
Component Interface Standardization in Robotic

Systems

1stAnton Hristozov

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

ahristoz@purdue.edu

2nd Dr. Eric Matson

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

ematson@purdue.edu

3rd Dr. Eric Dietz

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

jedietz@purdue.edu

4th Dr. Marcus Rogers

Polytechnic Institute

Purdue University

West Lafayette, Indiana, USA

rogersmk@purdue.edu

Abstract—Components are heavily used in software systems,
including robotic systems. The growth in sophistication and
diversity of new capabilities for robotic systems presents new
challenges to their architectures. Their complexity is growing
exponentially with the advent of AI, smart sensors, and the
complex tasks they have to accomplish. Such complexity requires
a more flexible approach to creating, using, and interoperability
of software components. The issue is exacerbated because robotic
systems increasingly rely on third-party components for specific
functions. In order to achieve this kind of interoperability,
including dynamic component replacement, we need a way
to standardize their interfaces. We desperately need a formal
approach for specifying what an interface of a robotic software
component should contain. This study analyzes the issue and
presents a universal and generic approach to standardizing
component interfaces for robotic systems. Our approach is
inspired and influenced by well-established robotic architectures
such as ROS, PX4, and Ardupilot. The study also applies to other
software systems with similar characteristics to robotic systems.
We consider using JSON or Domain-Specific Languages (DSL)
development with tools such as Antlr or Xtext and automatic
code and configuration files generation for frameworks such as
ROS and PX4. A case study with ROS2 has been done as a proof
of concept for the proposed methodology.

Index Terms—CPS, robots, software architecture, interface,
ROS, autopilot

I. INTRODUCTION

C
OMPONENT interfaces have functional and non-

functional parts [1]. Functional characteristics are the

ones that usually receive the most attention and are considered

most important. These characteristics cannot be completely

independent of the overall architecture [2], and in this work,

we concentrate on systems that use popular architectural

paradigms such as ROS [3]. Having interfaces in explicit

form is very important for analyzing and achieving component

replacement and maintenance during run-time for maintenance

or other objectives such as adaptation. They are important

during development, too, when software components are given

to third parties or bought from other organizations. Many

systems do not have their interfaces presented in an explicit

form in one central place. Their interfaces are dispersed in

text configuration files and source code and are implicit rather

than explicit, making their understanding and analysis more

difficult. This is the case for systems we studied, such as ROS,

PX4, and Ardupilot, as typical representative systems from the

robotic field.

A. The need for standardization of robotic interfaces

Robotic systems have had typically different forms of

custom implementations until recently. This has been steadily

changing in the last decade, and robotic architectures are

becoming more consistent and based on existing frameworks.

Even when they are based on architectures such as Autosar [4]

though they still do not offer a consistent model for provid-

ing interfaces for components that can become interoperable

within the architecture or even between different architectures.

This creates a need for a universal and consistent proposal

for interface specification that can be complete and expressive

and bring us closer to better interoperability among vendors

of software components. This can also help us reach the

possibility of better component reuse and system evolution.

In this paper, a general representation of component inter-

faces is proposed. The main contribution is defining a universal

interface specification for software components applicable to

components used in robotic systems. Another contribution

is using a DSL to represent such interfaces and compare

them and generate code and configuration files for different

architectures. The applicability of the idea is demonstrated

through a case study in ROS.

The following two sections talk about possible structural

representations of interfaces through JSON and a DSL. The

component interface standardization section proposes a uni-

versal interface representation and its constituent parts. The

dynamic component management section defines the condi-

tions for component interfaces to be compatible. An example

is shown based on an extension of the Thrift IDL grammar.

Furthermore, a case study with ROS illustrates the approach

for a modern robotics framework.

B. Publish-subscribe robotic systems

Today, many robotic systems use an asynchronous archi-

tecture for message delivery based on the publish-subscribe

paradigm. An example is PX4 [5] and ROS [6]. These systems

are easier to use and provide many benefits for quickly adding

new interfaces and components through a loosely coupled

architecture. We believe that the interface standardization we

Communication Papers of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 305–312

DOI: 10.15439/2022F7

ISSN 2300-5963 ACSIS, Vol. 32

©2022, PTI 305

are presenting in this work will be used in a system that

uses either a publish-subscribe broker or a similar message

delivery mechanism. This decision is also based on the fact

that publish-subscribe is common in other autopilot software

systems, for example, Ardupilot. The central capability in this

paradigm is that we can have software components publish

topics or subscribe to topics making an arbitrary graph of

connections between the components in the architecture. In

this respect, we have a many-to-many relationship between

components which can also be supported dynamically by

components subscribing to messages at different times or

advertising messages that they will publish later. This enables

the possibility of adding new components at run-time and

removing obsolete components, given that we follow specific

rules.

C. ROS interfaces

We will focus our ROS investigations on ROS2, which is

the latest version of the framework. ROS2 has been improved

compared to ROS1 and is holding new promise for the future

of robotics [3]. The improvements in how the system is

configured and its real-time characteristics will allow new

classes of applications to be possible. In addition to messages

and services, ROS2 includes the concept of actions that are

particularly applicable to robots in addition to messages and

services. Therefore the three most essential features that ROS

supports are messages, services, and actions. They are strongly

related to how an interface can be described and used in our

interface formulation in the next section. These interfaces can

be used to achieve dynamic component exchange during run-

time as part of the pursuit of fault-tolerant systems and systems

that can adapt to changing conditions [7].

II. COMPONENT INTERFACE STANDARDIZATION

It is necessary to create a framework of components that

can be interchangeable and compatible in a particular ar-

chitecture or even between architectures. We aim to derive

a comprehensive interface standardization that describes the

component’s interfaces. This standardization does not deal

with the timing and memory characteristics of the component,

which is essential but will not be addressed in this work.

Fig. 1. Interface Standardization Diagram

Figure 1 depicts how a typical component’s interface in a

robotic system should look. The diagnostics portion is shown

as a separate box as it can be a separate thread of execution

and possess an interface ∆ dedicated to diagnostics. The

configuration parameters P and the component’s state Σ use

nonvolatile storage. The incoming messages M and outgoing

N and service S and actions A are how the component

communicates with other components in the system.

An interface I is a heterogeneous set formed by the union of

several sets. The set I describes all common characteristics for

robotic systems and even other software systems’ components.

Our generalization of an interface for any component is

defined by equation 1.

I = M ∪N ∪ S ∪A ∪ P ∪ Σ ∪∆ (1)

, where I is the interface of a component,

M is the set of subscribed messages

N is the set of published messages

S is the set of services

A is the set of actions

P is the set of configuration parameters

Σ is the set of state variables

∆ is the set of diagnostics services

A. Messages

The publish-subscribe paradigm allows many components to

subscribe to any published messages. We consider two main

types of messages in our analysis in a publish-subscribe model

[8] or in a general case of a system using messaging. In our

equation, the first set denoted as M is the set of messages

the component subscribes to. The other set of messages is

the messages N that the component publishes for other com-

ponents to receive. We assume that the relationship is many

to many with regards to both sets, and any component can

subscribe to any messages and publish any messages that any

other component can receive [5]. The dispatching of messages

is typically handled by a message broker component that

306 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

performs the necessary bookkeeping and queuing to ensure

delivery.

B. Services

Services are based on client-server interactions of one

component making a service call and another component

servicing this call. The client component blocks until the

service finishes executing. Then the result is returned. Services

can be characterized by parameters sent and results returned

to the caller. The timing of services will not be part of the

interface specification in this work. We concentrate on the

parameters and results and assume that the service always

completes with a result returned to the caller in a finite time.

C. Actions

Actions are particularly useful for some robotic operations

and are supported in ROS2 [9]. This includes operations that

are started, monitored, and getting a notification when the

goal is reached. This allows the requester of the action to

do something else while the action continues while receiving

notifications asynchronously from the executor of the action.

They are using messages and services to accomplish the action

and thus provide a more complicated interaction and are

suitable for tasks that need to continually send feedback to

the client of the action. They have a goal defined as a service,

feedback messages periodically sent from the action server to

the client, and a result defined as another service. This ROS2

model is general enough for defining actions that can be used

in many practical scenarios.

D. Configuration Parameters

The set of configuration parameters is used to configure a

component at startup during the initialization process. They

provide initial values for variables and constants used in the

component during its lifetime. Typically these values come

from a configuration file or are embedded in the source code.

The parameters determine the initial state of the component

and its operation. That is why they need to be part of the full

interface description. A universal approach to configuration

parameters is to keep them out of the source code in the form

of a configuration file, preferably in a structured fashion. A

possible structured format can be XML, JSON, or even some

custom configuration language format.

E. State

Almost every component has some state that continually

changes as the component operates as part of the system.

Describing the component’s state allows us to build tools

that can save and recover it when needed. This is especially

important when new components replace old ones while the

system works. The state needs to be captured in a language-

neutral form since different components may have different

implementations using different technologies and languages.

State variables with complex data types can be saved and re-

trieved using serialization and deserialization techniques. This

makes it possible to restore precisely the state of every variable

in a component, independently of how complex its type is.

The description of a component’s state at a particular point

makes it transparent and can lead to new possibilities where

a new component can pick up work that an old component

has started without interrupting the flow of operations in a

complex system. This can be a considerable advantage in

architectures where the system cannot be halted and needs

to be incrementally upgraded.

F. Diagnostics and Control

For a component to be useful in software architecture, it

is good to have a self-diagnostics section with a well-defined

interface. It makes sense to have the diagnostics work in an

independent thread of execution so that it does not interfere

with the main execution thread of the component. This way,

other components can send queries and commands to a running

component without affecting its main thread of execution.

Having a separate thread for diagnostics makes it practical

to have diagnostics services that can block in the requesting

client and wait for a response from the diagnostics thread. This

part of the interface can also be used to control a component’s

state, for example, running, ready, and others. Having this

ability can allow the user to stop a component, save its state,

load another component in its place and switch them. This

adds additional non-functional abilities that can lead to many

exciting scenarios.

The diagnostics and control interface should allow for

control of the internal state machine of a component. If a

component is in the middle of an operation that cannot be

interrupted, a request to this interface can request a pause

of the activities when the current operation is done. This

way, we can have the notion of work transactions that cannot

be interrupted and can have the opportunity to stop the

component, save its state and then can unload it and load

a replacement component using the saved state to continue.

The approach of controlling the state machine of a component

provides flexibility since we want to allow for operations to

reach a steady state and results to be published before we

perform any dynamic reconfiguration action in the system [10]

[11].

G. Contracts in Component Interfaces

The software contract paradigm has been popular for a long

time. In most cases, though, the focus has been to look at

contracts in the scope of classes and functions [12]. This is

appropriate for object-oriented systems and relations inside

a component but is not universal for components that use

different languages and are integrated based on their interfaces.

There is a way to relate the software contract approach

with component interfaces [13]. Our approach to embedding

assumptions and guarantees into the interface makes the notion

of contracts possible for software components independently

of their implementation.

C = (A,G) (2)

ANTON HRISTOZOV ET AL.: COMPONENT INTERFACE FORMALIZATION IN ROBOTIC SYSTEMS 307

The general representation of contracts can be given with

equation 2 where A represents the assumptions and G the

guarantees [14]. We can apply this definition to our notion

of contracts and their relation to the general interface rep-

resentation we propose. The sets of services S and actions

A have assumptions and guarantees since they send requests

and expect responses. The messages M we subscribe to can

be assumptions, and the messages N we publish are the

guarantees that we promise to fulfill. The diagnostics interface

also has assumptions in the interface ∆ with the services it

handles, and the guarantees are the responses to the user of

this interface. Similarly, the configuration parameters P are

only assumptions, and the state Σ has both assumptions and

guarantees since we are saving and restoring it from external

storage to the component. This mapping of contract obligations

into the interfaces allows us to use the design by contract

paradigm at the software component level.

III. DYNAMIC COMPONENT MANAGEMENT

Creating dynamically reconfigurable systems is challenging

mainly because the interfaces of components are not explicitly

defined. Most systems have a static architecture that does

not allow for dynamic reconfiguration [15] without modifi-

cations. Systems based on publish-subscribe architectures can

be extended, although many challenges need to be overcome.

One of the really compelling challenges is to transfer the

application state into the new instances of components from

existing components [16]. This necessitates a well-defined

interface that includes the description of the state. Dealing with

state storage and retrieval assumes a mechanism that performs

serialization and deserialization of state variables so that they

are stored in nonvolatile memory.

Another challenge in dynamic reconfiguration is the impact

of component replacement on the entire architecture. This

effect can differ based on the component and its place in the

architecture. One way to model this dependency is to create a

graph where the nodes are the components, and the edges are

the connections between them [17] [11]. Maintaining such a

dynamic graph shows the components that can be affected by

changes in a particular component. In the case of publish-

subscribe, components are only coupled through messages,

and this makes it easier to perform dynamic changes. This

architecture of loosely coupled parts makes it easy to add and

remove components at run-time. Messages are buffered by the

message broker and are delivered to the component only when

it is ready to retrieve them. We can also control the internal

state of any component by using the diagnostics and control

interface.

Another issue we have to consider for the management of

components is the security of dynamically loaded components

since they need to be trusted before being used [4]. The

interface alone cannot solve the security, and other techniques

need to be utilized. Adding some form of authentication may

be needed to make sure the component can be trusted before

it is loaded and run in the system. A dedicated component

manager module is proposed in several works [18]. Some

works propose a dedicated language for specifying component

capabilities [19].

A. Interfaces and Their Role in Component Management

It is important to analyze when a new component can

be a candidate for the replacement of an existing running

component. Having an explicit and comprehensive interface

is very important to accomplish this. We use set theory to

formalize the interface definition and its constituent parts.

If a component is a superset of another component, it can

potentially replace it as shown in equation 3 where I2 is the

new component, and I1 is the old component. Equation 3

is a necessary but not sufficient condition for a successful

replacement.

I1 ⊂ I2

or

M1 ⊂ M2

N1 ⊂ N2

S1 ⊂ S2

A1 ⊂ A2

P1 ⊂ P2

Σ1 ⊂ Σ2

∆1 ⊂ ∆2

(3)

A more precise definition of when a component is a successful

candidate to replace another component is shown by equation

4. We show that all sets can be subsets of the new component

sets, but only if the extra elements in the new sets are not used.

Equation 4 can be further restricted to the equivalency case

shown by equation 5 where the two components are equivalent.

Equation 6 shows the conditions for equation 5 to hold true.

We can consider that 6 provides a necessary and sufficient

condition to achieve component compatibility. This means that

all of the equivalence relationships in equation 6 should be true

so that we can satisfy equation 5. The equivalence of each set

in equation 5 means that they have identical number and type

of elements.

M1 ⊂ M2, given M2 −M1 is not used

N1 ⊂ N2, given N2 −N1 is not used

S1 ⊂ S2, given S2 − S1 is not used

A1 ⊂ A2, given A2 −A1 is not used

P1 ⊂ P2, given P2 − P1 is not used

Σ1 ⊂ Σ2, given Σ2 − Σ1 is not used

∆1 ⊂ ∆2, given ∆2 −∆1 is not used

(4)

I1 ≡ I2 (5)

308 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

M1 ≡ M2

N1 ≡ N2

S1 ≡ S2

A1 ≡ A2

P1 ≡ P2

Σ1 ≡ Σ2

∆1 ≡ ∆2

(6)

IV. INTERFACE REPRESENTATION USING JSON

One of the goals of capturing an interface formally is to

be able to process it programmatically and make decisions at

run time. Another goal is to have the interface in one place,

for example, in a textual interface file. This is a significant

step compared to having interfaces defined in source code and

in multiple text files with different formats. There are many

choices in selecting an approach for interface notation. One of

them is to use formats like JSON, which is easy to parse and

flexible enough for this task. A more ambitious possibility is

to design a unique language to represent interfaces and have a

parser that can analyze it automatically. For this study, we will

use both approaches but will start with the JSON approach as

our goal is to illustrate the content, not so much the format of

the interface representation.

A JSON representation in a dedicated file can include all

parts of an interface I in one place and keep the information in

a structured form. JSON allows for the definition of complex

types based on the common types, and this can be used

when defining interfaces for real systems. One can use key-

value pairs that define each data element’s name and data

type. Parsing such an interface file in JSON format becomes

practical, and comparing components for their equivalence

with regard to their interfaces becomes possible. One potential

drawback is that the representation in this format can be rather

verbose and tedious to create, but for the parsing, it really does

not make a difference.

V. DOMAIN SPECIFIC LANGUAGES FOR INTERFACE

REPRESENTATION

Using a domain-specific language to represent an interface

specification has many benefits. The main benefit is that the

interface can be created using a textual language that has

well-defined grammar. This textual representation has some

benefits over a graphical language such as UML as it improves

the formalization of the interface creation and forces users

to comply with grammar rules and the associated tools that

enforce them. A second benefit is that the parser can generate

code and configuration files automatically while parsing the

interface file. This can help automate the process of the

software component creation, provide a more unified and

automated approach, and reduce the margin of error, especially

when different vendors do component development. Designing

our DSL can be tailored to the needs of the systems. Having

a language grammar imposes stricter interface specifications

which makes any automation easier. The requirements we have

defined for such a DSL are the following:

• to be able to represent all aspects of the component

interface fully as shown in figure 1

• to be easy to read by humans

• to be in a structured format so that it can be parsed easily

by automatic tools

• to be expandable in order to support future needs

A. Development Approach

Domain-specific languages are becoming easier to create by

using special tools that can create parsers. One such tool is

Antlr [20] although one can use any other tool that they are

familiar with. The generation of parsers that are created from

an Antlr grammar file is possible in several languages such

as Java and C++. The grammar files used by Antlr have a

traditional BNF notation. The result is a working C++ or Java

parser that can be used to parse a file that complies with the

grammar. Adding new features to the language happens by

modifying the grammar and regeneration of C++/Java files.

Many existing grammars can be downloaded and adapted as

per the user’s needs. Alternatively, Xtext can be used as a

newer tool for creating DSLs [21]. It provides a better set of

tools for the task.

B. Code Generation

Components in different frameworks are defined differently

for reasons such as what architecture and programming lan-

guages are used. Having an interface file in the form of

a DSL makes it easier to add code and configuration files

automatically. For example, in the case of ROS, all services

are created as .srv files in a folder with the name srv. Similarly,

actions are in a folder with a file for each action with an .action

extension. Messages are in a msg folder with a file for each

message with .msg extension. All these files can be easily

generated from a single interface file.

The concept of code generation can be extended to more

than one platform. For example, PX4 also has msg files but

does not support srv and actions, and the declarations for

message topics follow a standard pattern that exists in the C++

code. This boilerplate code can be easily generated from the

interface representation in a DSL. The parsing and validation

of the syntax of the interface is an independent step that a

target-specific code generation can follow that users can add

for their specific platforms. This approach looks practical for

systems with well-defined architectural patterns such as ROS,

PX4, and Ardupilot.

C. Example DSL Grammar

Developing a proprietary DSL may be a time-consuming

task. A practical approach is to start with an existing Antlr

grammar and enhance it if needed. There are different possi-

bilities to use. One option is to use the Apache Thrift grammar

as a well-established interface definition language(IDL) [22].

Thrift already has the options to create structures and services

sufficient for what is needed when creating an interface. An

ANTON HRISTOZOV ET AL.: COMPONENT INTERFACE FORMALIZATION IN ROBOTIC SYSTEMS 309

equivalent interface to our earlier example is shown using the

enhanced syntax based on Apache Thrift grammar, giving us

a new DSL grammar in Listing 1. Using Thrift-like language

Listing 1 DSL Example Component Interface File

message message1 {

string str,

i16 i

}

message message2 {

string str,

float f

}

service service1 {

string str,

i32 i,

string result

}

service service2 {

i32 i,

float f

}

action action1 {

i32 par1,

string s,

string r

}

action action2 {

double par1,

float par2,

string f,

i16 result

}

configuration params{

string param1,

i32 param2,

float param3,

double param4

}

state state_variables {

float position,

float velocity,

float acceleration,

string mode

}

service diagnostics{

string result,

i32 r,

string cmd

}

is even more intuitive, more compact, and provides the benefit

of starting with a grammar that is available as an open-source

file. The example above shows that Thrift may be sufficient in

most cases, although its grammar can be easily extended, and

a new C++ or Java parser can be developed if needed by using

Antlr. The best part of having a parser is that we can add code

generation based on our interface file and thus improve and

standardize the development process.

The original grammar had to be enhanced with the following

sections to allow us to support: actions, messages, configura-

tion, and state portions of the interface specification, as shown

in Listing 2. This allows us to parse an interface file with all

the earlier sections. The file parsing confirms that the interface

conforms to the rules of the defined language. In addition, we

can easily generate configuration files specific to a particular

platform, for example, ROS.

Listing 2 Grammar Additions to Thrift

definition

: const_rule | typedef_ | enum_rule |

senum | struct_ | union_ |

exception_cpp | service | action |

configuration | message | state;

message

: ’message’ IDENTIFIER

’{’ field* ’}’ type_annotations?;

action

: ’action’ IDENTIFIER

’{’ field* ’}’ type_annotations?;

configuration

: ’configuration’ IDENTIFIER

’{’ field* ’}’ type_annotations?;

state

: ’state’ IDENTIFIER

’{’ field* ’}’ type_annotations?;

Fig. 2. Code Generation from Interface File

The code generation is shown in figure 2. The parser uses

a listener or visitor pattern, allowing it to intercept each token

310 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

and make decisions based on what is necessary for the parsing

logic. Since parsing is based on the grammar shown above, this

is independent of the software architecture. On the other hand,

the code generation portion depends on whether we need to

create configuration files for ROS or for PX4, for example. The

code generation architecture blocks can be added in the future

depending on what new architectures need to be supported.

The most significant advantage of the formal interface

design is that the interface allows for documentation of the

component and for its comparison with other components with

possible reuse and integration within an existing system. In ad-

dition to configuration files, we can generate code that reflects

the interface design. Some systems have their interfaces in

code instead of external configuration files, for example, PX4.

Code generation is also applicable for the diagnostics section,

where we can have a template code for diagnostics services.

Even with boilerplate code generation, we will always need

some manual code development.

D. Case Study with ROS

Our case study focused on how a ROS component can

be represented consistently through an interface file. The

prototype we developed aimed to parse the interface file

and determine if it complies with the grammar of the IDL

used, in this case, the Thrift-like derivative DSL we propose.

Secondary, the parsing process generated configuration files

for a ROS process automatically. These included message

files, service files, and action files. We did not generate any

source code since this is not part of the interface. The study

showed that a parser could be used successfully for custom

interface definition languages, and the sections of our interface

standardization worked well in this experiment.

The advantages of representing the interfaces in the pro-

posed way are that instead of using multiple files for different

aspects of the interface and having some of them in the source

code, we have moved the specification to a single textual

file that can be parsed automatically by tools. This allows

us to easily compare components from different vendors and

to reason if they are compatible. Such analysis otherwise is

pretty difficult and cannot be done automatically. The problem

is exacerbated when components from different architectures

are to be compared, where architectural specifics make the task

even more difficult. The same methodology can be applied to

different architectures, provided they have the same functional

elements such as messages, services, and actions. The cost in

time for parsing a component interface before it is loaded is

not an issue. In fact, ROS does that in a more complicated

manner because it has to parse multiple files and connect the

data with the source code.

A promising future direction is to develop an architecture-

specific tool that allows for a defined interface that can gen-

erate all the boilerplate code specific to that architecture. We

described a possible implementation for ROS, but similarly,

the code generation can be tailored to other systems that

use different ways to represent their interfaces. This can help

design components that need to be ported from one system to

another. Reusing third-party components will only continue

to increase, and ways to minimize efforts and introduce a

common language can only help design new and expanding

existing architectures.

VI. CONCLUSION

Interfaces represent components and their capabilities. Uni-

versally presenting them can make reuse possible and dynamic

component reconfiguration at run-time and design-time. A

viable first step in this direction is to formalize the repre-

sentation of interfaces to make this representation easier to

parse programmatically and to use as a basis for run-time

architectural decisions. The presented standardization can be

used in different architectures as it is pretty general and

covers many component characteristics. It directly applies to

systems that use ROS/ROS2 or even autopilots such as PX4

and Ardupilot. Our generic approach to defining interfaces

for robotic systems can be used universally and help achieve

better and more resilient architectures with new capabilities

for reconfiguration and maintenance.

REFERENCES

[1] O. Scheickl, M. Rudorfer, and C. Ainhauser, “How timing interfaces
in autosar can improve distributed development of real-time software,”
INFORMATIK 2008. Beherrschbare Systeme-dank Informatik. Band 2,
2008.

[2] B. Y. Alkazemi, “A precise characterization of software component
interfaces.” J. Softw., vol. 6, no. 3, pp. 349–365, 2011.

[3] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan, “How do
you architect your robots? state of the practice and guidelines for ros-
based systems,” in 2020 IEEE/ACM 42nd International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2020, pp. 31–40.

[4] J. Axelsson and A. Kobetski, “On the conceptual design of a dynamic
component model for reconfigurable autosar systems,” SIGBED

Rev., vol. 10, no. 4, p. 45–48, dec 2013. [Online]. Available:
https://doi.org/10.1145/2583687.2583698

[5] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in 2015 IEEE International Conference on Robotics and Au-

tomation (ICRA), 2015, pp. 6235–6240.

[6] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Sto-
icescu, “Engineering adaptive fault-tolerance mechanisms for resilient
computing on ros,” in 2016 IEEE 17th International Symposium on High

Assurance Systems Engineering (HASE), 2016, pp. 94–101.

[7] M. Lauer, M. Amy, J. Fabre, M. Roy, W. Excoffon, and M. Stoicescu,
“Resilient computing on ros using adaptive fault tolerance,” Journal of

Software: Evolution and Process, vol. 30, 2018.

[8] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Comput. Surv., vol. 35, pp. 114–131,
2003.

[9] E. Erős, M. Dahl, K. Bengtsson, A. Hanna, and P. Falkman, “A
ros2 based communication architecture for control in collaborative and
intelligent automation systems,” Procedia Manufacturing, vol. 38, pp.
349–357, 2019, 29th International Conference on Flexible Automation
and Intelligent Manufacturing (FAIM 2019), June 24-28, 2019,
Limerick, Ireland, Beyond Industry 4.0: Industrial Advances, Engi-
neering Education and Intelligent Manufacturing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2351978920300469

[10] N. T. Huynh, “An analysis view of component-based software architec-
ture reconfiguration,” 03 2019, pp. 1–6.

[11] A. Butting, R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “A classification of dynamic reconfiguration in component and
connector architecture description,” in MODELS, 2017.

[12] G. T. Leavens and Y. Cheon, “Design by contract with jml,” 2006.

[13] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

ANTON HRISTOZOV ET AL.: COMPONENT INTERFACE FORMALIZATION IN ROBOTIC SYSTEMS 311

[14] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
dr. frankenstein: Contract-based design for cyber-physical systems,”
European journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[15] D. de Leng and F. Heintz, “Dyknow: A dynamically reconfigurable
stream reasoning framework as an extension to the robot operating sys-
tem,” in 2016 IEEE International Conference on Simulation, Modeling,

and Programming for Autonomous Robots (SIMPAR), 2016, pp. 55–60.
[16] C. Cu, R. Culver, and Y. Zheng, “Dynamic architecture-implementation

mapping for architecture-based runtime software adaptation.” in SEKE,
2020, pp. 135–140.

[17] A. Saadi, M. C. Oussalah, Y. Hammal, and A. Henni, “An approach
for the dynamic reconfiguration of software architecture,” in 2018

International Conference on Applied Smart Systems (ICASS), 2018, pp.
1–6.

[18] S. Alhazbi and A. B. Jantan, “Safe runtime reconfiguration in
component-based software systems,” in Software Engineering Research

and Practice, 2008.

[19] T. V. Batista, A. Joolia, and G. Coulson, “Managing dynamic reconfig-
uration in component-based systems,” in EWSA, 2005.

[20] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser generator,”
Softw. Pract. Exper., vol. 25, no. 7, p. 789–810, jul 1995. [Online].
Available: https://doi.org/10.1002/spe.4380250705

[21] M. Eysholdt and H. Behrens, “Xtext: Implement your language faster
than the quick and dirty way,” in Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion, ser. OOPSLA ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
307–309. [Online]. Available: https://doi.org/10.1145/1869542.1869625

[22] K. Grochowski, M. Breiter, and R. Nowak, “Serialization in object-
oriented programming languages,” in Introduction to Data Science

and Machine Learning, K. Sud, P. Erdogmus, and S. Kadry,
Eds. Rijeka: IntechOpen, 2020, ch. 12. [Online]. Available:
https://doi.org/10.5772/intechopen.86917

312 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

