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Abstract—Finding an optimal machine learning model that
can be applied to a business problem is a complex challenge
that needs to provide a balance between multiple requirements,
including a high predictive performance of the model, continuous
learning and deployment, and explainability of the predictions.
The topic of the FedCSIS 2022 Challenge: ‘Predicting the Costs
of Forwarding Contracts’ is related to the challenges logistics and
transportation companies are facing. To tackle these challenges,
we established an entire Machine Learning framework which
includes domain-specific feature engineering and enrichment,
generic feature transformation and extraction, model hyper-
parameter tuning, and creating ensembles of traditional and
deep learning models. Our contributions additionally include an
analysis of the types of models which are suitable for the case
of predicting a multi-modal continuous target variable, as well
as an explainable analysis of the features which have the largest
impact on predicting the value of these costs. We further show
that ensembles created by combining multiple different models
trained with different algorithms can improve the performance
on unseen data. In this particular dataset, the experiments
showed that such a combination improves the score by 3%
compared to the best performing individual model.

Index Terms—Costs of Forwarding Contract, explainability,
prediction ensembles, Diversified Ensemble Learning

I. INTRODUCTION

TO BE competitive in the market, companies need to be

able to utilize all available data and perform analytics to

identify hidden patterns [1]. This can allow them to improve

their processes, better understand their customers, and make

predictions (e.g. churn prediction, service-outage prediction,

fraud detection, etc.). To achieve such goals, companies are

facing a variety of challenges, ranging from data integration

from a variety of sources [1] and finding suitable machine

learning models that are both performant but also practical

and explainable [2], to maintaining the corresponding infras-

tructure. To perform such analytical data processing and ma-

chine learning on a large scale, companies require a complex

computing infrastructure and methods that will minimize their

*These authors contributed equally to this work.

total cost of ownership [3], and yet scale the computation to

multiple nodes [4].

In this paper, we focus on the problem of finding an

optimal machine learning algorithm that can be easily applied

in a real-life business domain, meaning it should achieve

high predictive performance, continuous learning and deploy-

ment, and explainability of the models and their predictions.

The topic of the FedCSIS 2022 Challenge, hosted on the

KnowledgePit portal is ‘Predicting the Costs of Forwarding

Contracts’ [5]. The competition addresses the challenges of

transportation, shipping, and logistics companies related to

their digital transformation. Particularly, the benefits of the

research boosted by this competition for such companies can

be multi-fold:

• Identify reasons and circumstances that lead to increased

transportation costs.

• Improve companies’ planning to lower the costs, and

generally, improve their investment strategy.

• Help companies in selecting contracts that maximize

their profits by predicting the forwarding (i.e., delivery)

contract cost.

Similar real-world challenges were addressed at previous

competitions on the KnowledgePit platform, such as predicting

escalations in customer support [6], network device workload

prediction [7], suspicious network event recognition [8], and

predicting victories in video games [9], to name a few. These

papers also demonstrate how predictions from individual solu-

tions could be integrated into diversified ensembles to create

more powerful and more robust models.

For the case study on which we focus in this paper, we

choose to use the XGBoost model with a grid search with 5-

fold cross-validation [10], due to its extensive use in retail

sale predictions [11]. We also use Random Forest models

with grid search, as well as deep learning models that are

commonly used in demand forecasting in multi-channel retail

[12]. Finally, the Linear Regression models are one of the most

commonly used simple models for price prediction in industry
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settings [13]. All hyper-parameter tuning is done via exhaus-

tively searching a specified subset of the hyper-parameter

space of the given model. The validation is performed using

a 5-fold cross-validation, which balances validation speed and

metric accuracy of the test data.

The rest of the paper is structured as follows. Section II

reviews the most important related works. Section III describes

the experimental setup and multiple validation procedures

we used to evaluate each model we have developed in this

study. Section IV describes the preprocessing of the data,

including data transformations and aggregations. Subsection

IV-A contains information on the preprocessing implemented

over the main table training and testing data, and subsection

IV-B includes the preprocessing information for the routes

table training and testing data. The section V describes the

implemented feature selection methods. The experiments, in-

cluding model hyper-parameter tuning, training, and evaluation

techniques are described in section VI, along with an overview

of the final scores of the implemented models. The paper

concludes with section VIII where we give a brief overview

of the entire Machine Learning workflow, limitations to the

study, and opportunities for further work and improvement of

the methods.

II. LITERATURE REVIEW

Even though similar challenges have been extensively stud-

ied in other industries, this problem is fairly new in the

logistics sector. Authors of [14] analyze the shipping cost

differences between various carriers, and attempt to identify

opportunities for reducing transportation costs.

Similarly, in [15], authors utilize neural networks to forecast

shipping freight rates and compare them with traditional time

series analysis models. The key objective of their work is

to improve the forecasting accuracy of traditional time series

analysis. In relation to the competition task, this article also

highlights the importance of the information contained in for-

warding freight agreements in relation to predictive accuracy.

Another interesting approach is presented in [16], where

the impact of the demand and cargo capacity on the shipping

price is identified. Forecasting of the long-term cost of logistics

contracts is particularly important in long-term agreements

with upfront-defined prices, such as in various types of tenders

and auctions. On one hand, the bids should be attractive so

that the contract can be won, while still being profitable for

the logistic company. This challenge was researched in [17],

which utilized historic data to train the models.

On a related topic, Men et al. [18] use an ensemble of

mixture density neural networks for the purpose of short-

term wind speed and power forecasting. They show that

this methodology works well for multi-step ahead prediction.

Additionally, [19] illustrates the use-case of multi-observation

and multi-dimensional data cleaning methods for applying

machine learning algorithms. In this study [19], the authors

use transactions from the Lending club data set for training

tree-based models to predict peer-to-peer (P2P) loan default

and observe that the LightGBM algorithm, using multiple

observational data, has the best performance. In many cases, it

has been shown that decision tree-based methods significantly

outperform linear models for predicting complex response

variables, such as the example of predicting accrual expenses

in a balance sheet by utilizing the unused vacation time of

employees [20].

The scientific community has placed a massive effort into

studying individual algorithms (e.g. ensemble algorithms, var-

ious deep learning architectures, etc.). Additionally, some

studies also focus on finding ways to utilize the diverse

algorithms and integrate their predictions. This process is often

referred to as diversified ensemble learning and aims to find

the best classification algorithms (out of many heterogeneous

classification algorithms) and an optimal method to combine

them [2]. Note that the individual algorithms used in a diversi-

fied ensemble could be ensembles on their own (e.g., XGBoost

[21] or Random Forest [22]), so the term diversified ensemble

learning refers to another layer of integration. Some methods

train another classifier whose inputs are the predictions of

the individual classifiers [23] or use other ways of voting.

In this paper, algorithms perform weighted voting based on

empirically identified weights.

III. VALIDATION PROCEDURE

As in all practical machine learning problems, the ex-

perimental setup concerning the training/validation/test split

should resemble the natural chronological and logical process

as closely as possible, so that the models built are valid

and robust over time. In that regard, we attempted to split

the training dataset into two subsets, one for training and

one for validation, in a way that we thought would most

resemble the natural setting in which the data was collected.

Considering that this is a very practical problem coming from

the industry, any results of the transformation and validation

methods should be applicable in a production setting.

That being said, we considered the id payer column, the

client identifier, as special because it gave us the ability to

use it primarily for splitting the original training set into

our training and validation subsets. For this purpose, we

first analyzed the frequency of rows in the main table per

id payer, dubbing it number of contracts. We noticed the

huge discrepancy in the frequency of contracts, ranging from

just a few to upwards of thousands. Therefore, we tried several

approaches in how we considered this fact:

• Split by alternating frequency of records per

id payer. In this approach, we ordered the id payer
records by the number of contracts, and we assigned

them to our training or validation split in alternating

order. The idea was that roughly 50% of the records

will be our training set, and the other 50% will be the

validation set. One additional benefit of this approach

was that it made sure that the id payer column would

not have an effect on the prediction. With this approach

we are very conservative to overfitting, trying to train

the models on one subset of the data, and applying the

models to a completely new set of data. Indeed, our
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first submissions showed that our own validation results

were considerably worse than the leaderboard results, but

were still consistent when comparing different algorithms

or feature subsets (the better models per our internal

evaluation were also better on the leaderboard).

• Time-sensitive split. We also tested splitting the data in

such a way that the older contracts (records with an earlier

start date) were in the training set, while newer records

were in the validation set. This approach mitigates the

previous conservativeness, by allowing the same clients to

be in the training and validation set, while also allowing

some new clients to appear in the validation set.

After the initial testing of the previous approaches, we

noticed that the hyper-parameter tuning procedures performed

on our hold-out training set (a subset of the competition

training set) were not fully applicable when we used the whole

training dataset provided in the competition. Namely we used

our hold-out training set and the remaining of the training set

to learn the hyper-parameters. Then, we compared two models

trained with the same hyper-parameters – one using the hold-

out training set, and another trained on the full training dataset.

The former performed significantly better on the leaderboard

result, even though it was trained on smaller data set. With this

counter-intuitive finding that contradicts the common principle

that more training data is better, and having a very limited

time for this competition, we decided to use 5-fold cross-

validation in the remaining experiments so that we can use

the full training dataset for making the final test predictions.

Despite that, we strongly believe that further experiments in

the validation procedure are needed to properly tackle the

problem.

IV. DATA PREPROCESSING

After the initial data exploration phase, we decided to

primarily focus on the main table and extract whichever

knowledge we can from it, before proceeding with utilizing

the detailed table of expected routes.

A. Main Table

Firstly, the prim train line and prim ferry line fea-

tures were not used, due to the high missing data ratio

(between 80% and 90% missing from the total number of

observations). Additionally, these columns had unstandardized

data (e.g., temperature ranges or temperature and unit com-

bined strings in the same column as a descriptive field, etc.)

For the remaining columns which had missing data, we applied

mean (for continuous columns) or median filling (for nominal

data).

The transformations done on the Main Table were split into

two major types:

• One-hot encoding of categorical (nominal) data. We con-

sidered utilizing the Weight of Evidence [24] approach,

but considering that the categorical features had a rel-

atively small number of different values, the one-hot

encoding technique was considered sufficient.

• Combinations of two or more features to create a new

meaningful feature. Such features were a result of cal-

culations based on the columns that contain date or

timestamp information.

1) Nominal to numeric features with one-hot encoding: The

one-hot encoding was done to maximize data balance while

minimizing the loss of information. Binary features or features

with a few different values were transformed with classic one-

hot encoding. The features with over 15 values were split into

3 major categories: low-frequency categories (those that had

appeared under 1000 times in the data set), high-frequency

categories (those that had appeared over 1000 times in the

data set), and the highest frequency category of the feature

was separated as an individual category.

2) New domain-specific features based on other features:

a) Date-time related features: A combining of two or

more features was done for the route start numeric and

time taken minutes features. The route start numeric is

the difference in days between the minimum date found in

the dataset (i.e., 1/1/2016), and the start date of the specific

route. This was done by using the route start datetime
feature, and finding the number of days between it and

1/1/2016. Similarly, the time taken minutes is the time

the complete route is estimated to take in minutes. This is

calculated by finding the difference in minutes between the

route start datetime and route end datetime features.

b) Geo-spatial features: To enhance the geo-spatial in-

formation about the routes, we created a new feature, using the

Euclidean distance [25] between the route starting point
and route ending point. This calculation uses the latitude

and longitude values of the original points. Additionally, we

used the geo-spatial (Haversine) distance [26], given in the

competition dataset.

B. Routes table

The initial experiments were conducted using only data

from the Main Table. To further improve model performance

in later experiments, we enriched the dataset with aggregate

features extracted from the Routes Table.

The columns which had missing data were very sparse in the

general case. Moreover, the lack of entries seemed correlated

in most cases. For this reason, we decided to ignore such

columns and do not create features based on them, especially

considering the limited time we had for experiments. Still, we

believe that more sophisticated data imputation methods could

be explored in the future, or at least to prepare some bins

of values in cases when such data is available. The ignored

columns for this reason were: ferry line, train line, and

another 17 columns whose names started with vehicle or

id vehicle .

We have extracted the aggregate features by grouping the

dataset based on the column id contract. Before the aggre-

gation, one-hot encoding was performed on the step type
feature with the goal of extracting the number of steps of

each type that were taken in one route. The following features

were extracted for each route:
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• num steps with vehicle - the number of rows having

id vehicle equal to 1

• num steps with trailer - the number of rows having

id trailer equal to 1

• num steps - the maximum from the step column values

within one id contract partition

• num steps A - the number of steps of type A

• num steps B - the number of steps of type B

• num steps D - the number of steps of type D

• num steps F - the number of steps of type F

• num steps K - the number of steps of type K

• num steps N - the number of steps of type N

• num steps O - the number of steps of type O

• num steps P - the number of steps of type P

• num steps R - the number of steps of type R

• num steps S - the number of steps of type S

• num steps W - the number of steps of type W

• num steps Z - the number of steps of type Z

• num steps A - the number of steps of type A

• num steps empty - number of the steps in which the

if empty flag was equal to 1

• num external steps - the number of the steps in which

the flag external fleet was 1

• max loaded kg - the maximum kg load unload
• max unloaded kg - the minimum of kg load unload
• average load step - the mean of the feature

kg current
• max load step - the maximum of the feature

kg current
• min load step - the minimum of the feature

kg current
• num steps ferry - the number of steps in which the

flag ferry was equal to 1

• num steps train - the number of steps in which the

flag train was equal to 1

• total km train - the sum of train km for each step

• max time - the maximum of the feature

estimated time in each step

• min time - the minimum of the feature

estimated time in each step

• km per step - the mean value of the feature km in each

step

• km nonempty max - the maximum value of the feature

km nonempty
• km nonempty total - the sum of km nonempty in

each step

• average time per step minutes - the average of the

time difference in minutes for each step

V. FEATURE SELECTION METHODS

A. Manual Filtering of Correlated Features

This method was used for training the Linear Regression

models. Since the Maximum likelihood (MLE) estimations

[27] can be highly disturbed by correlated features, we decided

to manually remove features with correlations greater than 0.6

in absolute value. For this purpose, we calculated the Pearson

Correlation [28] between each pair of continuous variables in

the main dataset. We only calculated the correlations between

the continuous features from the main dataset in order to

exclude the features that have a high correlation from the

feature engineering step for training the linear regression

models.

The linear regression models were only trained using the un-

correlated features from the main dataset, plus higher degrees

of some of the most important features chosen by applying

domain knowledge. These features include the total kilometers,

the time taken and the maximum weight. This was done in

order to use the results of the most basic linear regression

models as an internal evaluation baseline for all the other

trained models.

Fig. 1. Main table extracted continuous features correlation. This figure
presents the Pearson Correlation coefficients calculated between each pair of
continuous features from the main table.

The experiments for the Linear Regression models were

conducted using only the Main Table data. The correlation map

of the continuous features is displayed in Figure 1. As it is

evident from the figure, a lot of features have high correlations

(positive and negative), so removing these dependencies was

one of the feature selection methods we implemented.

B. XGBoost Feature Importance

Another method for feature selection was using the built-in

feature importance metric from the Extreme Gradient Boosting

model (XGBoost) for regression. The process of optimizing

this model is detailed in section VI.

Figure 2 represents the feature importance obtained from

XGBoost on the full dataset (containing the main table and

routes table data). As we can see from the figure, only one
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feature, namely direction d (a binary feature stating whether

the direction is d or not) dominates the rest of the features in

the dataset.

Sometimes, these built-in feature importance estimates can

be inaccurate, as we suspected in this case. The reason

behind this is that XGBoost weights the features based on the

frequency of splitting, gain and coverage metrics. In the case

of categorical variables, the frequency of splitting can be very

low, since there are few possible split points, contributing to an

overall lower importance than the actual one for categorical

variables. Additionally the gain for continuous features can

be lower than that of the categorical ones since more split

points are possible to be made which in turn can rule out fewer

examples in each split compared to the categorical features.

In our case we are creating shallow individual decision trees

as weak learners. This means that we have fewer levels in each

tree, thus splitting by a binary (or categorical) feature, which is

correlated with the target variable, can have a higher value for

the gain compared to a continuous feature which is correlated

with the target variable because the continuous feature might

rule out fewer examples in each split. In turn, this can result in

inaccurate calculations of the overall feature importance when

using a mix of categorical and continuous features.

For this reason, we further try to extract the important fea-

tures using wrapper methods [29] over the XGBoost algorithm,

which is explained in the following subsection.

C. Boruta search with Shapley values

Boruta search [30] is a wrapper algorithm originally built

over the Random Forest classification model, but further

extended for all types of decision tree-based models and re-

gression. The method implements feature selection by creating

copies of the original features and shuffling them to remove

any correlation with the target variable. These features are

called shadow features. The algorithm then compares the

shadow features’ Z-scores [31] to the original features’ Z-

scores. Each feature that fails a two-sided test for significant

difference of importance with the shadow feature with max-

imum importance is removed from the dataset. The feature

importance, in this case, was measured using Shapley values

[32]. The Shapley values are often used as a method for

explainable AI (XAI) because they reveal the average marginal

contribution of a feature value across all possible coalitions.

The results of implementing this feature selection method

over the XGBoost algorithm are shown in Figure 3. A total of

48 features were identified as important, and their importance

compared to the shadow features is displayed in the figure.

From the figure, we can again see that the features

euclidean distance, direction d, and km total dominate in

their importance for the algorithm compared to all of the other

features in the dataset, which means that their impact is most

significant in determining the expenses variable’s values.

VI. RESULTS

A. Linear Regression

The Linear Regression models were first experimented with

by using the features in the main table and standardizing them

according to the needs of the algorithm. The ferry intervals,

train intervals, and id service type features were scaled

using the Min-Max scaling, while all other features that were

continuous were scaled using the Standard scaling [33]. The

root mean squared error (RMSE) of this primary model, using

the train/validation split for validation, was 0.6703. The RMSE

of this model on the leaderboard was 0.4598.

The same model was later modified to include only the

features that are not correlated, according to the OLS [34]

statistical test for feature relationships and the correlations

represented in Figure 1. Using only those features, the model

had a RMSE of 0.6942 on the validation data set, and a RMSE

of 0.5027 on the leaderboard.

Finally, the squared values of the features km total,
max weight and time taken minutes were added to the

model. This improved the model’s RMSE on the validation

set to 0.5713, and the RMSE of the test set to 0.4309. The

coefficients and their significance are shown in Figure 4.

We can see that all of the features have significant coeffi-

cients according to the reported p-value. In this case, the total

number of features for training the model was 15. Since linear

regression might not estimate the coefficients right in the case

of a large number of features, we decided to further go with

other non-linear models that better handle a large number of

features.

Moreover, we examined that the target variable is multi-

modal, meaning that any model which expects a Gaussian

distribution of the target variable will not be suited well

in this scenario. For this reason, we mainly focus on tree-

based models and ensembles. We further try Gaussian Mixture

distributions with neural networks, but due to the time limit,

we did not have the resources to optimize these types of

models.

B. Extreme Gradient Boost Regression

The first XGB Regressor model that was built only on

the main table dataset included alpha booster, eta, lambda,

and max depth as hyper-parameters in the tuning job, using

Bayesian Search [35] to find the optimal values. This resulted

in an average of 0.34 RMSE on the 5-fold cross-validation,

and a 0.1735 RMSE on the leaderboard.

The model was later improved with the addition of the

routes table, as well as the selected features from the Boruta

Shap search, which resulted in improving the RMSE of the

CV to approximately 0.18 and 0.15, respectively on the 5-

fold cross-validation and improving the test RMSE on the

leaderboard to 0.1649 and 0.1622 respectively.

C. Random Forest

The first Random Forest model was built on the trans-

formed features of the main table. Hyperparameter optimi-

sation was done on the max depth, min samples leaf and
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Fig. 2. XGBoost built-in feature importance for the merged dataset. This figure represents the feature importance of the main table and the routes table.
The horizontal axis represents the features, while the vertical axis represents their corresponding impact on the prediction of the target variable. Only features
having an importance greater than 10

−5 are shown.

Fig. 3. Extracted features using Boruta search with Shapley values as an evaluation metric. The green rectangles represent the original features, while
the blue rectangles represent the min, max, mean, and median shadow features. The vertical axis represents the Z-score for each feature.

max features hyper-parameters. All Random Forest models

in this competition had n estimators set to 200. This resulted

in a RMSE of 0.0476 on the 5-fold cross-validation, and a

RMSE of 0.1726 on the test data.

The model was later improved by using a deeper grid

search on all features from the merged main and route tables.

This time, max depth, max features, min samples leaf
and min samples split were optimized using 5-fold cross-

validation, which resulted in the validation RMSE being

0.0234. The test results had a RMSE of 0.1625.

Both Random Forest models were clearly over-fitted, how-

ever, we tackled that issue with the different Ensembles of

models later on.

D. Deep Learning Models

A few feed-forward neural networks were implemented us-

ing different configurations. The neural networks were trained

on the full dataset. The networks only included dense layers

and the main activation function used in the hidden layers

was ReLU [36]. We experimented with a few regularization
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Fig. 4. Coefficients and significance of manually selected features for

the linear regression algorithms including squared features. This figure
represents the coefficients of the variables included in the linear regression
estimation, along with confidence intervals and p-values. All features have
significant coefficients.

techniques including dropout, batch normalization, and kernel

regularization with L2 [37].

From the conducted experiments, we concluded that adding

regularization caused the model to underfit the training data.

Moreover, batch normalization caused a significant perfor-

mance degradation in this case.

For the output layer, we tried two activation functions,

namely softplus [38] and linear. In this case, the same net-

work configuration had better performance using the linear

activation instead of softplus.

The model which obtained the best results had the following

configuration:

• Dense(128, activation=relu)

• Dense(64, activation=relu)

• Dense(64, activation=relu)

• Dense(1, activation=linear)

The results of this model were RMSE of 0.1683 on the

random validation split of 20% training data and RMSE of

0.1775 on the leaderboard, respectively.

Adding more layers results in better model performance,

however, it also causes the model to overfit the data in the

early stages of training.

Since the neural networks approximate a Gaussian-like

distribution, they are not quite suitable for the multimodal

target in this case. We additionally tried Mixture Distribution

networks but did not have the resources to optimize these

models. A basic model with the following configuration of

two dense layers with 100 neurons and ReLU activation each

for approximating the parameters of the distribution, resulted

in a RMSE of 0.1868 on the leaderboard.

E. Diversified Ensemble Models

Ensemble methods [39] were used in order to compensate

for models which might be overfitted or underfitted in the data,

and further use the errors the models make in a way to further

tune the final predictions.

One of the ensemble methods used was model stacking. For

this type of ensemble, we used the best performing XGBoost

model using the features extracted with the Boruta search

method and additionally re-trained a Bagging model of 100

linear regressions with the same features.

The outputs from these models were then fed to another

linear regression model, which learned the weights to assign

to each individual model, thus creating a weighted ensemble.

This approach resulted in a 0.1631 RMSE on the leaderboard

and a RMSE of approximately 0.06 on the validation data.

This means that the stack resulted in obvious overfitting.

We further experimented with the same approach using a

decision tree in the last layer instead of a Linear regression,

for learning the weights in the ensemble, however, this resulted

in a more overfit model, with a RMSE of 0.1805 on the

leaderboard.

Since this approach resulted in fast overfitting, we decided

to abandon it.

The other method of ensembling the models that we at-

tempted was a simple weighted Ensemble. Using a combina-

tion of the Linear Regression models, the XGBoost models,

the Random Forest models, and the feed-forward neural net-

work models, we attempted to manually adjust the weights that

these models had on the final outcome. The best Ensemble was

found to be an equal weights Ensemble between the highest-

scoring Random Forest model, and highest scoring XGBoost

model, which had a validation RMSE of 0.1318, and a test

RMSE of 0.1586.

We then tried another ensemble, which used the under-

fitted feed-forward neural network with a weight of 0.2, the

highest-scoring XGBoost model with a weight of 0.4, and

the highest-scoring Random Forest model with a weight of

0.4, all trained on the features chosen with the Boruta search

method. We expected that the feed-forward neural network

would generally make mistakes in the opposite direction of the

Random Forest and XGBoost models, and therefore contribute

to the reduction of the average mistake. The weight of the

feed-forward neural network model is low, however, due to

its larger average errors. This resulted in an Ensemble with a

validation RMSE of 0.1856, and a test RMSE of 0.1567, our

best score in this competition.

F. Model evaluation

In this subsection, we present the results of the individual

models which were optimized and chosen for creating ensem-

bles in the final stage of experimentation. Table I shows the
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models, their training configurations, the features they used,

and their validation and leaderboard RMSE scores.

The final 3 models which were chosen for the competition

include:

• Ensemble using the best performing feed-forward neural

network, Random Forest, and XGBoost models

• Ensemble using only the best performing Random Forest

and XGBoost models (excluding models which expect

Gaussian distributions of the target variable)

• The best performing Random Forest which uses the

features chosen with the Boruta search method to avoid

over-smoothing or overfitting the ensemble methods

VII. DISCUSSION AND FUTURE WORK

The top-performing models were the XGBoost and Random

Forest models, strongly outperforming the Linear Regression

models and slightly outperforming the feed-forward neural

network models. This was expected, due to the multi-modal

nature of the target variable, which is hard to estimate using

models that expect a Gaussian distribution of the target.

Moreover, the ensembles of diverse models performed the

best out of all the predictive options. They used weights that

were calculated using the inverse of the RMSE scores of

the cross-validation of the models they were composed of.

The singular Linear Regression models were not used in the

Ensembles due to their massive underperformance compared

to the other three model types. However, they were used with

the bagging regressors, but this approach also underperformed

compared to the non-linear approaches.

Hyper-parameter optimization on all models was performed

using the grid search algorithm, with 5-fold cross-validation,

and RMSE as a metric to evaluate performance. Grid search

was used because it is one of the most thorough hyper-

parameter tuning algorithms. Given more time, we would have

expanded the search space of the grid search of all models.

According to the Boruta search for feature importance, the

euclidean distance, direction id, and km total columns

were considered the most important for determining the

expenses value, with starting and ending locations of low-

frequency destinations being some of the least important

features. This further implies that the distance of the route

is the most important deciding factor in the final expenses of

forwarding contracts.

The main challenge in working with this dataset was the

limited information we had on the meaning of some of the

given features. With better information on the features, the data

engineering process, as well as the model building process,

would have been more specific and exhaustive.

While experimenting with the aforementioned validation

procedures in section III, we noticed that some additional

features could be extracted from the id payer column, consid-

ering that it, in its original form, is not applicable as a feature.

Such derived features could be:

• num previous contracts - the number of previous

contracts (before this contract date) for the same client

(id payer)

• average cost previous contracts - the average cost of

previous contracts (before this contract date) for the same

client (id payer)

• average duration previous contracts - the average

duration of previous contracts (before this contract date)

for the same client (id payer)

• average length previous contracts - the average

length of previous contracts (before this contract date)

for the same client (id payer)

• ratio length previous contracts - the ratio of current

length divided by the average of previous contracts (be-

fore this contract date) for the same client

• cost most similar contract - the cost of the previous

contract with the most similar length, adjusted by the

difference in exchange ratios

Considering that computation of such features should be

properly handled and should be closely integrated with the

training-validation split process, we did not utilize them.

Despite that, we believe that there is merit in further experi-

menting with them.

Although it was considered, fuel prices were ultimately not

used in the prediction of the target variable. This was due to

the uncertainty of the availability of current fuel prices, making

using them a potential data leak.

Finally, the usage of external public datasets could have

vastly improved the predictions of all models. Unfortunately,

due to time restrictions, we were unable to properly search

for, test, and use any relevant public dataset.

VIII. CONCLUSION

The original goal of the challenge was to use preprocess-

ing methodologies, Machine Learning algorithms and feature

selection methods, in order to most accurately predict the

costs related to the execution of forwarding contracts in a

transporting company. Using feature engineering techniques,

as well as a weighted diversified ensemble of XGBoost,

Random Forest, and deep learning models (a feed-forward

neural network), we were able to predict the expenses of the

forwarding contracts with a RMSE of 0.1573.

In this paper, all missing data was imputed using mean

filling and median filling. However, in the future, more sophis-

ticated methods for data imputation can be utilized, such as

Multiple Imputation by Chained Equations [40] or Regression

Imputation [41].

In a broader context, we can conclude that in real-life

business problems, domain knowledge and information are es-

sential. With manual feature extraction that reflects the domain

knowledge, valuable features could be created that improve the

model performance. Likewise, without the domain knowledge,

the model validation from a practicality and explainability

perspective could be limited.
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