-fuzzy hybridization

technique for searching for the optimal ranking list of features,

called RAFAR (Rough-fuzzy Algorithm For Attribute Rank-

ing). We introduce the concept of fuzzy discernibility matrix,
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which is a generalization of discernibility matrix in rough set

theory, and combine it with the ranking calculation methods

from intuitionistic fuzzy preference relations.

A. Construction of IFPR from decision table

The general framework of our proposition is presented in

the Fig. 1:

Decision table

Discernibility relations

Intuitionistic Fuzzy

Preference Relation

Feature Ranking

Discernibility matrix generalization

Local feature comparison

Applying (A1)+(A2) or (M1)+(M2)

Fig. 1: The general framework of our proposition.

For a given decision table T = (U,A * {d}), where U =
{u1, u2, · · · , un} and A = {a1, a2, · · · am}. To simplify the

description, let us assume that d is a binary decision attribute,

e.g., Vd = {21, 1}. The proposed methods also work for the

multi-class case.

Let RED(T ) = {R * A : R is a reduct in T} denotes the

set of all reducts of the decision table T . In [24], the authors

classified the attributes into 3 categories:

" Core attributes: the attributes that occur in all reducts:

CORE(T ) =
�

R*RED

R

" Reductive attributes: the attributes that present in at least

one reduct:

REAT (T ) = A2
�

R*RED

R

" The attribute is called redundant if it is not a reductive

attribute.

Our aim is to generate a feature ranking that at least follows

this classification.

Let consider the case of decision table with symbolic values.

We define the two decision classes by

U2 = {u * U : d(u) = 21}; U+ = {u * U : d(u) = 1}

For each feature ak * A, we define a function Pak
: U+ ×

U2 ³ {0, 1} by

Pak
(ui, uj) =

�

1 if a(ui) ;= a(uj),

0 otherwise.

We can see that if ak is a symbolic feature then Pak
is a

relation between U2 and U+ in the traditional meaning. This

relation is called the discernibility relation [14]. Moreover, if

M(T ) = (Sij)n×n is the discernibility matrix of T , then

Pak
(ui, uj) = 1 if and only if ak * Sij .

In case of numeric features, instead of the discernibility rela-

tion, we will define a fuzzy discernibility relation. If ak * A

be a real value feature, we define a fuzzy membership function

in U+ × U2 for the relation Pα,β
ak

(ui, uj) as follows:

Pα,β
ak

(ui, uj) =

ù

ü

ú

ü

û

0 if dk(ui, uj) f α;

1 if dk(ui, uj) g β;
dk(ui,uj)2α

β2α
otherwise.

where 0 < α < β are real parameters and dk(ui, uj) =
|ak(ui)2 ak(uj)|.

Now, we propose the following method for construction of

IFPR over the set of features A. For each ak * A, we define

a function Scoreak
: U2 × U+ ³ [0, 1] such that

Scoreak
(ui, uj) =

1
�

ak*A Pak
(ui, uj)

Intuitively, the value Scoreak
(ui, uj) determines the probabil-

ity that ak should be selected in order to discern ui from uj .

For any pair of features ak, al * A, we define the following

sets:

Xkl = {(ui, uj) *U+ × U2 :

Scoreak
(ui, uj) > Scoreal

(ui, uj)}

Ykl = {(ui, uj) *U+ × U2 :

Scoreak
(ui, uj) = Scoreal

(ui, uj)}

Zkl = {(ui, uj) *U+ × U2 :

Scoreak
(ui, uj) < Scoreal

(ui, uj)}

Using those sets, we can calculate the following values

xkl =
"

(ui,uj)*Xkl

Scoreak
(ui, uj)2 Scoreal

(ui, uj)

ykl =
"

(ui,uj)*Ykl

Scoreak
(ui, uj)

zkl =
"

(ui,uj)*Zkl

Scoreal
(ui, uj)2 Scoreak

(ui, uj)

The discernibility IFPR: Pdis = ((µkl, νkl))m×m as follows

µkl =
xkl

xkl + ykl + zkl

νkl =
zkl

xkl + ykl + zkl

B. The illustrated examples

Consider an exemplary decision table shown in Table I. This

table was created by taking first 10 objects from the famous

“weather data set” and adding one more feature (smog) as the

fifth feature.
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TABLE I: The decision table extended by one new feature.

T1|a1 a2 a3 a4 a5 |dec
ID|outlook temp. hum. windy smog|play

1 |sunny hot high FALSE no | no
2 |sunny hot high TRUE no | no
3 |overcast hot high FALSE yes | yes
4 |rainy mild high FALSE yes | yes
5 |rainy cool normal FALSE no | yes
6 |rainy cool normal TRUE no | no
7 |overcast cool normal TRUE no | yes
8 |sunny mild high FALSE no | no
9 |sunny cool normal FALSE no | yes

10|rainy mild normal FALSE no | yes

The simplified version M
2
1 of the discernibility matrix for

T1 is presented in Table II. One can see that this new decision

table has exactly 2 reducts: R1 = {a1, a2, a4} and R2 =
{a1, a3, a4}. According to [24], the features a1 and a4 are

called the core attributes and a5 is the redundant attribute.

TABLE II: The simplified discernibility matrix for decision

table from Table I.

M2(T1) 1 2 6 8

3 a1, a5 a1, a4, a5 a1, a2, a3,
a4, a5

a1, a2, a5

4 a1, a2, a5 a1, a2, a4,
a5

a2, a3, a4,
a5

a1, a5

5 a1, a2, a3 a1, a2, a3,
a4

a4 a1, a2, a3

7 a1, a2, a3,
a4

a1, a2, a3 a1 a1, a2, a3,
a4

9 a2, a3 a2, a3, a4 a1, a4 a2, a3
10 a1, a2, a3 a1, a2, a3,

a4

a2, a4 a1, a3

Since all features of T2 are symbolic, the discernibility

relations are presented in Table III. The corresponding Score

functions for features are showing in Table IV.

Now we can calculate the IFPR Pdis. Let consider the two

features a1 and a2:

X12 = {(3, 1), (3, 2), (4, 8), (7, 6), (9, 6), (10, 8)}

Z12 = {(4, 6), (9, 1), (9, 2), (9, 8), (10, 6)}

Y12 = the rest of features.

The sums of scores in previous sets are:

x12 = 0.5 + 0.33 + 0.5 + 1 + 0.5 + 0.5 = 3.33

z12 = 0.25 + 0.5 + 0.33 + 0.5 + 0.5 = 2.083

y12 = 3.54

Therefore:

µ12 = ν21 j
3.33

3.33 + 2.083 + 3.54
j 0.3759

ν12 = µ21 j
2.083

3.33 + 2.083 + 3.54
j 0.2349

The IFPR Pdis for decision table T1 is presented as follows:
û

ü

ü

ý

(0.50, 0.50) (0.38, 0.23) (0.45, 0.19) (0.51, 0.23) (0.62, 0.04)
(0.23, 0.38) (0.50, 0.50) (0.23, 0.08) (0.41, 0.25) (0.61, 0.19)
(0.19, 0.45) (0.08, 0.23) (0.50, 0.50) (0.39, 0.36) (0.61, 0.33)
(0.23, 0.51) (0.25, 0.41) (0.36, 0.39) (0.50, 0.50) (0.55, 0.28)
(0.04, 0.62) (0.19, 0.61) (0.33, 0.61) (0.28, 0.55) (0.50, 0.50)

þ

ÿ

ÿ

ø

TABLE III: The discernibility relation for symbolic features

from decision table T1.

(ui, uj) Pa1
Pa2

Pa3
Pa4

Pa5

(3,1) 1 0 0 0 1
(3,2) 1 0 0 1 1
(3,6) 1 1 1 1 1
(3,8) 1 1 0 0 1
(4,1) 1 1 0 0 1
(4,2) 1 1 0 1 1
(4,6) 0 1 1 1 1
(4,8) 1 0 0 0 1
(5,1) 1 1 1 0 0
(5,2) 1 1 1 1 0
(5,6) 0 0 0 1 0
(5,8) 1 1 1 0 0
(7,1) 1 1 1 1 0
(7,2) 1 1 1 0 0
(7,6) 1 0 0 0 0
(7,8) 1 1 1 1 0
(9,1) 0 1 1 0 0
(9,2) 0 1 1 1 0
(9,6) 1 0 0 1 0
(9,8) 0 1 1 0 0

(10,1) 1 1 1 0 0
(10,2) 1 1 1 1 0
(10,6) 0 1 0 1 0
(10,8) 1 0 1 0 0

TABLE IV: The Score functions for features from T1.

(ui, uj) Scorea1
Scorea2

Scorea3
Scorea4

Scorea5

(3,1) 0.5 0 0 0 0.5
(3,2) 0.33 0 0 0.33 0.33
(3,6) 0.2 0.2 0.2 0.2 0.2
(3,8) 0.33 0.33 0 0 0.33
(4,1) 0.33 0.33 0 0 0.33
(4,2) 0.25 0.25 0 0.25 0.25
(4,6) 0 0.25 0.25 0.25 0.25
(4,8) 0.5 0 0 0 0.5
(5,1) 0.33 0.33 0.33 0 0
(5,2) 0.25 0.25 0.25 0.25 0
(5,6) 0 0 0 1 0
(5,8) 0.33 0.33 0.33 0 0
(7,1) 0.25 0.25 0.25 0.25 0
(7,2) 0.33 0.33 0.33 0 0
(7,6) 1 0 0 0 0
(7,8) 0.25 0.25 0.25 0.25 0
(9,1) 0 0.5 0.5 0 0
(9,2) 0 0.33 0.33 0.33 0
(9,6) 0.5 0 0 0.5 0
(9,8) 0 0.5 0.5 0 0
(10,1) 0.33 0.33 0.33 0 0
(10,2) 0.25 0.25 0.25 0.25 0
(10,6) 0 0.5 0 0.5 0
(10,8) 0.5 0 0.5 0 0

Now we can use the models (A1) and (A2) to find the feature

ranking that is additively consistent with Pdis. As a result we

receive:

(w1, w2, w3, w4, w5) = (0.468, 0.214, 0.214, 0.104, 0)

This means a1 is the best and a5 is the worst feature.

Let us consider the decision table T2, which is almost the

same as T1. The only difference is that, a2 (temperature) and

a3 (humidity) are numeric features.

The discernibility relations for a1, a4, a5 remain unchanged.

As an example, for a2, we use the fuzzy discernibility relation

Pα,β
a2

with α = 2 and β = 12 and for a3, we use the
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TABLE V: The decision table with numeric features

T2|a1 a2 a3 a4 a5 |dec
ID|outlook temp.(F) hum.(%) windy smog|play

1 |sunny 85.0 85.0 FALSE no | no
2 |sunny 80.0 90.0 TRUE no | no
3 |overcast 83.0 86.0 FALSE yes | yes
4 |rainy 70.0 96.0 FALSE yes | yes
5 |rainy 68.0 80.0 FALSE no | yes
6 |rainy 65.0 70.0 TRUE no | no
7 |overcast 64.0 65.0 TRUE no | yes
8 |sunny 72.0 95.0 FALSE no | no
9 |sunny 69.0 70.0 FALSE no | yes
10|rainy 75.0 80.0 FALSE no | yes

fuzzy discernibility relation Pα,β
a3

with α = 5 and β = 15.

The fuzzy discernibility relations as well as the coresponding

Score functions for features are presented in Table VI and

Table VII.

TABLE VI: The fuzzy discernibility relations for features from

decision table T2.

(ui, uj) Pa1
Pa2

Pa3
Pa4

Pa5

(3,1) 1 0 0 0 1
(3,2) 1 0.1 0.5 1 1
(3,6) 1 1 1 1 1
(3,8) 1 0.9 0 0 1
(4,1) 1 1 1 0 1
(4,2) 1 0.8 1 1 1
(4,6) 0 0.3 0 1 1
(4,8) 1 0 1 0 1
(5,1) 1 1 1 0 0
(5,2) 1 1 1 1 0
(5,6) 0 0.1 0 1 0
(5,8) 1 0.2 1 0 0
(7,1) 1 1 1 1 0
(7,2) 1 1 1 0 0
(7,6) 1 0 0.4 0 0
(7,8) 1 0.6 1 1 0
(9,1) 0 1 1 0 0
(9,2) 0 0.9 1 1 0
(9,6) 1 0.2 0 1 0
(9,8) 0 0.1 1 0 0

(10,1) 1 0.8 0.8 0 0
(10,2) 1 0.3 1 1 0
(10,6) 0 0.8 0.3 1 0
(10,8) 1 0.1 0 0 0

The Score functions can be used to construct the IFPR

in the same way as previously. As the result we receive the

following matrix:

û

ü

ü

ý

(0.50, 0.50) (0.55, 0.22) (0.36, 0.24) (0.51, 0.25) (0.65, 0.06)
(0.22, 0.55) (0.50, 0.50) (0.16, 0.41) (0.44, 0.43) (0.64, 0.28)
(0.24, 0.36) (0.16, 0.41) (0.50, 0.50) (0.47, 0.29) (0.66, 0.20)
(0.25, 0.51) (0.43, 0.44) (0.29, 0.47) (0.50, 0.50) (0.56, 0.25)
(0.06, 0.65) (0.28, 0.64) (0.20, 0.66) (0.25, 0.56) (0.50, 0.50)

þ

ÿ

ÿ

ø

And the optimal coefficients for this matrix are:

(w1, w2, w3, w4, w5) = (0.327, 0.227, 0.322, 0.124, 0)

We can see that in this case the feature a3 become almost

important as the feature a1, and the redundant feature a5 is

still located at the end of the ranking.

TABLE VII: The Score functions for features from T2.

(ui, uj) Scorea1
Scorea2

Scorea3
Scorea4

Scorea5

(3,1) 0.5 0 0 0 0.5
(3,2) 0.278 0.028 0.139 0.278 0.278
(3,6) 0.2 0.2 0.2 0.2 0.2
(3,8) 0.345 0.310 0 0 0.345
(4,1) 0.25 0.25 0.25 0 0.25
(4,2) 0.208 0.167 0.208 0.208 0.208
(4,6) 0 0.130 0 0.435 0.435
(4,8) 0.33 0 0.33 0 0.33
(5,1) 0.33 0.33 0.33 0 0
(5,2) 0.25 0.25 0.25 0.25 0
(5,6) 0 0.091 0 0.901 0
(5,8) 0.455 0.091 0.455 0 0
(7,1) 0.25 0.25 0.25 0.25 0
(7,2) 0.33 0.33 0.33 0 0
(7,6) 0.714 0 0.286 0 0
(7,8) 0.278 0.167 0.278 0.278 0
(9,1) 0 0.5 0.5 0 0
(9,2) 0 0.310 0.345 0.345 0
(9,6) 0.455 0.091 0 0.455 0
(9,8) 0 0.091 0.901 0 0
(10,1) 0.385 0.308 0.308 0 0
(10,2) 0.303 0.091 0.303 0.303 0
(10,6) 0 0.381 0.143 0.476 0
(10,8) 0.909 0.091 0 0 0

C. Simplified ranking method:

The presented above method for feature ranking has quite

high computational complexity. The time complexity of this

proposition is O((n ·m)2), where n is the number of objects

and m is the number of attributes. In this Section we propose

a heuristic solution called sRAFAR (simplified Rough-fuzzy

Algorithm For Attribute Ranking), which is applicable for the

data sets with larger number of objects. The idea is to generate

a simplified IFPR instead of the full method presented in

Section IV.A. In particular, for any continuous feature ak * A,

we discretize its domain into k equal length intervals and use

the binary discernibility relation for the discretized feature.

Ak = {(ui, uj) * U+ × U2 : ui, uj are discerned by ak}

= {(ui, uj) * U+ × U2 : Pak
(ui, uj) = 1}

Then the simplified IFPR: Ps = ((µ2
kl, ν

2
kl))m×m

can be

defined by

µ2
kl = P (Ak 2Al | Ak *Al) = 12

|Al|

|Ak *Al|

ν2kl = P (Al 2Ak | Ak *Al) = 12
|Ak|

|Ak *Al|

Thus, µ2
kl is the probability that a pair of objects is discernible

ak but not discernible by al, and ν2kl is the probability that a

pair of objects is discernible al but not discernible by ak. We

have the following theorem:

Theorem 1. For any pair of features ak, al * A, the values

|Ak *Al|, |Ak|, |Al| can be calculated in time O(n), where n

is the number of objects. Therefore, the heuristic IFPR can be

calculated in O(n ·m2), where m is the number of features.

The proof of this fact is similar to the properties of the

MD-heuristic in [24].
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V. EXPERIMENT RESULTS

In this section, we present the application of our feature

ranking methods for the WDBC data set [25]. The WDBC

dataset contains features extracted from digitized image of

a fine needle aspirate of a breast mass which describes the

characteristics of the cell nuclei in the image. This dataset

consists of 569 instances with 30 attributes and two decision

classes. The features are encoded by V 1, V 2, · · · , V 30. We

will compare the quality of feature ranking lists generated by:

" RAFAR: Rough-fuzzy Algorithm For Attribute Ranking;

" sRAFAR: simplified version of RAFAR;

" Random Forest Feature Importance; 1

" No ranking, i.e. using the original feature list: V1, V2,

..., V30.

Fig. 2: The accuracy of kNN classifier for different values of

k. The highest accuracy is achieved for k = 9.

Fig. 3: Comparison of ranking lists with respect to kNN

classifier with k = 9.

In order to analyze the quality of a ranking list of features

(attributes), we select a classifier (classification algorithm) and

apply it to the sub-dataset restricted to the first m features

1https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_
importance_multicollinear.html

for m = 1, 2, · · · , 30. For a fixed value of m we evaluate

the accuracy of the classifier using 5-fold-cross-validation

technique.

The first classifier in our experiment is kNN. Figure 2

presents the accuracy of kNN on the whole data set for

different values of the parameter k. We can see that the optimal

value of k for kNN classifier equals 9. Therefore we will select

kNN with k = 9 in the first experiment.

In Fig. 3 the accuracy of kNN with k = 9 using first m

features of the ranking list for m = 1, 2, · · · , 30 is presented.

One can see that the accuracy of ranking lists generated by

both of our algorithms outperform the other ranking lists.

In Fig. 4 the accuracy comparison of decision tree classifier

using first features in the ranking lists is presented. We can

see that in this case, the ranking list generated by the RAFAR

algorithm seems to be best, especially when we want to use

up to 17 features.

Fig. 4: Comparison of ranking lists with respect to decision

tree.

Fig. 5: Comparison of ranking lists with respect to SVM

classifier.

Figures 5 present the accuracy comparison for SVM clas-

sifier. In this case we notice the fact that the ranking list

generated by the sRAFAR algorithm is the best one.

286 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we proposed a new method for feature ranking.

We constructed the Intuitionistic Fuzzy Preference Relation

(IFPR) for the set of features and searched for the optimal fea-

ture ranking that is consistent with the IFPR. All experiments

are showing that the proposed rough-fuzzy algorithms for at-

tribute ranking outperform the state of the art method (Random

Forest Feature Ranking is the main feature ranking method in

the Python scikit-learn library https://scikit-learn.org/stable/).

We can conclude that the proposed methods are promising and

should be thoroughly investigated.

One of the future research direction is multi-criteria feature

ranking instead of a single preference relation defined on

the based of discernibility power of the features as t has

been proposed in RAFAR. The general framework is shown

in Fig 1. This idea is motivated by the real life decision

making process, where a decision is usually made by a

group of experts, Ek(k = 1, 2, · · · ,m) with different weights

λ = (λ1, · · · , λm), where
�m

k=1 λk = 1 and λk g 0 for

k = 1, ..., k. In such cases, the individual preference relations

of the experts are aggregated to derive a collective preference

relation. Let B(k) = ((µ
(k)
ij , ν

(k)
ij ))n×n be the intuitionistic

fuzzy preference relation of the expert Ek, the aggregated

preference relation B is defined by B =
�m

k=1 λk · B(k).

In other words B = ((µij , νij))n×n, where

µij =
m
"

k=1

λkµ
(k)
ij ; νij =

m
"

k=1

λkν
(k)
ij ;

Theorem 2. If B(k) are intuitionistic fuzzy preference relation

of the expert Ek for k = 1, ...,m and the weight vector λ =
(λ1, · · · , λm) is a probabilistics vector, i.e.

�m

k=1 λk = 1 and

λk g 0 for k = 1, ..., k, then B is also an intuitionistic fuzzy

preference relation.

In such situations, we can apply both ranking methods (i.e.

either the models (A1), and (A2) for the additive consistency

requirement or the models (M1) and (M2) for the multiplica-

tive consistency requirement) for the collective intuitionistic

fuzzy preference relation B.

Following this idea, in case of feature ranking problem, we

can create more IFPR with different aspects and include them

into the calculation process. For example, another preference

relation could be calculate on the base of the class homogene-

ity of features.

We also plan to verify the accuracy of RAFAR and sRAFAR

for bigger and more challenging data sets.
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