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Abstract—At Philips Image Guided Therapy (IGT), we have
developed a Domain Specific Language (DSL) that describes the
behaviour of one of the subsystems of our interventional X-ray
system. With the current implementation of our DSL we are
able to generate C++ code that is integrated in our product
software. As a next evolutionary step for our DSL, we would
like to benefit from the features the Dezyne toolset offers, like
C++ code generation and model checking. If all model checks
pass, we know that the generated C++ code is free of certain
issues. We present a model to model transformation developed
in QVTo, that transforms our own DSL called the Movement
Specification Language (MSL) to another DSL called Dezyne.
To avoid confidentiality issues, we use a Lego robot example to
explain the MSL.

I. INTRODUCTION

Fig. 1. Interventional X-ray system

A
T Philips IGT, we develop and produce the interventional

X-ray systems as shown in Figure 1. These systems are

used for the diagnosis and treatment of mainly cardio and

vascular diseases. One of the sub-systems is responsible for

positioning the X-ray beam with respect to the patients body.

A stand hanging on the ceiling holds an X-ray generator and

an X-ray detector. To position the X-ray beam, the user of

the system can initiate motorized movements of the stand

using joysticks. Depending on the system state, these joystick

requests are altered by a software component called the

supervisory controller. Approximately six years ago we devel-

oped a Domain Specific Language (DSL) called: ‘Movement

Specification Language’ (MSL). Language instances of the

MSL called models describe the behaviour of the supervisory

controller. To integrate a MSL model in our software, the in-

stance is provided as input for a code generator that generates

C++ code. The generated code can then be integrated in our

software such that it behaves as described in the language

instance.

Schuts et. al. [13] describe the evolution of the grammar

of the MSL. In this paper, we describe the next evolutionary

step we took to improve the MSL. We would like to replace

the model to text C++ code generator by a model to model

transformation. The target is a model in the Dezyne language 1.

Dezyne is a modelling language created by a Dutch company

called Verum. Dezyne language instances can be checked

for certain properties with the use of a model checker [2].

If all properties checks pass, C++ code can be generated

with guaranteed equivalent behaviour as the checked model

[2]. To be able to detect violations of certain properties in

a MSL model and have C++ code that does not contain

these violations we want to use the model checker and code

generator provided by Dezyne.

The work described in this paper is executed by the first

author of this paper during his internship at Philips. New in

this paper, as compared to his master thesis [12], is that in

this paper, we present and explain the QVTo instance needed

for the model to model transformation.

The paper is organized as follows. We start with Section II

about related work followed by Section III where we briefly

describe the architecture of all the related languages and how

they interact with each other. In Section IV, we introduce

the case and grammar. The case will be a running example

throughout this paper. Next in Section V we explain Dezyne

and how the MSL example instance of Section IV maps to a

Dezyne instance. Section VI describes how we have automated

the transformation from MSL to Dezyne. Then we present the

results in Section VII. We conclude our paper in Section VIII.

II. RELATED WORK

The DSL that is developed at Philips IGT and described

in this paper is informally described in [13] and formally

described in [12]. Furthermore the Dezyne toolset is the suc-

cessor of another toolset developed by Verum called ASD [3].

At Philips ASD has been successfully applied and evaluated as

a valuable tool for software development. ASD, like Dezyne,

is a lightweight formal software development tool. The toolset

1https://verum.com/discover-dezyne/
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can be utilized to define and generate C++ code from finite

state-machine models. Furthermore, the toolset is capable of

detecting defects in the finite state-machines by means of

model checking. Case studies of applying ASD at Philips IGT

can be found in [5] and [11]. In both cases, the software

contained less defects than when developing the software

using conventional techniques of software development. Fur-

thermore, both cases conclude that the overall development

process was more efficient as time was spared because less

tests had to be developed as some defects could be detected

using the model checker of ASD.

The Dezyne toolset consists of a modelling language, a

code generator and capabilities for model checking. In [2] the

Dezyne language features are described and the transformation

from the Dezyne modelling language to another modelling

language called mCRL2 [6] is described. The mCRL2 models

outputted by the transformation are used by the mCRL2 toolset

[4] for model checking the behaviour of the Dezyne models.

Model to model transformations have been successfully

applied in several occasions in the industry. For example, in

[8] the authors describe a model to model transformation that

was implemented at Cern2 using the Asf+Sdf toolset [17]. The

authors define a model to model transformation from a state

machine DSL developed at Cern to the mCRL2 modelling

language. This allowed the DSL instances from Cern to be

model checked using the mCRL2 toolset and thus finding

defects earlier in the development process. Furthermore, at

Philips IGT a model to model transformation has successfully

been applied in order to refactor state machine models from

the Rhapsody [7] language to Dezyne [14]. This model to

model transformation has been positively evaluated by com-

paring two approaches, manual transforming the models in the

Rhapsody language to Dezyne and automatically transforming

the Rhapsody models to Dezyne. The authors take into account

the time it takes to fully implement and test a model to model

transformation and the time it takes to do the transformation

manually. The conclusion of the paper is that automating the

transformation is a less time consuming process than doing

the transformation manually.

As model transformations and, both toolsets from Verum:

ASD and Dezyne have successfully been applied and posi-

tively evaluated at Philips we would like to continue on this

path and therefore develop a model to model transformation

that generates Dezyne language instances.

Finally, the QVTo language is an extension to the QVT lan-

guage, the QVT language is described in [9] with the addition

of operational mappings which is called QVTo. The extension

QVTo adds new common imperative language constructs to

the QVT language such as loops and conditions. Furthermore,

the authors describe scenarios on which QVT can be utilized

and which not. The authors discuss that the language can be

seen as a general purpose model transformation language and

suitable for a variety of model transformation problems. In

addition they describe that the QVT language is less suitable

2https://home.cern/

for data transformation problems. Finally, in [16] a foundation

is laid to describe QVTo transformations in a mathematical

format for documentation purposes. As there are cases where

the QVTo language has been evaluated for different purposes

we present a practical application of QVTo in this paper.

III. MODEL TO MODEL TRANSFORMATION ARCHITECTURE

In order to be able to benefit from the advantages of Dezyne,

we use Query/View/Transformation operational (QVTo) [9],

defined by the Object Management Group (OMG) [10], as a

language for describing a model to model transformation.

2: Instance

1: MSL

Ecore

Conforms to

Conforms to

5: Instance

Dezyne

Ecore

Conforms to

Conforms to

3: Instance

QVTo

Ecore

Conforms to
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4

Fig. 2. Model to model transformation overview

Figure 2 provides an overview of the different languages

we created and used. We make use of the Eclipse Modeling

Framework (EMF) [1]. On the meta-meta-level we have Ecore,

part of EMF, which is essentially a language to describe

languages. The languages we use are described in Ecore.

In Figure 2, all green boxes are language concepts that we

developed and all blue boxes existed or are generated.

Our work consists of the following steps:

Step 1 In this step, we created a grammar for the

MSL. The specifics of this language are described in

[13].

Step 2 Software engineers create and alter an MSL

instance to describe the behaviour of the supervisory

controller.

Step 3 In this paper, we focus on the QVTo language

instance we created.

Step 4 This step automatically generates Dezyne

models. For the generation, a MSL instance and a

QVTo instance are taken as input.

Step 5 We now have a generated Dezyne instances.

Properties of the instances are tested using a model

checker. If all checks pass, we generate C++ code

with Dezyne and are done. If, however, there are

failing properties, we have to go back to Step 2 and

change the language instance after which Steps 4 &

5 have to be executed again.

IV. MOVEMENT SPECIFICATION LANGUAGE

First in order to understand the paper we will introduce the

Movement Specification Language (MSL) as far as needed.
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Because of confidentiality, we describe the MSL using a Lego

rover example. The described example is inspired by an earlier

paper we wrote about the evolution of the MSL’s grammar

[13].

We start this section with an introduction of the Lego Mars

rover. Next we explain what Mars looks like. Then we describe

how the Lego Mars rover is controlled. Last we provide an

MSL example instance.

A. Rover

The Lego Mars rover has to accomplish missions on Mars

Its mission is to search for water.

Fig. 3. Lego Mars rover

The Lego Mars rover is depicted in Figure 3. The rover has

two big wheels at the front that are powered by two individual

motors and the rover has a wheel at the back. Two bumpers

at the front can detect if the rover has collided with an object.

Between the bumpers there is a colour sensor that is used to

look at the surface of Mars. At the back and on top of the

rover an ultrasonic sensor looks forward.

The Lego Mars rover is remotely controlled. With joysticks

the following movements can be requested: moving forward,

moving backward, turn left and turn right. For all movements,

the analog deflection of the joystick indicates the desired

movement speed.

B. Playing Field

Fig. 4. Mars

For Mars we use Figure 4. Mars has the following charac-

teristics:

• Mars has a square and flat surface.

• The surface of Mars is black and the edge has a white

line.

• On the surface there are coloured lakes.

• There can be rocks on Mars.

The colour sensor is used to detect the edges of Mars. It is

used to prevent driving the rover over the edge. The colour

sensors can also be used to detect the colour of the lakes.

Rocks can be seen at a distance using the ultrasonic sensor.

Collisions with rocks are detected by the bumpers.

C. Controller

The controller of the Lego Mars rover is responsible for

altering movement request that come from the remote control.

The controller could alter a request based on the following

examples:

1) State: The rover can be in a certain state for example,

when the bumpers are active or when a sensor is defect

the rover can reduce the speed of movement or even

stop.

2) Position: The rover can deduce its position on the

playing field. Depending on the on the position the rover

can either reduce or increase its speed. For example, it

can detect when it is near a lake or on the surface of

Mars.

3) Sensor value: Sensor values of the rover can provide

input that indicate that the rover should stop or reduce

its speed. For example, when the collision sensor detects

the rover is nearing a collision the rover should reduce

its speed.

Note that: if none of the inputs trigger a reason to alter the

movement request then the movement request will be executed

unchanged.

D. Movement Specification Language

The DSL we describe in this section is used to describe the

behaviour of our controller. We created a DSL we call MSL

using the Xtext [1] Eclipse plug-in. First a few requirements

are specified for the controller followed by an example of

an MSL instance that implements these requirements. After

that we argue that some of these requirements might lead to

conflicting behaviour and how this is reflected in the MSL

instance.

First consider the following requirements for our MSL

instance:

1) Given the Lego Mars rover is driving on the surface

of Mars then the rover should move with at most max

speed.

2) Given the Lego Mars rover is driving near a coloured

lake then the rover should move with at most a reduced

speed.

3) Given the bumpers detect a collision then the rover

should disable the ultra sonic sensor.

4) Given the bumpers detect a collision then the rover

should stop immediately.
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1 c o n s t DrivingMovements = Forward +

Backward + T u r n L e f t + TurnRigh t

2 c o n s t ForwardMovements = Forward +

T u r n L e f t + TurnRigh t

3

4 WHILE I n s i d e LAKE_AREA DO MaximumSpeed

s a f e APPLIES TO ForwardMovements

5 WHILE I n s i d e MARS_AREA DO MaximumSpeed

max APPLIES TO DrivingMovements

6 WHILE i n S t a t e BUMPERS_ACTIVE In

ULTRA_SONIC_SENSOR i s d i s a b l e d

APPLIES TO allMovements

7 In ULTRA_SONIC_SENSOR , BUMPERS_SENSOR

i s enabled APPLIES TO allMovements

8 WHILE i n S t a t e BUMPERS_ACTIVE DO

QuickStop APPLIES TO allMovements

9 WHILE i n S t a t e ULTRASONIC_ACTIVE DO

NormalStop APPLIES TO allMovements

Listing 1. New proposal

5) Given the ultra sonic sensors detect a rock then the rover

should gradually reduce speed and eventually stop.

Requirements 1 and 2 are requirements for the movement

speed of the Lego Mars rover. On the flat surface of Lego

Mars the rover is allowed to move with maximum speed

as its collision prevention sensors are capable of preventing

potential harm. However, the rover should move with at most

a reduced safe speed whenever it is near a coloured lake

as it is incapable of detecting when it could potentially ride

into the water and thus get stuck in the water. Furthermore,

requirement 3 ensures that the rover only relies on the bumper

sensors when it is in a collision that the ultrasonic sensor is

not able to detect. For example, when the obstacle’s height is

below the vision of the ultrasonic sensor. Then, the bumpers

detect a collision and the ultrasonic sensor does not. Finally,

requirements 4-5 are requirements that prevent the rover from

colliding into obstacles. For requirement 4, the rover should

stop immediately as it is already colliding with an obstacle

when the bumpers detect a collision. However, when the

ultrasonic sensor detects a collision, the rover has still some

room to move forward. Hence, it may stop in a more gradual

manner.

In Listing 1 an example MSL instance of the Lego rover is

shown. It is used as a running example throughout the paper.

The example instance in Listing 1 describes requirements 1-5.

All the words in bold and blue are keywords i.e. part of the

MSL’s grammar. As explained in Section IV-C, a movement

request can be altered by the controller. Lines 4-9 provide six

examples of how the movement requests are altered.

First we will discuss some language concepts that help

understand how the requirements are implemented. Consider

line 4, the line contains a condition, action and a set of move-

ments. The condition is denoted after the WHILE keyword,

the action is denoted after the DO keyword and the applicable

set of movements is denoted after the APPLIES TO keywords.

Conditions can be considered as logical propositions and

thus can be evaluated to true or false. The actions in the

MSL instance are references to handwritten C++ classes that

implement a function that takes as input a movement request

and outputs an altered movement request. A typical line in

the MSL instance can be interpreted as: when the condition

is true, execute the action for movement requests related to

movements in the set of movements. Furthermore, there are

also actions related to enabling or disabling certain sensor

inputs. Examples of such actions are shown on lines 6-7. These

lines describe when the rover should consider or ignore the

input values from certain sensors.

Recall Mars as shown in Figure 4. Line 4 describes that

when a movement is requested and the rover is inside one of

the lake areas of Mars the rover will move with at most a re-

duced ‘safe’ speed. This line is applicable to all the movement

requests related to driving forward i.e. moving forward, turn

left and turn right. This set of movements is also defined in the

language instance itself as shown on line 2. The line defines

a set of movements called ForwardMovements to be the

union of three movements being: Forward, TurnLeft and

TurnRight. In addition, line 5 describes similar behaviour to

line 4 the difference is that the rover moves at maximum speed

instead of a reduced speed. These two lines essentially cover

requirements 1 and 2. Next, lines 6-9 implement the behaviour

required for requirements 3-5. Line 6 specifies that when the

bumper sensor is active, the input from the ultrasonic sensor

is disabled for all of the available movements. Furthermore, in

other cases the ultrasonic sensor should be enabled and this is

specified by line 7. These two lines implement the behaviour

of requirement 3. In addition line 8 covers requirement 4. Line

8 states that when the bumper sensor is reporting a collision

the movement should stop immediately which is represented

by action QuickStop. Finally, line 9 covers requirement 5

which can be interpreted in a similar fashion as line 8, the

difference being that the condition depends on the ultrasonic

sensor input and the action representing a gradual stop.

E. Verification properties MSL

With the example in Listing 1 we will outline some prop-

erties that we would like to have in our MSL instance.

Recall that in a MSL instance the maximum speed of a

movement can be set depending on the system state. An

undesirable scenario is an instance that can set conflicting

speeds for one specific movement. For example, in the MSL

a developer can specify two lines where one line specifies

that a movement should move with safe reduced speed while

another specifies that a movement should move with maximum

speed. If the conditions of those two lines exclude one another

there is no problem i.e. the conditions can never both evaluate

to true. However, if the two conditions do not exclude each

other there might be cases where the speed is first set to the

maximum value and then to a reduced value or vice versa. We

would like to prevent such specifications as this might lead to

undesirable behaviour i.e. the rover damaging itself. Hence, a
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MSL instance should be free of ambiguous specifications for

speed values. From now on we will refer to the property as

no conflicting speeds.

The next property we would like our MSL model to have

is that the specification is unable to simultaneously enable

and disable the same sensor input. Such a specification might

also lead to undesirable behaviour as it will or will not ignore

certain sensor input while it is required to do so. This might

occur when a developer specifies two lines where one line

enables the input of a sensor and the other disables the input

of a sensor and similar to property no conflicting speeds both

conditions do not exclude each other. In addition to the no

conflicting speeds property we would also like a MSL instance

to be free of ambiguous specification where a sensor input can

simultaneously be turned on and off. From now on we will

refer to this property as no ambiguous sensor status.

V. DEZYNE

In order to understand the translation we will as far as

required describe the Dezyne modelling language, its features

and give a small example. After that we will provide an outline

to the implemented model to model transformation from the

MSL to Dezyne. Dezyne language instances are called models

and from now on we will refer to Dezyne languages instances

as Dezyne models.

A. Dezyne toolset

External code

LightController

IButton ILight

LightSystem

Fig. 5. System model of light system example

We start with an introduction to the Dezyne modelling

language and the features of the Dezyne toolset. The Dezyne

modelling language is a DSL with the purpose of designing

state machine models. Dezyne models define three main

concepts: interfaces, components and systems. We will explain

the different types of Dezyne models by means of an example.

Consider a simple light switch system where a light can be

turned on and turned off by a button press. In addition the

light has a requirement that whenever the light is turned on it

is not allowed to turn the light on again and whenever the light

is turned off it is not allowed to turn the light off again. The

structure of the light switch system is depicted in Figure 5. The

outside rectangle represents the external code while the inside

rectangles represent a Dezyne system and component model

LightSystem and LightController respectively. An

arc at the end of a connection means that the Dezyne interface

is required by the rectangle that it is connected to and a circle

at the end of a connection means that the Dezyne interface is

provided by the rectangle that it is connected to. We will now

continue to zoom into these Dezyne concepts.

1 i n t e r f a c e I B u t t o n {

2 in vo id b u t t o n P r e s s ( ) ;

3 behaviour {

4 on b u t t o n P r e s s : { }

5 }

6 }

Listing 2. Example Dezyne interface model IButton

1 i n t e r f a c e I L i g h t {

2 in vo id tu rnOn ( ) ;

3 in vo id t u r n O f f ( ) ;

4 enum S t a t e {On , Off } ;

5

6 behaviour {

7 S t a t e s t a t e = S t a t e . Off ;

8 [ s t a t e . On ] on t u r n O f f : { s t a t e = S t a t e . Off ; }

9 [ s t a t e . Off ] on t u r n O f f : i l l e g a l ;

10 [ s t a t e . On ] on tu rnOn : i l l e g a l ;

11 [ s t a t e . Off ] on tu rnOn : { s t a t e = S t a t e . On ; }

12 }

13 }

Listing 3. Example Dezyne interface model ILight

1) Dezyne interface models: First, interfaces in Dezyne

models describe a specification of deterministic stateful be-

haviour. The description of behaviour in the interface models

is implemented by Dezyne component models or external C++

code. The interface models can define input events. Input

events can be used as input for the implementation of a Dezyne

interface. Interfaces can also define output events which occur

as a consequence of certain behaviour and can be input for

other implementations of the same interface. However, output

events are not utilized by our Dezyne translation. Hence, we

will further omit them. Furthermore, interface models can

also define when certain behaviour is illegal meaning that the

implementation is not allowed to trigger certain input events

in certain states. For example, consider the interface model

defined in Listing 2 for the light switch system. The model

defines on line 2 one input event that corresponds to the button

being pressed. The second interface model called ILight

defined in Listing 3 defines two input events and a state type to

keep track of the system’s state i.e. whether the light is turned

on or turned off. Furthermore, the interface specifies for each

state what is allowed and what is not allowed. For example,

on line 8 the interface specifies that whenever the interface is

in the On state a turnOff event is allowed, while on line 9

the interface specifies that the turnOff event is not allowed

by specifying it with the illegal keyword.

1 component L i g h t C o n t r o l l e r {

2 p r o v i d e s I B u t t o n p r o v i d e d ;

3 r e q u i r e s I L i g h t r e q u i r e d ;

4 behaviour {

5 I L i g h t . S t a t e s t a t e = I L i g h t . S t a t e . Off ;

6 on p r o v i d e d . b u t t o n P r e s s ( ) : {

7 i f ( s t a t e == I L i g h t . S t a t e . Off ) {

8 r e q u i r e d . turnOn ( ) ;

9 s t a t e = I L i g h t . S t a t e . On ;

10 } e l s e i f ( s t a t e == I L i g h t . S t a t e . On ) {

11 r e q u i r e d . t u r n O f f ( ) ;

12 s t a t e = I L i g h t . S t a t e . Off ;

13 }

14 }

15 }

16 }

Listing 4. Example Dezyne Component model LightController

2) Dezyne component models: The second type of models

in Dezyne are component models. These component models

implement the actual behaviour described by the interface

models. Component models can either require or provide

an interface model. The models need to adhere to the state
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behaviour that is described by their provided and required

interfaces. When a component requires an interface it means

that the component can trigger the inputs of the interface.

Furthermore, when a component provides the interface it

means that the component provides the implementation of the

interface i.e. the component defines what the behaviour is if

certain inputs are triggered. The component model defined in

Listing 4 implements the behaviour for the required interface

i.e. interface ILight. On lines 6-14 the component model

defines the behaviour of the input event buttonPress.

The implementation triggers the input events on the required

ILight interface according to the specification of the inter-

face. The component ensures the behaviour of the interface by

keeping track of the state and using the if else statement on

lines 7 and 10 to evaluate the system state and call the correct

input event on the provided interface.

1 component Ligh tSys t em {

2 p r o v i d e s I B u t t o n p r o v i d e d _ p o r t ;

3 r e q u i r e s I L i g h t r e q u i r e d _ p o r t ;

4

5 system {

6 L i g h t C o n t r o l l e r c o n t r o l l e r ;

7 p r o v i d e d _ p o r t <=> c o n t r o l l e r . p r o v i d e d ;

8 c o n t r o l l e r . r e q u i r e d <=> r e q u i r e d _ p o r t ;

9 }

10 }

Listing 5. Example Dezyne system model LightSystem

3) Dezyne system models: The third type of Dezyne models

are the system models. These models describe the composi-

tion of the components and interface models i.e. the models

describe the structure depicted in Figure 5. Meaning that these

models specify what interface is connected to what component

and what interfaces are provided and required to the software

that is integrating the Dezyne models. External C++ code is

supposed to provide the implementation of turning the light on

and off and trigger the input event on the IButton interface

when the button is pressed. Furthermore, the Dezyne models

implement the control behaviour of the light switch system.

The Dezyne model that represents this structure is depicted in

Listing 5. Observe that the LightSystem is also a compo-

nent model that provides and requires interfaces. The required

interfaces of the LightSystem will be provided by the ex-

ternal code. On line 6 the model states that the system consists

of one component model being the LightController.

On line 7 the model connects the implementation of the

provided interface to that of the LightController and

on line 8 the model connects the required interface of the

LightController to the external code.

The semantics of the Dezyne models from Listings 2-5

implement the run to completion semantics [15]. The run to

completion semantics imply that when a Dezyne component

calls an input event on an interface the component gets blocked

and awaits the result of the event that was called. These

semantics are demonstrated in Figure 6. Observe that on the

component the buttonPress event is called, as a conse-

quence of the input event, component LightController

calls the turnOn event on the required interface. Now observe

that both the component and the initial caller on the component

are blocked until the required interface returns.

The next feature Dezyne offers is formal verification of the

behaviour that is expressed by a Dezyne model with the help of

the mCRL2 model checker [2]. The general formal verification

properties that Dezyne can verify are:

• Deadlock and livelock i.e. can the specification in a

Dezyne model get stuck and thus no longer progress.

• Compliance i.e. does the component implement equiva-

lent state behaviour as the provided interface description

i.e. does the component not trigger illegal behaviour.

• Deterministic i.e. does a component or interface specifi-

cation implement deterministic behaviour.

Finally, Dezyne models can be used as input for a C++ code

generator that outputs code that is equivalent in behavior to

the mCRL2 model. Whenever the model checker does not find

any violations in a Dezyne model, C++ code can be generated

and integrated in a system. In the case of the light switch

system, the model checker found no violations which, implies

that the implementation in component LightController

is not able to trigger a turnOn event when the light is turned

on or turnOff event when the light is turend off.

B. Translation outline

In this section we will describe the outline of the Dezyne

models outputted by the model to model transformation. In

Figure 7 an outline of all the Dezyne models generated

for movement TurnLeft is shown. The rectangles describe

component models and the connectors between the rectan-

gles describe the interface models. An arc at the end of a

connection means that the component requires the mentioned

interface and a circle at the end of a connection means that

the component provides the mentioned interface.

The main idea of the translation is that each

distinct action-movement pair has its own component.

Figure 7 shows the decomposition for the TurnLeft

movement. Observe that the TurnLeft movement

shows two components that have behaviour for an

action i.e. component TurnLeftUltraSonicSenor

and component TurnLeftMaximumSpeed. Component

TurnLeftUltraSonicSenor implements the behaviour

Fig. 6. Semantics Example model
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InputHandler

BehaviorExecutorTurnLeft

TurnLeftMaximumSpeedTurnLeftUltraSonicSensor

IMovement

IActionExecutorIActionExecutor

IInput

IBehaviorExecutorIConditionHandler

Dezyne models

External code

Fig. 7. Translation outline

for enabling and disabling the ultrasonic sensor and component

TurnLeftMaximumSpeed implements the behaviour for

setting the maximum speed of the movement. Recall, from the

running example in Listing 1 that for movement TurnLeft,

a QuickStop action and a NormalStop action are also

defined. Our translation would also generate component

models for these two actions. However, we have omitted

these from Figure 7. Furthermore, the other components

BehaviorExecutorTurnLeft and InputHandler,

process the input coming from manually written components

in the system. Movement requests are provided as input

through the IInput interface. Depending on the request

the InputHandler will forward the movement request

to a component that maintains the behaviour for a specific

movement. For example, in the case of a movement request for

the TurnLeft movement InputHandler will forward the

request to component BehaviourExecutorTurnLeft

which will then forward the input to the relevant action

components i.e. TurnLeftUltraSonicSenor and

TurnLeftMaximumSpeed.

VI. QVTO

In this section, we will describe how we utilized QVTo to

implement our model to model transformation. First we will

provide a Dezyne model that shows how we want a generated

model to look like using the model to model transformation.

Second we will describe the QVTo language constructs and

see how the translation is implemented.

A. Dezyne target model

1 component T u r n L e f t U l t r a S o n i c S e n s o r {

2 r e q u i r e s I C o n d i t i o n H a n d l e r i C o n d i t i o n H a n d l e r ;

3 r e q u i r e s I B e h a v i o u r E x e c u t o r i B e h a v i o u r E x e c u t o r ;

4 p r o v id e s I A c t i o n E x e c u t o r i A c t i o n E x e c u t o r ;

5 behaviour {

6 enum S t a t e { enab led , n o t S e t , d i s a b l e d } ;

7 S t a t e s t a t e = S t a t e . n o t S e t ;

8 on i A c t i o n E x e c u t o r . e x e c u t e B e h a v i o u r s ( mc ) : {

9 s t a t e = S t a t e . n o t S e t ;

10 b oo l bumpersAc t ive = i C o n d i t i o n H a n d l e r . BumpersAct ive ( ) ;

11 i f ( bumper sAc t ive ) {

12 i B e h a v i o u r E x e c u t o r . D i s a b l e d ( mc , UltraSonicSensor ) ;

13 i f ( ! ( s t a t e == S t a t e . d i s a b l e d s t a t e == S t a t e . n o t S e t ) ) i l l e g a l ;

14 s t a t e = S t a t e . d i s a b l e d ;

15 }

16 i f ( t ru e ) {

17 i B e h a v i o u r E x e c u t o r . Enab led ( mc , UltraSonicSensor ) ;

18 i f ( ! ( s t a t e == S t a t e . e n a b l e d s t a t e == S t a t e . n o t S e t ) ) i l l e g a l ;

19 s t a t e = S t a t e . e n a b l e d ;

20 }

21 }

22 }

23 }

Listing 6. Component specification TurnLefUltraSonicSensort

The Dezyne component models that are generated all

have a similar structure. Listing 6 shows an example

of a Dezyne model generated by our model to model

transformation. The model implements the behaviour of

turning the ultrasonic sensor on and off for movement

TurnLeft as described in our running example in Listing

1. Observe that the model requires two interfaces being

IConditionHandler and IBehaviourExecutor, and

it provides the IActionExecutor interface. The required

interfaces are used to evaluate conditions and to execute

actions. The provided interface is there to provide the input

to the Dezyne model. In the case of the model in Listing

6 the input consists of movement requests for movement

TurnLeft. Furthermore, observe that line 11 implements

the condition on line 6 of Listing 1. In addition line 16

implements the absent condition on line 6 of Listing 1. Hence,

it is simply translated as true. Finally in order to verify that

the no ambiguous sensor status property holds, the Dezyne

model keeps track of the state of the sensor and triggers an

illegal event when conflicting values for the sensor state are

set. This is implemented using the if-statements on lines 13

and 18.

B. QVTo language

We will introduce QVTo as far as needed to understand this

paper. The first main concept QVTo defines are the source and

the target language i.e. the language that is used as input and

the language that the QVTo transformation should output.

NormalCondition

CurrentSystemStateInsideArea

EventDeclaration
normalConditionToTerminal

Fig. 8. Description of mappings

The second QVTo concept that we will discuss are map-

pings. Mappings transform a language element from the

source language to a language element in the target language.

Mappings are one of the main driving concepts in the QVTo

language. For example, consider the conditions of the MSL.

As mentioned earlier our MSL language conforms to the

Ecore language on the meta model level. The conditions
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1 mapping msl : : Norma lCond i t i on : : n o r m a l C o n d i t i o n T o T e r m i n a l ( . . . ) ,

2 d i s j u n c t s

3 msl : : I n s i d e A r e a : : I n s i d e A r e a T o T e r m i n a l ,

4 msl : : C u r r e n t S y s t e m S t a t e : : s y s t e m S t a t e T o T e r m i n a l : dzn : : E v e n t D e c l a r a t i o n {

5

6 }

7

8 mapping msl : : I n s i d e A r e a : : I n s i d e A r e a T o T e r m i n a l ( . . . ) : dzn : : E v e n t D e c l a r a t i o n {

9 name := " i n s i d e " + s e l f . o b j e c t 3 D . name ;

10 d i r := dzn : : E v e n t D i r e c t i o n : : IN ;

11 typeName := new BoolType ( ) ;

12 }

13

14 mapping msl : : C u r r e n t S y s t e m S t a t e : : s y s t e m S t a t e T o T e r m i n a l ( . . . ) : dzn : :

E v e n t D e c l a r a t i o n {

15 name := " i n S t a t e " + s e l f . c u r r e n t S t a t e . name ;

16 d i r := dzn : : E v e n t D i r e c t i o n : : IN ;

17 typeName := new BoolType ( ) ;

18 }

Listing 7. Disjunct mapping normalConditionToTerminal

1 query i sMovement InSe t ( movementName : S t r i n g , s e t : O r d e r e d S e t ( c s l : : AMovement ) )

: Boolean {

2 re turn s e t −> s e l e c t O n e ( s | s . name = movementName ) != n u l l ;

3 }

Listing 8. Query for movement set

are described using an Ecore class called ‘NormalCondi-

tion’. This class has two subtypes called ‘InsideArea’ and

‘CurrentSystemState’. This class decomposition is shown in

Figure 8, the composition can be interpreted similar to super

types and subtypes in object-oriented programming languages.

QVTo mappings allow us to convert object instances of the

NormalCondition type to object instances of the target Dezyne

language.

Listing 7 shows an example of a mapping in QVTo. This

mapping defines how objects of the ‘NormalCondition’ type

should be transformed to ‘EventDeclaration’ type of Dezyne

i.e. it defines events for the evaluation of system states on the

ICondtionHandler interface. On line 1 a mapping for the

‘NormalCondition’ type is defined. Note that the mapping first

states the input type i.e. ‘NormalCondition’. Then observe on

lines 2-4 that the mapping defines mappings for its subtypes

‘InsideArea’ and ‘CurrentSystemState’. Finally, on line 4 the

mapping also defines the output type of the mapping which

is a type of the target language. In this case, the output type

is an ‘EventDeclaration’. The mappings for the subtypes are

defined on lines 8-18. Typically a mapping states what values

class member variables of the target class should have. For

example on lines 9-11 it is shown that the EventDeclaration

that is the result of the mapping ‘InsideAreaToTerminal’ states

what name the event should have, what the direction of the

event is i.e. ingoing or outgoing and finally what the type of

the event is i.e. boolean.

The next language concept in QVTo are queries. Queries

are typically used to retrieve information from elements in the

source language. Furthermore, queries can also be utilized to

return static elements of the target language. An example of a

query is shown in Listing 8, the query determines if a certain

movement is in a certain set of movements. Observe that the

query is implemented similar to lambda expressions in modern

object-oriented programming languages.

Furthermore, QVTo defines the notion of intermediate

classes. Elements from the source language can be mapped

1 i n t e r m e d i a t e c l a s s B e h a v i o u r S t a t e m e n t {

2 name : S t r i n g ;

3 c o n d i t i o n : i n t e r m e d i a t e C o n d i t i o n ;

4 a c t i o n : msl : : Genera lDoAct ion ;

5 setOfMovements : MovementSet ;

6 } ;

Listing 9. Intermediate class

1 mapping msl : : G e n e r a l E x e c u t i o n S t a t e m e n t : : E x e c u t i o n S t a t e m e n t T o B e h a v i o u r S t a t e m e n t

( . . . ) : B e h a v i o u r S t a t e m e n t {

2 name := s e l f . name ;

3 i f ( s e l f . c o n d i t i o n s != n u l l ) {

4 c o n d i t i o n := new i n t e r m e d i a t e B o o l E x p r C o n d i t i o n ( s e l f . c o n d i t i o n s ) ;

5 } e l s e {

6 c o n d i t i o n := new i n t e r m e d i a t e N o C o n d i t i o n ( ) ;

7 } ;

8 a c t i o n := s e l f . a c t i o n G e n ;

9 setOfMovements := s e l f . se tOfMovements . xmap SetOfMovementsToSet ( . . . ) ;

10 } ;

Listing 10. Intermediate class mapping

to intermediate classes before they are mapped to elements

of the target language. This can be beneficial as not always

elements from the source language can be one to one mapped

to elements in the target language. Listing 9 shows an ex-

ample of a intermediate class, it describes an abstraction of

a behaviour in the MSL language. Recall from the instance

in Listing 1 that a line in the MSL can describe a behaviour

that consists of a condition, action and an applicable set of

movements. This intermediate class is meant to be used to

extract this relevant information from a MSL model. Observe

that the class also makes use of intermediate classes such

‘intermediateCondition’ and ‘MovementSet’.

An example of how intermediate classes can be used in a

QVTo mapping is shown in listing 10. The Listing defines a

mapping where the language element ‘GeneralExecutionState-

ment’ gets mapped to the intermediate class ‘BehaviourState-

ment’. The ‘GeneralExecutionStatement’ is the class defined

in the source language that describes typical MSL statements

such as the ones in the example in Listing 1. This mapping

is convenient as it determines the correct condition for a

behaviour statement, the correct set of movements and the cor-

responding action. Observe that on line 9 in Listing 10 another

mapping is called to extract the correct set of movements from

a ‘GeneralExecutionStatement’.

Finally, in order to generate the component model of Listing

6 the mapping from the ‘GeneralExecutionStatement’ to the

intermediate class ‘BehaviourStatement’ is used and then

another mapping called ‘BehaviourStatementToComponents’

is used to generate the Dezyne component. The implementa-

tion of this mapping is shown in Listing 11. Observe that

in this mapping we generate a new component for each

movement action pair for a ‘GeneralExecutionStatement’. The

loop on line 3 in Listing 11 iterates over the applicable set

of movements for a ‘BehaviourStatement’. Then on line 5 the

earlier created Dezyne component is retrieved from a mapping

called ‘StatementToComponent’. This mechanism is called

‘resolve’ in QVTo and it allows a user to retrieve results

from earlier mappings in the transformation. The resolve

feature is very convenient in this case as we only want to

create one component for each specific movement, action pair.

346 COMMUNICATION PAPERS OF THE FEDCSIS. SOFIA, BULGARIA, 2022



1 mapping B e h a v i o u r S t a t e m e n t : : Behav iourS ta t emen tToComponen t s ( . . . ) {

2 var act ionName := s e l f . a c t i o n . name ;

3 s e l f . se tOfMovements . movements −> forEach ( move ) {

4 var componentName := move . name + act ionName ;

5 var component := componentName . r e s o l v e o n e I n ( S t r i n g : :

Sta tementToComponent ) ;

6 i f ( component == n u l l ) {

7 component := componentName . xmap StatementToComponent ( . . . ) ;

8 } ;

9

10 var i f E x p r := s e l f . c o n d t i o n . xmap i n e r m e d i a t e C o n d i t i o n T o I f E x p r e s s i o n

( . . . )

11 var b e h a v i o u r E x e c u t o r P o r t := component . p o r t s − >(p | p . name = "

i B e h a v i o u r E x e c u t o r " ) . oclAsType ( dzn : : P o r t D e c l a r a t i o n ) ;

12 var a c t i o n E v e n t := s e l f . a c t i o n . r e s o l v e o n e I n ( msl : : Genera lDoAct ion : :

g e n e r a l E x e c u t i o n S t a t e m e n t T o A c t i o n E v e n t ) ;

13 var t h e n := new CompoundBehaviourSta tement ( ) ;

14 t h e n . s t a t s += new A c t i o n O r F u n c t i o n S t a t e m e n t ( . . . ) ;

15 t h e n . s t a t s += Genera teCheck ( . . . ) ;

16 var i f S t a t e m e n t := new I f S t a t e m e n t ( ) ;

17 i f S t a t e m e n t . ex p r := i f E x p r ;

18 i f S t a t e m e n t . t h e n := t h e n ;

19

20 component . b e h a v i o u r . s t a t s −> f i r s t ( ) . oclAsType ( dzn : : OnEven tS ta t emen t ) .

s t a t . oclAsType ( dzn : : CompoundBehaviourSta tement ) . s t a t s +=

i f S t a t e m e n t ;

21 }

22 }

Listing 11. BehaviourStatement to component

1 t r a n s f o r m a t i o n Msl2DZN ( i n s o u r c e : genmsl , o u t t a r g e t : dzn ) ;

2

3 main ( ) {

4 s o u r c e . r o o t O b j e c t s ( ) [ genmsl : : GENMSLModel ] . xmap MSL2DZN ( ) ;

5 }

6

7 mapping genmsl : : GENMSLModel : : MSL2DZN ( ) : L i s t ( dzn : : M o d e l D e c l a r a t i o n L i s t ) {

8 r e s u l t += s e l f . xmap a c t i o n s T o E v e n t s ( ) ;

9 r e s u l t += s e l f . xmap c o n d i t i o n s T o C o n d i t i o n I n t e r f a c e ( ) ;

10 r e s u l t += s e l f . xmap movementsToInter faceAndComponents ( ) ;

11 r e s u l t += s e l f . xmap behav ioursToDezyne ( ) ;

12 }

Listing 12. BehaviourStatement to component

Furthermore, observe that the if-statement on line 6 ensures

that a new Dezyne component is created if it has not been

mapped before. Next lines 13-20 implement the generation of

the if-statement that corresponds to evaluating the condition

and executing the action. First on line 13 it maps the condition

to a Dezyne if expression. Then on lines 11-12 the QVTo

mapping retrieves the action elements in the target language

in order to build the body of the if-statement. Finally on

lines 13-20 the if-statement along with its body is created

and added to the component. In addition on line 15 a query is

called that depending on whether the component checks the

no ambiguous speed or no ambiguous sensor status property,

generates the if statement that contributes to the verification i.e.

the if-statements on lines 13 and 18. This mapping essentially

generates the Dezyne component that is shown in Listing 6.

To fit all the mappings together the final mapping that QVTo

requires is to define a transformation. Listing 12 shows the

definition of a transformation and the main function associated

with it. Line 1 states the definition of the transformation,

specifying the source and the target language. Then on line

3 the main entrypoint for the transformation is defined where

we specify that the objects in the source language are to be

transformed by the mapping called ‘MSL2DZN’. This main

mapping is defined on line 7 which specifies that it returns a

list of ‘ModelDeclarationList’ in the target language i.e. a list

of component and interface models.

VII. RESULTS

The developed model to model transformation extended the

capabilities of the MSL with model checking capabilities and

the capability to use the Dezyne C++ code generator that

allows us to dismiss our C++ code generator for the MSL. We

will discuss the results of applying the transformation in the

running example and in a MSL model of the interventional X-

ray system. First we will describe the violations of the model

checking properties no conflicting speeds and no ambiguous

sensor status in our running example. Then we describe

the transformation outcome and model checking properties

violations found on a MSL model integrated in the software

of the interventional X-ray system.

A. Model checking violations in running example

In our running example in Listing 1 we deliberately put

violations of the no conflicting speeds and no ambiguous

sensor status properties. Both the conditions on lines 4 and 5

can evaluate to true this results in an ambiguous specification

for the speed value. For example, when the Mars rover is on

the border of the lake and the Mars area then both the con-

ditions Inside LAKE_AREA and Inside MARS_AREA

might both evaluate to true. This ambiguous specification is

applicable to all of the movements in the intersection of both

the specified set of movements in both lines i.e. {Forward,

TurnLeft, TurnRight}.

Furthermore, there is also a violation of the no ambiguous

sensor status property. We have specified that both sensor

input should be enabled by default (line 7) while also the

ultra sonic sensor input should be ignored when the bumper

sensor is active (line 6). Hence, whenever the condition

inState BUMPERS_ACTIVE evaluates to true, the Mars

Rover’s specification is ambiguous on whether or not it should

consider or ignore the sensor input from the ultra sonic sensor.

The violation of the ambiguous sensor status is applicable

for all of the movements the system can perform as both

of the applicable set of movements on lines 6 and 7 are all

movements.

B. Model checking violations Philips IGT system

For the software of the interventional X-ray system a MSL

model has been developed that describes the behaviour that

is specified by the requirements. We have applied the trans-

formation described in this paper to generate Dezyne models

that were capable of verifying the properties no conflicting

speeds and no ambiguous sensor status. The transformation

generated approximately 1200 Dezyne models. The amount

can be explained by the fact the transformation generates a

new component model for each specific movement action pair

in the MSL model. In the MSL model that is integrated in the

X-ray system there are 55 movements and 20 actions. Hence,

the maximum amount of models that our transformation could

generate is 55*20=1100. Then for each specific movement

there is also a Dezyne model generated with the addition

of the interface and composition models. These models were

mostly small in size and the model checker of Dezyne was

LEO VAN SCHOOTEN ET AL.: FROM MSL TO DEZYNE: AN INDUSTRIAL APPLICATION OF QVTO 347



capable of verifying most of them. The model checker of

Dezyne has found 4 violations of the no conflicting speeds

property and 17 violations of the no ambiguous sensor status

property. Not all of the violations were issues in the software

because the order in the MSL instance happened to be such

that the code generator of the MSL generated C++ code that

did not implement behaviour that could cause an issue. In

addition some of the found ambiguous specifications between

two lines in the MSL were not ambiguous because although

both conditions could be true at the same time in theory, in

practice it concerned system states that could never be true at

the same time. Unfortunately, there were 27 generated Dezyne

models that had a very vast state-space, we did not explore

the state-space of all of the models but one of the models

had a state-space of approximately 160 million states. The

Dezyne model checker was not able to verify these models

in a acceptable time period, some models could take hours or

longer to verify. Finally, the C++ code generated by Dezyne

was integrated in the software of the interventional X-ray

system. With the Dezyne code the regression test cases passed

that every code change in the X-ray system’s software need

to pass. Hence, we have good confidence that the behaviour

described by the MSL instance is preserved in the generated

Dezyne models.

VIII. CONCLUDING REMARKS

To conclude we have implemented a model to model

transformation from a DSL developed at Philips IGT called the

MSL to another DSL developed by Verum called Dezyne. This

transformation is the next step in the evolution of the MSL.

The transformation to Dezyne can be utilized as an interme-

diate step between developing a MSL model and generating

C++ code that can be integrated in our software. The additional

benefit of the generated Dezyne models is that their behaviour

can be model checked and thus, we can ensure that our MSL

instance does not contain certain potential issues. In the MSL

a developer can make certain specifications ambiguous by

specifying multiple speed values that are both set in a specific

system state. Furthermore, a developer can specify that certain

sensor inputs should be ignored or considered. Specifying the

consideration of a sensor input could also lead to ambiguous

specifications as a developer could specify to both ignore

and consider a certain sensor input in a specific system state.

In order to prevent such ambiguous specifications the trans-

formation generates Dezyne models that could detect these

ambiguous specifications using model checking. In total the

transformation generated approximately 1200 Dezyne models

which, contained 21 ambiguous specifications. These models

were generated from a MSL model integrated in the software

of the interventional X-ray system.

There are some improvements that can be made using this

approach. As mentioned in the previous section, the Dezyne

models do not contain any domain specific knowledge, leading

to flagging potential issues which in practice could never

occur. Furthermore, there are some Dezyne models outputted

by our transformation that have a state-space that is to vast

for the model checker to output a result in a acceptable time

period. Therefore, as future work we would like to solve the

state-space explosion problem in addition we would like our

Dezyne models to be more aware of domain specific concepts

such as system states that exclude each other. Finally, another

improvement we could make is seeing if there are more actions

in the MSL that are tightly coupled to each other and could

for example also lead to ambiguous specifications.
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