
Self-adaptive Device Management for the IoT

Using Constraint Solving

Ghada Moualla, Sebastien Bolle, Marc Douet

Orange Labs

38 Meylan, France

Email: Firstname.Lastname@orange.com

Eric Rutten

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG,

F-38000 Grenoble France,

Email: Eric.Rutten@inria.fr

Abstract—In the context of IoT (Internet of Things), Device
Management (DM), i.e., remote administration of IoT devices,
becomes essential to keep them connected, updated and secure,
thus increasing their lifespan through firmware and configuration
updates and security patches. Legacy DM solutions are adequate
when dealing with home devices (such as Television set-top boxes)
but need to be extended to adapt to new IoT requirements.
Indeed, their manual operation by system administrators requires
advanced knowledge and skills. Further, the static DM platform
— a component above IoT platforms that offers advanced fea-
tures such as campaign updates / massive operation management
— is unable to scale and adapt to IoT dynamicity. To cope with
this, this work, performed in an industrial context at Orange,
proposes a self-adaptive architecture with runtime horizontal
scaling of DM servers, with an autonomic Auto-Scaling Manager,
integrating in the loop constraint programming for decision-
making, validated with a meaningful industrial use-case.

I. INTRODUCTION

W
ITH Device Management (DM), an operator or a

service provider is able to remotely manage connected

devices deployed at the customer’s premises. The main DM

features are [1]: (i) Provisioning: which targets device initial

and in-life configuration, (ii) Monitoring: which allows detect-

ing anomalies such as malfunctioning devices using log traces

and data collection, (iii) Maintenance: which allows firmware

and configuration updates, and (iv) Troubleshooting: which is

remote actions to fix service and device errors.

Currently, DM solutions are widely deployed and mainly

used for Smart Home service management. However, IoT plat-

forms with DM features and standards have been developed to

incorporate DM features such as firmware and configuration

update, for two reasons : one is to accommodate the expansion

of the Internet of Things (IoT) that offers a wide range of

new smart applications [2] (e.g., Smart City, Smart Building,

Smart Industry), the other is for environmental reasons of

sustainability (e.g., device reuse, and lifespan enhancement).

While connectivity and cloud analytics are considered es-

sential aspects of an IoT architecture, one of the most critical

is the management of IoT [3]. This will help register con-

nected devices, bring them online efficiently, ensure that they

work properly and securely after being deployed, and send

configuration or firmware updates remotely. However, with a

very large number of IoT devices distributed across one or

more geographic locations, monitoring and maintaining these

devices can be an overwhelming task if done at the individual

physical level. Moreover, the conventional centralized DM

approach becomes a serious limitation.

To face these limitations, this work is performed in an

industrial context at Orange, and proposes an approach to

self-adaptive Device Management for the IoT using constraint

solving, validated on an industrial use-case. We introduce a

new IoT DM architecture based on an autonomic manager,

called Auto Scaling Manager (ASM). We have leveraged

the MAPE-K (Monitor-Analyze-Plan-Execute over a shared

Knowledge) Autonomic Computing reference architecture [4]

to build this manager that is able to manage the DM system

and adapt at runtime the required number of DM servers to

handle the evolution of both the IoT device fleet and the

physical infrastructure. Furthermore, a constraint programming

model [5] is integrated into this manager and used for decision-

making on the placement of DM service within the infrastruc-

ture.

The adaptive solutions for the scaling and placement of

distributed components is a well-known topic in the context

of distributed systems and the Constraint Programming (CP)

has also used for a variety of real-world optimisation problems

including placement problem. However, our main contribution

involves a Constraint Programming-based autonomic loop

approach in the context of DM IoT. In which, the system

information is gathered and analyzed at runtime, in order

to dynamically revise and adapt the constraint optimization

criteria.

We evaluate experimentally the feasibility of our approach

considering a privacy use-case. The objective is to analyze

the ASM behavior in terms of adaptation decisions and to

show how it scales horizontally, with respect to the evolution

of both the DM system and the physical infrastructure. Our

contributions are:

• An autonomic DM architecture for IoT devices to handle

the device fleet evolution at runtime. For that, a Constraint

Programming paradigm is integrated into an autonomic

feedback loop.

• An experimental validation of the architecture for a

privacy scenario.

The paper is structured as follows. Section II covers the

background and the related work for the good understanding

of our work. Section III states the targeted problem. Section

IV details our proposed architecture. Section V details our

Proceedings of the of the 17th Conference on Computer

Science and Intelligence Systems pp. 641–650

DOI: 10.15439/2022F80

ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 641

experimental evaluation and results. The last section concludes

our paper and raises some future perspectives.

II. STATE OF THE ART

A. Device Management in IoT Context

DM operations are performed remotely via a management

server, managed by a DM operator, that sends out the man-

agement operations to the management clients, hosted on

the managed devices to ensure their proper functionality.

The server and clients communication is based on dedicated

protocols, e.g., TR-069 [6], OMA Lightweight Machine to

Machine (LWM2M) [7].

DM of IoT is vital to maintain the proper functionality of

IoT devices, keep them secure, and ensure the evolution and

maintenance of their growing number, while anticipating new

demands for devices and services. Compared to the legacy

DM, new challenges are faced [8], [9]: (i) Heterogeneity:

moving from a limited set of device types to a wide variety

of devices [2], (ii) Dynamicity: moving from rather stable

internal states, i.e., battery and network conditions, towards

versatile states[10], (iii) Privacy: many IoT services leverage

sensor data to adapt to the local context. It is critical to adapt

these services to protect end users privacy and customers con-

fidential and personal information [11], and (iv) Scalability:

moving from a few devices managed by centralized systems

to a massive number of devices that needs a distributed

management.

In the works [12], [13], authors proposed: (i) automating

of DM operations, and (ii) adjusting the execution speed of

the campaign firmware update to device and infrastructure

capabilities, i.e., hardware, current load and network con-

gestion to address IoT heterogeneity and dynamism. Their

adaptation strategy is based on operational measures, e.g., the

error rate of DM operations and the infrastructure response

time. Our work takes a further step towards scalability and

privacy management by distributing DM operations close to

the customer’s premises based on Edge Computing.

Cloud computing consists in delivering computing and

storage services over the Internet. It offers the advantages of

flexibility and the ability to store/analyze data. However, when

cloud computing is used for IoT, new challenges emerge.

With the huge number of heterogeneous IoT devices, IT

operational bandwidth (BW) consumption is significant, es-

pecially from managing device provisioning, commissioning,

decommissioning, and ensuring firmware upgrades. Further,

as more devices appear, there is a need for a scalable DM

solution to adapt to varied deployment scenarios and enable

seamless integration and management of these distributed

devices. We believe that Edge Computing, with all its features,

has a promising potential to ensure end-users privacy (among

other benefits as security and latency) when performing DM

operations, compared to a centralized DM platform hosted in

the cloud.

Fig. 1: MAPE-K Autonomic Loop, problem in reference [4]

B. Autonomic Computing

Autonomic Computing (AC) is defined as the self-

management capabilities of a system [14] to respond to the

increasing system administration complexity. It has proven to

be effective in minimizing administrator involvement in the

computer systems management, where an autonomic system

is able to adapt to both external and internal changes by re-

configuring itself (Fig. 1 shows the AC reference architecture).

Due to the huge number of heterogeneous devices involved

in IoT system, the manual management and maintenance is

impractical. In [15], the authors advocated that to address

the problems of manual management, automatic approaches is

needed. In their study, they stated why autonomic computing

is useful and how to use it in the IoT context. Furthermore,

automated architectures for IoT DM have been proposed

in [13], [12] for automated device targeting (i.e., defining the

appropriate devices for a DM operation) and for detecting

errors/anomalies before generalizing patching to all target

devices in a given fleet).

C. Service Placement in Fog and Edge using Constraints

Given the massive number of IoT devices, along with

their related applications, the applications deployment in the

Fog/Edge is needed to cope with the latency and privacy

requirements [16]. This placement problem has been addressed

in the literature [16], [17], [18] with several solutions based on

different application scenarios, e.g., monolithic applications,

network assumptions, e.g., infinite link bandwidth, and ob-

jective functions e.g., latency, cost. These solutions can be

classified as follows: (i) Exact solution using Integer Linear

Programming (ILP) [19]/ Constraint Programming [20], (ii)

Approximations, and (iii) Heuristics [21] and Meta-heuristic,

e.g., Genetic Algorithm (GA).

The placement solutions, that mainly rely on ILP or on

heuristic approaches, are not generic enough to deal with the

features of all applications [20], as they are: (i) uneasily exten-

sible to incorporate new application / infrastructure features or

to integrate new placement constraints and (ii) non-upgradable

to exploit any user-implied resolution approach.

CP has these following appealing features: (i) It provides a

generic and easy-to-upgrade service placement, (ii) It provides

a faster solution even in a reasonably large scale environment

(in [20] it is compared to and outperformed other algorithms

such as ILP and GA with 1200 nodes), and (iii) The CP code

is small and easy to implement. Thus, CP seems attractive to

642 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

adopt it for DM problem (More details in Sec. V). Many open-

source CP solvers are available, such as the Choco solver [22]

and OR-tools [23] and other commercial solvers, such as IBM

CPLEX CP Optimizer [24].

For solving the Service Placement Problem (SPP), different

optimization strategies are proposed in the literature [18],

[16]. We distinguish two categories: (i) mono-objective that

optimizes only one objective function, and (ii) multi-objective

optimization that optimizes simultaneously many objective

functions. These optimization functions are: (i) Latency: for

delay-sensitive applications, (ii) Resource utilization: such as

minimizing used bandwidth, (iii) Cost: There are two types of

costs: the networking cost for data transmission charges and

associated expenses, and other expenses related to storage,

migration, and so on, (iv) Energy consumption: it includes

when the service is sent by the end-user to the Edge device,

when the Edge node processes the service; and when the Edge

needs the Cloud, and (v) Other metrics: such as congestion

ratio, i.e., ratio between the service links requirements and

the physical links capacity.

D. State of the Art Synthesis

Device management is a fundamental issue, especially when

it comes to the IoT environment, with its emerging challenges.

To cope with these challenges, Autonomic Computing with its

self-management capabilities, appears as an attractive solution

for managing the DM system. Further, leveraging the benefits

of the Edge Computing paradigm, we aim to provide the DM

operations for IoT clients in a distributed manner to meet both

the clients’ requirements and the providers’ concerns.

To this end, relying on Edge Computing together with

Autonomic Computing MAPE-K architecture, we provide an

autonomic manager with the ability for autonomous horizontal

scaling in terms of the number of DM servers to adapt to

the evolution of both the DM device fleet and the physical

infrastructure. Learning from the literature and moving a step

further, we rely on Constraint Programming to model and

solve at runtime the DM placement problem by integrating a

CP solver into the autonomic loop of our proposed autonomic

manager. Moreover, to the best of our knowledge, our work is

the first work that tackle the DM of IoT devices in a distributed

manner.

III. PROBLEM DEFINITION

Deploying and managing large fleet of IoT devices is

challenging due to their geographical distribution [25] and

it can be an overwhelming task if done at the individual

physical level. Ensuring the up-to-date state of this fleet is

perturbed by fleet composition variations or by the availability

of new firmware or configuration. The variation depends on

two types of events: Device arrival which corresponds to the

first connection of a customer’s newly acquired object that

usually comes with an outdated factory-installed firmware; and

Device departure that occurs when an owner unsubscribes to

an operator’s offer, requiring a configuration to reset the device

to factory settings or when a device shuts down their network

access to save energy for instance.

As a result, there is a strong and growing need for an

autonomous system to manage the device fleet. This feature

can considerably reduce the time and effort required to sustain

the health and the performance of devices throughout their

lifecycle. The automation of the DM system was considered

in works [12], [13] which gave us a starting point for our

work.

Moreover, when it comes to firmware updates, e.g., security

patches or other updates, called over-the-air (OTA) updates,

the conventional centralized DM approach becomes a serious

limitation since designing a DM system to handle hundreds

of devices is entirely different from designing one to handle

billions. The consumption of IT bandwidth resulting from

managing these devices will be significant. Therefore, an

elastic DM system is very essential to ease and ensure secure,

fast and proper batch updates for device fleet while removing

the pressure on both the nodes that host the DM components

and the links that are used for server-clients communication

by scaling well to manage this huge device fleet.

Knowing that, the Edge computing architecture, which

brings essential data processing capabilities close to the net-

work edge, provides a compelling solution for IoT DM use

case that addresses the following issues.

• Save Bandwidth: DM operations do not have to be sent

over long routes between the server hosted in a data

center and the end devices. With Edge Computing, the

DM operations could be provided through the distributed

servers via different Edge nodes at different locations near

to the end users;

• Guarantee the privacy: Management of IoT end devices

locally (e.g., gateway at the client geographical place) or

in the proximity of the end devices could ensure the user’s

privacy. Given this privacy need, a DM server can be

restricted to be deployed on specific areas (zone), namely

Dedicated Zones (DZs). For example, a factory requiring

device operations to be performed inside its LAN (Local

Area Network);

• Support devices mobility: Edge computing is better suited

to support end-user mobility than the centralized DM

platform and to enable the seamless firmware updates

management while ensuring the required latency.

IV. PROPOSED DM ARCHITECTURE

The proposed architecture for self-adaptive IoT DM is

depicted in Fig. 2. It allows the dynamic horizontal scaling of

the distributed DM servers based on designated policies (e.g.,

physical resource utilization thresholds, Privacy requirement).

It has two main layers: (i) Control layer which is com-

prised of a centralized autonomic manager called ASM and

a system administrator that represents an external manager-

to force external actions when needed or to give high-level

objectives - and (ii) Infrastructure layer that involves the

physical nodes/links that hosts the Administrative layer, i.e.,

DM servers, and the IoT devices.

GHADA MOUALLA ET AL.: SELF-ADAPTIVE DEVICE MANAGEMENT FOR THE IOT USING CONSTRAINT SOLVING 643

Fig. 2: Self-adaptive IoT DM Architecture based on MAPE-K reference

(a) Physical Infrastructure (b) IoT DM System

Fig. 3: Input Graph Models

This architecture is based on two main models, depicted as

graphs, which represent the DM system and the underlying

infrastructure (more details in Sec. V). On the one hand, the

infrastructure model (Fig. 3(a)) is dedicated to the specification

of the underlying topology that will host the DM service com-

ponents. On the other hand, the DM system model (Fig. 3(b))

is intended to the representation of the DM system entities

along with their requirements (i.e., servers and clients).

The lifecycle associated with this architecture involves these

two models that will evolve over time, e.g., arrival/departure

of DM clients, failures in infrastructure nodes/links. These

models are used as the input of a specific constraint program

integrated into the (Re)Mapper module of the ASM. In the

Sec. IV-A, we explain ASM in more details.

A. Auto Scaling Manager (ASM)

This autonomic manager is built following the MAPE-K

architecture and is responsible for managing of the DM system

from its design till the end of the system’s lifecycle. Thus, the

objective is to specify a particular DM system /Infrastructure

topology to be modeled, by a system administrator or DM

service provider, and then handled at runtime. This implies

making horizontal scaling decisions of the DM servers to adapt

to any new condition dynamically, i.e., adding/removing one

or more DM servers at runtime. This work is realized through

the following modules:

• Monitor module: is responsible of observing the evolution

of both DM system and infrastructure and forwarding the

information to the Remapper module for analysis;

• (Re)Mapper module: analyses the information from the

system administrator or the Monitor to decide on the

target state of the DM system and then it solves the DM

system placement within infrastructure (See Sec. V) ;

• Planner module: Based on the Mapper information, it

extracts and selects the required actions to move to

the required state of DM system (e.g., add/remove DM

server(s)/client(s));

• Executor module: is responsible of deploying the required

actions planned by the Planner module.

Finally, the Knowledge Base contains graph models of

current and past infrastructure and DM service configurations.

B. ASM Work Methodology

The autonomic feature of the ASM is based on MAPE-K

loop (in Fig. 2). It has three inputs: DM system/ Infrastructure

models and the selected objective defined manually by the

System administrator at initial step, named Design time. The

infrastructure/DM graph models and the initial placement so-

lution for DM system, along with the fore-coming graphs and

placement solutions, will be stored in the ASM’s Knowledge

base. The output of the ASM is the DM servers that needs to

be launched/stopped on particular infrastructure nodes along

with their binding with their clients.

These graph models serve as an input to a CP solver that is

integrated into the analyzer step, i.e., (A in Fig. 2). In this

work, we consider the constraint satisfaction programming

for solving the DM placement problem which provides at

design time a feasible placement of the DM system within

current infrastructure. However, this module is generic in that

different placement approaches could be selected for both

mapping/remapping steps.

Thereafter, the System evolution will be gathered by the

Monitor which involves- based on the adopted scenario: (i)

changes in the underlying infrastructure (e.g., node arrival/de-

parture, resources loads), (ii) changes in the DM system (e.g.,

clients arrival/ departure), and (iii) other system administrator

notifications, such as updating the solver objective to accom-

modate an urgent security campaign firmware updates instead

of "normal" firmware/ configuration updates (M in Fig. 2).

The monitored information is passed to the analysis step,

whenever a new change is observed. The analyser takes into

account the last system state stored in its knowledge base. As

a result, a new graph(s)- that reflects the new requirements and

changes- will be generated and the constraint solver will be

called to decide on the mapping of the new system’s elements.

Thus, the (Re)mapper module will be called first at the design

step and then whenever a new information is observed and

transmitted by the Monitor.

After receiving this information, the planner (P in Fig.

2)) produces a set of actions to be applied to move from

the current system state to the target one by extracting the

difference between the current and the target mapping, to do

only necessary actions (e.g., decide the required number of

server/client to be started/stopped). Finally, the Execution step

applies these actions (E in Fig. 2)).

644 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

Fig. 4: Integrating CP in the ASM MAPE-K architecture

This whole process, after the design step, will be repeated

in a loop based on the monitored information and the runtime

conditions imposed by the Administrator. We further show in

Fig. 4 how the constraint programming is integrated within

ASM (Re)mapper.

Finally, in the case that the monitor detects a reconfiguration

need and a CP solver is called, we may obtain that no feasible

placement solution is found, for example, because there are

no enough resources in the infrastructure while satisfying all

required constraints. Thus, the Remapper module might need

to wait for some time, so that other services release some

infrastructure resources or some clients leave to try again with

the solver. In such case, the ASM will keep the last solution

and a notification will be sent to the system administrator.

C. Supported Use-Cases

The need for DM system reconfiguration is based on the

targeted evolution type. Different changes may result in a need

for a new system configuration in the DM context. Privacy

is an important concern that is adopted in this work [11],

where a client may need to be managed by a specific DM

server or a DM server placed in a specific area due to some

privacy considerations (e.g., the IoT device(s) belongs to a

private enterprise or for a VIP (Very Important Person)). Thus,

whenever new IoT devices ask to join the system and get

registered and managed by a DM server, these newcomers

will need some resources (e.g., CPU (Central Processing Unit)

and RAM (Random Access Memory)) along with a specific

privacy constraint. Further, IoT devices might leave the system

so we need to stop the related DM clients, which results in

reducing the pressure on the currently running servers.

Any DM system evolution at runtime observed by the

Monitor (through an external notification issued by the admin-

istrator) will be reported to and analyzed by the Remapper. In

case new devices arrival, ASM will individually check their

privacy requirements to see if they can be registered with one

of the existing servers. If the current servers cannot satisfy

the new devices, a new server(s) need to be added the DM

system, so a new DM graph will be generated to reflect the

new system and the constraint solver will be called to decide

on placement of the new graph.

While privacy is considered in our work to trigger the

scaling process, but it is just a use-case, as there are other

situations that might require adaptation and that can be handled

by our proposed architecture. For example, adding more DM

servers to adapt to the increased number of IoT devices

communicating with a single server, and then balancing the

load among these servers instances represent a new motive for

scaling to avoid the stress on one server and efficiently manage

the huge device fleet. In such scenario, any information leading

to redeployment/instantiation need will generate a new DM

graph and launch again the CP solver.

The inform storm represents a real life use-case when a

huge amount of IoT devices reboot at one time, e.g., after

a power breakdown. Another use-case is the smart vehicles

[26] which consists of numerous sensors and actuators that

automate various tasks, such as traffic monitoring and braking.

In this scenario, it is necessary to keep the vehicle’s firmware

up-to-date, and to provide a convenient solution to the problem

of installing a new firmware that could be released to fix bugs

or provide new functionality. A significant challenge with this

use-case is the mobility, where a vehicle may disconnect from

a certain DM server placed on a specific Edge node and require

to reconnect to an alternate DM server according to its current

geographic location. By automatically scaling new DM servers

and placing them close to the moving vehicle, this mobility

problem can be handled.

V. DM SERVERS PLACEMENT PROBLEM

The mathematical formulation of the placement problem

given in [20] is strongly aligned with our DM service place-

ment problem. Therefore, we have benefited from this model

and modified the following parts to comply with our needs. In

the first update, we have changed the definition of the proposed

locality constraint (See Sec. V-B). Instead of enforcing some

service components to be placed on specific physical nodes,

we have introduced the dedicated zones to which each physical

node belongs. Then, each DM component will have a privacy

requirement regarding the accepted zone of the hosting node.

Another variation is the optimization objective. Here, we

have proposed a multi-objective optimization to decide at

runtime which objective we need to optimize (more details in

Sec. V-C). Further, the CP solver is integrated in a feedback

loop in order to make adaptation decisions at runtime.

A. System Model

1) Infrastructure model: It is defined as a directed graph

GI= <H, ε>, where H is the physical nodes (e.g., Edge and

IoT devices) and ε= H ×H is the network links between the

nodes : "h * H; # U(h) where U(h) = (CPU,RAM,DZ)

In the infrastructure graph, we defined for each node its

available CPU and RAM resources in addition to its own

dedicated zone. For the physical links, we define the available

bandwidth and latency as follows:

"ei,j * ÷; #LAT (ei,j)andBW (ei,j) , where LAT(ei,i = 0)

and BW(ei,i = >) (In future work, the link type can be added

as an additional characteristic).

2) DM System Model: We consider that our DM system

represents as a service and could be modeled as a graph

Ga =< C,L >, where C is the components of our DM

GHADA MOUALLA ET AL.: SELF-ADAPTIVE DEVICE MANAGEMENT FOR THE IOT USING CONSTRAINT SOLVING 645

system and L = C × C is the communication links between

these components.

The nodes of this graph represent the DM servers and clients

along with their resources requirement, namely CPU, RAM,

and privacy :

"c * C; # u(c) , where u(c) = (Rcpu,Rram,Rdz)
The (Rcpu,Rram) are the resource requirements of each

DM components and Rdz is the privacy requirement where

each DM system’s components need to be placed at some

geographical place (e.g., customer premises for privacy issue).

In addition, for the links needed for the communication

between the servers and the clients, we define the following

requirements: "k * L; # Reqlat(k) and Reqbw(k) which is

the latency and the bandwidth requirements of the DM system

communication links.

3) Placement: After modeling both the physical infras-

tructure and the DM systems as graphs, the next step is to

decide where to place all DM system’s components and the

communication links on the infrastructure physical nodes and

links, respectively.

The placement solution must satisfy all the resources re-

quirements of the DM components (namely, CPU, RAM, BW

and Latency) while, at the same time, respecting the under-

lying infrastructure available resources. Based on methods

provided in the related work we decide to use the constrained

programming approach for solving the placement problem

(this choice was justified in the Sec. II).

B. Problem Formulation with Constraint Programming

Here we present the formulation model for the DM place-

ment problem. Inspired by the related work [20], for the

technical needs of the modeling (to ensure we have a full

connected graph), the infrastructure graph is increased by

adding a super-sink node (α), with unlimited resources (CPU,

RAM...), to which all graph nodes can access. The links that

connect the infrastructure nodes to α, and α to itself, have an

infinite capacity. In the following, the variables related to both

nodes and links are declared. "k * L : s = {sk | k * [1, |L|]}
where sk is the physical node that hosts the source component

of a DM system link (k), where (sk * H).

t = {tk | k * [1, |L|]} where tk is the physical node that

hosts the target component of a link (k), where (tk * H).

n = {nk,j | k * [1, |L|] , j * [1, |H|]} where (n(k,j) * H)

is the physical node at position (j) in the path of link (k).

h = {hi | i * [1, |C|]} where (hi * H) is the physical node

that hosts a component (i).

p = {pk | k * [1, |L|]} where (pk * H) is the position of

the target component(tk) in the path (nk).

a = {ak,j | k * [1, |L|] , j * [1, |H|]} represents a physical

link between (nk,j) and (nk,j+1) in the path of a DM system’s

link (k), where (ak,j * ε).

b = {bk,j | k * [1, |L|] , j * [1, |H|]} represents the band-

width of the physical link (ak,j).

Finally, l represents the physical link latency (ak,j), where

l = {lk,j | k * [1, |L|] , j * [1, |H|]}

After defining our problem model variables, we present the

necessary constraints to be applied to control the possible

combinations of values that these variables could obtain.

Constraint 1: BINPACKING constraints (knapsack-based

reasoning [27]). Here we ensure that the sum of all mapped

components demands does not exceed the maximum available

CPU and RAM capacities of the infrastructure nodes,.

BINPACKING (ïh,Reqcpuð , CPU)
BINPACKING (ïh,Reqramð , RAM)
Constraint 2: To fix a DM system’s component (i) to a

specific location or DZ, we use this locality constraint:

DZ(hi) = Loc(i), " i * C

Constraint 3: Node at position (0) in the path (nk) hosts

the source component of a DM communication link (k).

nk,0 = sk
Constraint 4: Node at position (pk) in the path (nk) hosts

the target component of a DM communication link (k).

nk,pk
= tk

Constraint 5: When the source and the sink components

are the same, they will be hosted on the same physical node.

sk = tk ´ pk = 1
Constraint 6: To avoid cycles in a path (nk), the ALLD-

IFFERENT filtering algorithm [28] is used to prevent similar

values for the variable (n(k,j)).

ALLDIFFERENT (nk,j , "j * {1, ..., |H|})
Constraint 7: Any path (nk) ends with at least one oc-

currence of α (the super-sink added node to the infrastructure

graph). For that, the REGULAR constraint [29] is added to

ensure that the corresponding sequence of values taken by

variables belong to a given regular language.

REGULAR (nk, ”[
∧³] + [³] + ”)

Constraint 8: When two DM communication links (k, k
2

)

share a same component, then the physical node that hosts the

target component of the first link will be the same node the

hosts the source component of the second link. tk = sk2

Constraint 9: This constraint is a BINPACKING constraint

to respect the bandwidth limit of each physical link.

BINPACKING (ïb, Reqbwð , BW)
Constraint 10: These last two constraints concern respect-

ing the latency of each DM communication link, and the end-

to-end latency along the path of the DM communication link,

respectively:

lk,j = LAT (ak,j), " k * L, " j * {0, ..., |nk|}�|nk|
j=0 lk,j f Reqlat(k), " k * L

Moreover, in the DM context, the communication link type

is an important requirement to be considered when solving

the placement problem, where various communication tech-

nologies between devices are used such as Wi-Fi, Bluetooth,

and ZigBee (based on the IoT device). Thus, when solving

the placement problem, the link type could be added to our

Infrastructure/DM models to better fit the DM context.

C. DM Optimization Function

Different objective functions have been introduced in the

literature (see Sec. II for more details) of placement problem.

However, the question that comes to mind is that: What are

646 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

TABLE I: Objective Optimization Classification

Metric Description

Resources
Minimize the number of used Nodes

Minimize the total used links’ BW

Load balancing

Maximize each physical node minimum remaining
CPU cores
Maximize each physical link minimum remaining
BW

Latency Minimize the latency for urgent security patches

the optimization metrics to consider in the case of DM

service provided to IoT users? To answer this, we provide

a simple classification for placement objectives metrics that

could fit for the DM context in the Table I. The optimal

management of infrastructure resources is an important met-

ric. With the objective Resource, we aim to minimize the

computational or network resources used. For example, the

DM system involves communications between servers and

their bulk clients and communication traffic will pass through

network links, that are shared with other services/applications,

so minimizing network consumption is important for the DM

context. However, this goal could imply that some nodes/links

are overloaded while others are underloaded.

With the Load balancing objective, we aim to reduce the

stress on both physical nodes and links (i.e., congestion rate)

by balancing the load between the participant nodes and links

in our infrastructure by choosing the least loaded nodes and

links in the infrastructure. Finally, with the Latency objective,

given that one of DM’s features is to send security patch

updates, it becomes necessary to ensure the quick arrival of

such updates. To ensure this, we need to minimize the latency

between the clients and their own servers.

From the discussion above and given the DM system

features, there is no single objective function to be considered

statically. Rather, it appears that this function depends on the

chosen scenario and the actual communication information

exchanged between the servers and their clients. To do this,

a multi objective function is introduced with coefficients

variables (α, β, ..., etc.) that will be activated/deactivated at run-

time by getting the value of 1 or 0, respectively. We formulate

the final placement objective as follows:

Objective = ³ Obj1 + ´ Obj2 + ...

For our proof of concept and experimental validation we

choose between these objectives: (i) Minimizing the total

number of participating nodes, and (ii) Minimizing the total

consumed bandwidth. Our optimization objectives are formu-

lated as follow: Obj1 = Min
�|H|

i=0 hi , where (hi * H)

is the physical node that hosts a component (i) ; Obj2 =
Min

�|nk|
j=0 bk,j , where bk,j = BW (ak,j), "ai,j * ÷.

VI. EXPERIMENTAL VALIDATION

We present here our experimental setup to assess our

approach’s ability to automatically adapt by horizontal scaling

the DM servers number based on both the DM system and the

infrastructure’s evolution. First, we present our use case and

(a) Design time (b) Run Time

Fig. 5: Privacy Use Case, DM System Evolution

then detail the technical architecture of our setup. Then, we

present our environment and ASM implementation.

A. Target Use Case

To assess our architecture, we considered the challenge

of preserving the privacy of users who use a set of smart

objects connected to each other and, potentially, to other users’

objects. In such a case, IoT objects can use and propagate a

lot of information about the features they offer and provide

sensitive information about the users that they do not intend

to reveal, e.g., knowing the features of most adopted objects

by users. In this case, users may require their devices to be

managed by an authorised server or by a server located in an

authorised geographical place.

Therefore, we consider the following use case. Initially (See

Fig. 5(a)), the DM system administrator will start a DM server

in a specific location in the infrastructure and let the DM

clients register to it as it meets their privacy requirements (i.e.,

based on the server locality). From here, the ASM will be in

charge of managing the DM system throughout its life cycle.

After some time, new devices will arrive and ask to join the

fleet and register with one of the servers respecting their pri-

vacy constraints. The clients information and requirements will

be sent to ASM by the administrator via external notifications

(See Fig. 5(b)). ASM will analyze this new information and

then decide on the right actions to move from the system’s

current state to a new one that meets all DM components

requirements. This involves either connecting each new client

to an existing server that meets the privacy constraint, or else

by instantiating a new server on a node within an acceptable

location, i.e., dedicated zone.

B. Experimental Setup

The ASM inputs are the infrastructure and the DM system

models which are generated based on the use case introduced

in Sec.VI-A. This subsection details their attributes.

a) Physical Infrastructure: The global infrastructure is

composed of: (i) 20 Edge nodes with CPU cores between

2 and 12 and available RAM between 2 and 24 GB, (ii)

40 less powerful extreme edge nodes close to IoT devices,

namely customer premises nodes, characterized by CPU cores

GHADA MOUALLA ET AL.: SELF-ADAPTIVE DEVICE MANAGEMENT FOR THE IOT USING CONSTRAINT SOLVING 647

between 1 and 2 and available RAM between 1 and 2 GB, and

(iii) up to 1000 links that connect these nodes randomly with

bandwidth up to 5/20 Gbps and latency up to 1/5 ms for the

physical links that connect the edges nodes and 1/5 Gbps and

latency up to 10/20 ms for the physical links that connect edges

nodes to customer premises nodes where each node belongs

to a specific zone (for the need of privacy scenario).

The nodes zones is given randomly where DZ1 to DZ6 is

reserved of Edge nodes that will host DM servers and DZ10
to DZ20 is reserved of customer premises nodes.1

b) DM Service: For the initial setup we start the DM

service with one server and 3 clients managed by this server.

After that, the administrator external notifications concerning

new IoT clients will arrive following an exponential distri-

bution of mean TIA, where TIA is the mean inter-arrival

time of clients arrival notifications (measured in arbitrary time

unit). Each DM client has a service time, i.e., the time the

client remains in the system is randomly selected following

an exponential distribution of mean S. Any notification that

cannot be satisfied directly will be kept in a queue for some

predefined time, namely Time To Live (TTL), waiting for

some resources to be released and become available.

In total, our synthetic external notifications workload for

the simulations contains request arrivals made of 40/60/80/100

arbitrary clients.The number of clients that arrive or leave is

selected randomly between 1 and 4 client at each notification.

The communication between servers and their clients is

done via bindings. The processing, RAM, latency and band-

width requirements for DM components and binding is chosen

in random manner with respect to the available infrastruc-

ture resources. Moreover, each DM component requires to

be started on a specific dedicated zone within the physical

infrastructure (more details in Sec. V).

C. Architecture Implementation

We detail here our choices in terms of architecture and lan-

guage for the development, illustrated in Fig. 6. The software

and modules run locally on a workstation with four physical

cores and eight logical computing units of the Intel x86-64

architecture, supported by 32GB of DDR4 with 2133MHz

RAM with Linux Debian 10 operating system.

For the mapper module, which solves the DM placement

problem based on CP, we have chosen Choco as a solver

inspired by the works [20] [16], which is a free and open-

source Java library dedicated to constraint programming. The

placement problem must be modeled in a declarative way by

defining the set of constraints to be satisfied in each solution.

Then, it will be solved by alternating constraint filtering

algorithms with a search mechanism.

The three remaining modules of the ASM, are developed

from scratch in Python. The choice of Python is motivated by

its wide collection of libraries and its native compatibility with

1The processing and the memory capacities for each infrastructure node are
chosen randomly from set of values inspired by the most common OpenStack
and Amazon EC2 instance types and the links bandwidth and latency values
also and number of dedicated zones.

Fig. 6: The Technical Implementation of the Architecture

the JSON [30] data format used by the other components of

our architecture (messaging bus). The ASM modules commu-

nicate with the system administrator via a common RabbitMQ

messaging bus [31]. The RabbitMQ bus allows communication

via Message Queuing Telemetry Transport (MQTT) which is

a messaging protocol widely used in the context of IoT and

compliant with Python.

D. Experimental Results

Our defined simulation scenario aims at initiating a DM

service on a physical infrastructure. Later on, at runtime,

external notifications about fleet evolution will be launched by

the system , triggering our automatic manager to take scaling

decisions of the DM servers. All the following experiments

were repeated 5 times using 5 different notification workloads

with the same parameters.

1) ASM Adaptation Characteristic:

We evaluate here how the ASM can adapt the number of

DM servers at runtime to fulfill the new DM clients privacy

requirements with a total number of 80 clients that want to join

the DM system. Figure 7(a) shows the evolution of number

of participated servers to adapt to evolution of DM clients

through the time. It starts with the initial configuration of 1
server and 3 clients. From this figure we can see an increase

in number of servers as new clients join the system (based on

their privacy constraint on the acceptable server). However,

when new clients arrive and their privacy requirements can be

satisfied by the already running servers there is no need to

scale out the DM servers. This explains the situations in the

figure where we have new incomers and the number of servers

does not increase. For example at the time point of 14 to 15
min, the number of servers is 4 while the number of clients

in the system goes from 9 to 13 clients.

On the other hand, when the clients number decreased

as they leave the system, Fig. 7(a) shows decreasing in the

number of servers. This happens when a server has no more

clients, e.g., at the time point of 1 min the ASM scale in

the number of servers goes from 3 to 2 servers as the the

number of clients goes from 9 to 6 clients. However, not all

clients departure leads to ASM taking scale in decisions, as

their server still have other clients to manage.

2) Acceptance Ratio:

We study the impact of total number of clients that arrived

to the system on the ability to satisfy their joining requests

648 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (min)
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

N
°

D
M

 C
om

po
ne

nt
s

N° DM Clients
N° DM Servers

(a) ASM Adaptation Characteristic

40 60 80 100

Total Clients Number
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 R

at
io

Infra.1
Infra.2

(b) Acceptance ratio of DM notifications: Infra.1
& Infra.2 explained in Sec.VI-D2

(c) ASM Adaptation Time

Fig. 7: Experimental Results

and placing them into the Infrastructure. To that aim, we

use the acceptance ratio defined as the number of accepted

clients arrival notifications over the total number of arrival

notifications. Fig. 7(b) shows the acceptance ratio with respect

to 4 different total number of clients that ask to join the DM

system with two different infrastructures: (i) Infra.1: composed

of 20 Edge nodes & 80 customers premises nodes, and (ii)

Infra.2 with 20 Edge nodes & 40 customers premises nodes.

In general, and for both infrastructures, we can expect

the acceptance ratio to decrease as the total clients number

increases since more clients require devoting more physical

resources to place the new clients and server when needed.

This trend is confirmed by Fig.7(b). However, the decreasing

is negligible and this can be explained by the fact of using a

waiting queue for the unaccepted notifications to try again

when other clients leave the system and some resources

become available. Thus, using this queue allows increasing

the acceptance ratio and preventing a sudden drop in its value

when the number of clients increases from 40 up to 100
clients. However, with more powerful underlying infrastructure

(the blue curve in Fig.7(b)) leads to more acceptance ratio

as the network can handle more clients before becoming

overloaded. It is worth mentioning that even with 40 clients,

we do not have an acceptance rate of 1 as the combination of

many constraints, namely CPU/RAM/Bandwidth and privacy,

prevents the solver from finding a valid solution.

3) ASM Adaptation Time:

To be acceptable, the time spent by ASM to adapt to DM

runtime evolution must be at most of the same order of

magnitude as the deployment of the VMs that will host the

DM components to not impact the deployment time of the

DM service. This time includes the generation of a new DM

configuration file, taking scale In/Out decisions and finding an

acceptable placement of DM components. For that reason, we

force the Choco solver in the Mapper to try to find an optimal

solution in no more than 1 minute. It is in the same order

of magnitude of the typical time to deploy and boot virtual

functions in data centers [32].

Figure 7(c) shows the whisker plot of ASM adaptation time

to the system administrator external notifications times for 4

different number of DM clients. It shows that the needed time

by the ASM to adapt to runtime notifications increases rather

linearly with number of DM clients and never exceeds one

minute, which is affected by the Mapper module time to find

the placement solution. This rather linear increase is because

an increase of DM clients number incurs a proportional

increase in the total number of DM components. These clients

do not come at once, but rather in a random group from 1 to

4 clients together. Thus, the size of the placement problem as

the size of the DM components is not impacted.

The spread between median and lower quartile is smaller

than the spread between median and upper one as most of

placements require more time to find a solution of the new

DM configuration or to reject the notification and send it to

the waiting queue.

Knowing that the number of arrived clients significantly

affects the size of problem, and therefore the needed time

by solver to find a solution, this case should be considered as

a scalability limitation to our solver. The constraint program-

ming solver could not be fast enough and a new heuristics

might be considered to find a near optimal placement.

To best of our knowledge this is the first work on distributed

IoT DM at the Edge of the network. Thus, many parameters

are set with random values and affect our simulation results.

The first parameter is the TTL value: more TTL could

increase the acquired acceptance ratio as more resources

will be released and become available, but more time is

needed to complete a full workload (long waiting queue).

The solver maximum allowed time has also a direct impact

on both acceptance ratio and ASM adaptation time. Giving

more time to Choco solver may increase the acceptance ratio.

However, since we are targeting client requests at runtime, it

is very important to make a decision as quickly as possible.

Moreover, giving more time to the solver cannot guarantee

that a solution will be found as the infrastructure might be

already overloaded.

Furthermore, since all workloads are randomly generated

due to the unavailability of real-world workload- i.e. random

arrival rate, service time and resources requirements - running

more workloads lead to more consistent results and avoid some

ambiguous results, e.g., the median value of the whisker plot

for the clients number equal to 60 in Fig. 7(c).

GHADA MOUALLA ET AL.: SELF-ADAPTIVE DEVICE MANAGEMENT FOR THE IOT USING CONSTRAINT SOLVING 649

VII. CONCLUSIONS AND PERSPECTIVES

We have addressed the main IoT DM challenges, namely

Heterogeneity, dynamicity and scalability. For that purpose,

we proposed a self-adaptive DM architecture for IoT with an

autonomic manager that is capable of self-scaling the number

of DM servers to the fleet changes and requirements at runtime

through the distribution of DM operations at the Edge. This

autonomic manager relies on a constraint programming solver

that is integrated in a feedback loop to decide on DM servers

and clients placement while optimizing the infrastructure re-

sources usage. Further, we evaluated this architecture through

simulation to the fleet evolution at runtime with a privacy as

the target scenario. The results show that our manager is fast

enough- only 1 minute- such that one can consider using it in

a real environment to handle IoT fleet composition changes at

run time and without the need of prior knowledge on the new

IoT devices requirements.

For future work, we are investigating our proposal’s scaling

capability with respect to another scenarios such as physical

resources thresholds and DM servers limitations. Also, from

the point of view of constraints and models, we want to

consider more dynamics (e.g. speed and acceleration of varia-

tions) in relation with Control Theory [33]. For interoperability

motive, a constraint regarding the management protocol used

by the DM server could be considered. Another important

enhancement will be testing this architecture with real infras-

tructure e.g., Grid5000 [34] FIT IoT-LAB Testbed [35].

REFERENCES

[1] F. Aïssaoui, S. Berlemont, M. Douet, and E. Mezghani, “A semantic
model toward smart iot device management,” in Workshops of the Inter-

national Conf on Advanced Information Networking and Applications,
(Caserta, Italy), pp. 640–650, Springer Publishing, 2020.

[2] T. Perumal, S. K. Datta, and C. Bonnet, “Iot device management
framework for smart home scenarios,” in 2015 IEEE 4th Global Conf

on Consumer Electronics (GCCE), (Japan), pp. 54–55, IEEE, 2015.
[3] K. Shea, “Device management in the internet of things–why it matters

and how to achieve it.” http://www.new-techeurope.com/2017/06/07/
device-management-internet-things-matters-achieve/, 2017. Accessed
on 2021-02-20.

[4] A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, vol. 31, no. 2006, pp. 1–6, 2006.

[5] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint program-

ming. USA: Elsevier, 2006.
[6] B. Forum, “Tr-069 cpe wan management protocol.” https://www.

broadband-forum.org/download/TR-069_Amendment-6.pdf, 2018. Ac-
cessed on 2021-02-23.

[7] O. M. Alliance, “Lightweight machine to machine technical specifica-
tion,” Approved Version, vol. 1, no. 1, 2017.

[8] M. Elkhodr, S. Shahrestani, and H. Cheung, “The internet of things: new
interoperability, management and security challenges,” arXiv preprint

arXiv:1604.04824, vol. abs/1604.04824, p. 85–102, 2016.
[9] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey

on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, 2017.

[10] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, 2017.

[11] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle, “Privacy in the
internet of things: threats and challenges,” Security and Communication

Networks, vol. 7, no. 12, pp. 2728–2742, 2014.
[12] N. Ayeb, E. Rutten, S. Bolle, T. Coupaye, and M. Douet, “Towards an

autonomic and distributed device management for the internet of things,”
in IEEE 4th International Workshops on Foundations and Applications

of Self* Systems, (Sweden), pp. 246–248, IEEE, 2019.

[13] N. Ayeb, E. Rutten, S. Bolle, T. Coupaye, and M. Douet, “Coordinated
autonomic loops for target identification, load and error-aware device
management for the iot,” in 15th Conference on Computer Science and

Information Systems (FedCSIS), (Bulgaria), pp. 491–500, IEEE, 2020.
[14] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, 2003.
[15] M. Tahir, Q. M. Ashraf, and M. Dabbagh, “Towards enabling autonomic

computing in iot ecosystem,” in IEEE Intl Conf on Dependable, Auto-

nomic and Secure Computing, Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on

Cyber Science and Technology Congress, (Japan), IEEE, 2019.
[16] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service

placement problem in fog and edge computing,” ACM Surveys, 2020.
[17] B. Donassolo, IoT Orchestration in the Fog.(L’orchestration des appli-

cations IoT dans le Fog). PhD thesis, Grenoble Alpes University, France,
2020.

[18] S. Challita, F. Paraiso, and P. Merle, “A study of virtual machine
placement optimization in data centers,” in 7th International Conference

on Cloud Computing and Services Science, (Porto, Portugal), pp. 343–
350, INSTICC, 2017.

[19] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos, “Load aware
provisioning of iot services on fog computing platform,” in ICC IEEE

International Conf on Communications, (China), pp. 1–7, IEEE, 2019.
[20] F. A. Salaht, F. Desprez, A. Lebre, C. Prud’Homme, and M. Abderrahim,

“Service placement in fog computing using constraint programming,” in
IEEE International Conf on Services Computing, (Italy), IEEE, 2019.

[21] Y. Xia, Combining Heuristics for Optimizing and Scaling the Placement

of IoT Applications in the Fog. PhD thesis, Université Grenoble Alpes,
2018.

[22] C. Prud’homme, J.-G. Fages, and X. Lorca, “Choco solver documenta-
tion,” TASC, INRIA Rennes, LINA CNRS UMR, vol. 6241, 2016.

[23] L. Perron and V. Furnon, “Google’s or-tools,” 2019.
[24] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “Ibm ilog cp optimizer

for scheduling,” Constraints, vol. 23, no. 2, pp. 210–250, 2018.
[25] S. R. Department, “Internet of things- active connections

worldwide 2015-2025.” https://www.statista.com/statistics/1101442/
iot-number-of-connected-devices-worldwide/, Jan 2021. Accessed on
2021-02-23.

[26] K. Fizza, N. Auluck, A. Azim, M. A. Maruf, and A. Singh, “Faster
ota updates in smart vehicles using fog computing,” in Proceedings

of the 12th IEEE/ACM International Conference on Utility and Cloud

Computing Companion, (New York, NY, USA), pp. 59–64, Association
for Computing Machinery, 2019.

[27] P. Shaw, “A constraint for bin packing,” in International conference on

principles and practice of constraint programming, (Berlin), pp. 648–
662, Springer, 2004.

[28] J.-C. Régin, “A filtering algorithm for constraints of difference in csps,”
in AAAI, (USA), pp. 362–367, American Association for AI, 1994.

[29] G. Pesant, “A regular language membership constraint for finite se-
quences of variables,” in International Conf on principles and practice

of constraint programming, (Heidelberg), pp. 482–495, Springer, 2004.
[30] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations

of json schema,” in Proceedings of the 25th International Conference on

World Wide Web, (Republic and Canton of Geneva, CHE), pp. 263–273,
International World Wide Web Conferences Steering Committee, 2016.

[31] A. RabbitMQ, “Messaging that just works - rabbitmq,” 2020. Accessed
07-June-2021.

[32] M. Mao and M. Humphrey, “A performance study on the vm startup time
in the cloud,” in 2012 IEEE Fifth International Conference on Cloud

Computing, (Honolulu, HI, USA), pp. 423–430, IEEE, 2012.
[33] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. Müller, H. Giese,

R. Rouvoy, and E. Rutten, “What Can Control Theory Teach Us About
Assurances in Self-Adaptive Software Systems?,” in Software Engineer-

ing for Self-Adaptive Systems 3: Assurances, vol. 9640, Springer, May
2017.

[34] D. Balouek, A. C. Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jean-
voine, A. Lèbre, D. Margery, N. Niclausse, and L. Nussbaum, “Adding
virtualization capabilities to the grid’5000 testbed,” in International Conf

on Cloud Computing and Services Science, pp. 3–20, Springer, 2012.
[35] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,

R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “Fit iot-lab: A large scale open experimental iot testbed,”
in IEEE 2nd World Forum on IoT, (Italy), pp. 459–464, IEEE, 2015.

650 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

