The electric vehicle shortest path problem with time windows and prize collection

Antonio Cassia, Ola Jabali, Federico Malucelli
Politecnico di Milano, Italy
Email: {antonio.cassia, ola.jabali, federico.malucelli}@polimi.it

Marta Pascoal
University of Coimbra, CMUC, INESC-Coimbra, Portugal,
Email: marta.brazpascoal@polimi.it

Abstract—The Electric Vehicle Shortest Path Problem (EV CPP) aims at finding the shortest path for an electric vehicle (EV) from a given origin to a given destination. During long trips, the limited autonomy of the EV may imply several stops for recharging its battery. We consider combining such stops with visiting points of interest near charging stations (CSs). Specifically, we address a version of the EVSPP in which the charging decisions are harmonized with the driver’s preferences. The goal is to maximize the total gained score (assigned by the driver to the CSs), while respecting the time windows and the EV autonomy constraints. We define the problem as a MILP and develop an A* search heuristic to solve it. We evaluate the method by means of extensive computational experiments on realistic instances.

I. INTRODUCTION

DEVISING tools that facilitate the use of Electric Vehicles (EVs) is key to successfully electrifying transport, e.g., [5]. The limited autonomy of EVs coupled with the scarcity of charging stations (CSs) entails that long trips may involve several charging stops. Given that such stops are likely to be time consuming, we explore the idea of matching the charging stops with user preferences.

Considering an EV that needs to travel between an origin and a destination, we consider that the user attributes a score to each CS. Such scores are based on the vicinity to Points of Interest (POIs) to the CS. For example, a user may prefer to stop at cultural venues. In this case, a high score is given to CSs nearby such venues. Using those scores, we consider the problem of optimizing the shortest path respecting all energy feasibility constraints, while maximizing the total score that the user can achieve. To handle this problem we propose the Maximum Profit Model (MPM). To avoid excessively long trips, we limit the duration of the route. We establish this limit by solving the Shortest Path Model (SPM), which is the shortest EV path in time. We allow the MPM to deviated from the shortest path length within a given tolerance.

We adapt the Mixed Integer Linear programming (MILP) model proposed in [6] to handle the MPM and the SPM. Furthermore, we develop a heuristic algorithm based on the A* search which handles large instances of MPM. To this end, we propose the Maximum Discounted Profit Model (MDPM), which discounts the scores of the nodes into the arc costs that connect them. By doing so, we are able to efficiently adapt the A* search Algorithm to the MPM.

In general, the Electric Vehicle Shortest Path Problem (EV CPP) is a shortest path problem that accounts for battery limitation and charging constraints. Due to their limited autonomy, EVs may need to detour to CSs in order to recharge their battery. This is particularly true in medium and long range routes, like in [11]. A key decision in this context is where and how much to charge the EVs. The problem of minimizing the overall trip time for EVs in road networks was studied by [1]. A heuristic algorithm for solving large EVSPP instances was proposed in [14]. Baum et al. [2] introduced a functional representation of the optimal energy consumption between two locations, which led to developing an efficient heuristic algorithm that computes energy optimal paths.

One of the main EVSPP modeling assumption relate to how the EV batteries are recharged. Some researchers assume that the EV must completely recharge before leaving a CS, e.g. [4], [9]. Other works (e.g., [6], [10], [12]) consider the charging quantity as a decision within the optimization. As in most studies we assume that the energy consumption is directly and exclusively related to the traveled distance.

In practice, the EV charging function is nonlinear with respect to time, and depends on the used charging technology. The nonlinear charging functions were modeled as piecewise linear concave functions by [6], [10].

Time window (TW) constraints have been introduced in EV problems by [12]. TWs oblige EVs to arrive in predetermined CSs before or during a particular time interval. Contrary to what is done in the literature, we assume that TW types are given (e.g., lunch breaks), yet their location is determined from a set of CSs which accommodate this type of TW. Furthermore, we consider required and weakly mandatory TWs.

Considering that CSs have different scores and a given maximum path length (in time), the aim of the MPM is to maximize the total score of visited CSs. As such, CSs that better match the user preferences are prioritized. We consider a single EV, with partial recharging decisions and nonlinear charging functions. Furthermore, we consider only public CSs, having different technologies and scores. We also consider TWs with a limit on the total travel time.
The contributions of this paper are threefold: 1) we propose an EV shortest path model that accounts for user preferences (MPM); 2) we develop a heuristic based on the A* algorithm to solve that problem; 3) and we verify the performance of both the MILP model and the heuristic algorithm on realistic test instances.

We introduce the MPM in Sec. II and develop an A* algorithm for it in Sec. III. We present our computational experiments in Sec. IV, and state our conclusions in Sec. V.

II. PROBLEM DEFINITION

The MPM maximizes the score of the CSs visited by the EV, such that the resulting path is feasible and within a tolerance from the shortest EV path. In the literature, the goal of maximizing scores obtained by visiting nodes is often called prize collection [13]. To model the MPM we adapt the arc based MILP model of [6]. Due to space limitations, we do not present the full formulation. Instead, we give an overview of that work and then detail the major adaptations made to handle the MPM.

Froger et al. [6] introduced the Fixed Route Vehicle Charging Problem (FRVCP), given a sequence of customer nodes (i.e., not CSs) to visit, the objective of the FRVCP is to determine the charging operations (which CSs to visit and how much to charge), in order to minimize the total route duration while satisfying the following conditions: The customers in the resulting route are visited according to the given order, the resulting route is energy feasible and satisfies a maximum duration limit T^{max}. The state of charge (SoC) of the EV is tracked on each traversed arc and visited node. The EV may be partially recharged at a set of charging stations S, which may have different technologies. For each technology we consider a nonlinear charging function, approximated via a piecewise linear function following the models by [10]. In the MPM the fixed sequence of nodes to visit goes from an origin O node to a destination D node.

Building on the FRVCP, we now describe the MPM. Let $G = (S_{O,D}, A)$ be a directed graph, where $S_{O,D} := S \cup \{O, D\}$ and A is the set of arcs that connect pairs of nodes in $S_{O,D}$. Let $t_{ij} \geq 0$ and $e_{ij} \geq 0$ be the driving time and energy consumption of arc $(i,j) \in A$, both satisfying the triangular inequality. The EV departs from O with a fully charged battery of capacity Q. We impose that the SoC of the EV is at least η_{min} throughout the route. Since we consider long trip planning, we assume that the number of nights is a user input.

The user will spend some time in the neighborhood of the selected CS. Moreover, in certain moments of the day, the user may prefer to visit a CS near a POI, e.g., restaurants or hotels. CSs are typically strategically placed near those types of POIs. It is important that the user visits CSs that best suit her preferences. We attribute a score σ_j for $j \in S$, which are input to the MPM. We assume that they can be derived based on the user’s ranking of POIs. Furthermore, the user may personalize her trip by imposing TWs related to an activity (e.g., lunch breaks). The classical definition of TWs determines a time to visit a given node. In the MPM, such TWs may be realized at a number of CSs. We therefore denote the TWs related to our MPM as Activity-based Time Windows (ATWs). In our experiments in Sec. IV, we assign to each CS a randomly generated score between 0 and 5. In practice, these values will be established by the user in real applications.

Let W be the set of all ATWs, which is partitioned into two subsets, $W^R, W^M \subseteq W$, formed by the required and the weakly mandatory ATWs. The EV is forced to stop in each $k_R \in W^R$, but it must stop in $k_M \in W^M$ only if there exists at least one k_R such that $k_M < k_R$. Otherwise, k_M may be skipped. We assume that the sets W^R, W^M are ordered by chronological order of starting time of the TWs. Each ATW is defined as:

$$k := (\gamma_k^L, \gamma_k^U, t_{k}^{\text{min}}, o_k, \nu_k), \quad k \in W,$$

where the interval $[\gamma_k^L, \gamma_k^U]$ (with $\gamma_k^L < \gamma_k^U$) describes its initial and ending times (the EV must arrive before γ_k^U); t_{k}^{min} is the minimum time that the EV needs to stop during k; o_k is a binary value, equal to 1 if $k \in W^M$, and 0 otherwise. The set W is ordered, thus, if $k < h$, then $\gamma_k^L < \gamma_h^U$, for any $k, h \in W$. The EV is allowed to arrive at a node with a maximum anticipation time $\bar{\nu}$. In this case, the activity will nevertheless start at γ_k^L. Thus, if the EV arrives in node i in the interval $[\gamma_k^L - \bar{\nu}, \gamma_k^U]$, then it may decide to stop at i for at least t_{k}^{min} or instead perform k in a subsequent node. In addition, we use hard TWs, which means that it is not possible to perform the ATW k before $\gamma_k^L - \bar{\nu}$ nor after γ_k^U.

Finally, two ATWs can overlap, but they cannot be contained in one another. Each CSs is associated with multiple POIs, and each TW requires a specific POI. This information is stored in the label ν_k and is different for each TW. For instance, if $k \in W$ refers to the first night, then ν_k = “Hotels” and the EV is forced to stop at a CS near a hotel. So, it is possible to construct the set of chargers $S_t \subseteq S$ that have in their neighborhood the POI stated in ν_k.
To determine T^{max} we solve an EV Shortest Path Problem SPM, subject to the same constraints as MPM, but with the goal of minimizing the total trip duration (i.e., ignoring the scores). Let T^{opt} be the optimal objective function value of SPM, which is a theoretical lower bound on T^{max}. Then, let T^{add} be the tolerance of the total additional detouring time from the shortest path to stop in nodes with higher scores. Therefore, we set T^{max} to $T^{\text{opt}} + T^{\text{add}}$.

To avoid routes with many stops at SCs, we introduce the parameter r_{min}, as $r_{\text{min}} := [0.4 \left(Q - q_{\text{min}} \right)] \eta$, where η is the average energy consumption per kilometer (expressed in kWh/km), and is dependent on the EV type. The ratio $(Q - q_{\text{min}}) / \eta$ represents the maximum autonomy of the vehicle, excluding the minimal amount of energy that is always required. With this arrangement it is possible to prune all the arcs associated with a distance less than r_{min}, which also avoids stops for charging the EV in consecutive locations that are very close to each other.

Let ξ denote a lower bound on the distance of a trip from O to D (its computation is described in Sec. IV). Then the maximum number of legs N in a path is defined as $[1.5 [\xi / r_{\text{min}}]]$.

III. A* Search Algorithm

In the following we propose a heuristic algorithm for the SPM and extend it for solving the MPM. Recall that the SPM solution serves as an input to the MDPM. The algorithm is based on the A* search, which finds a path from an origin O to a destination D with the smallest cost. To do that, it maintains the tree of all the paths originated from O and extends each of them one arc at a time until D is reached. It uses a best-first search by selecting the node that minimizes

$$f(i) := g(i) + h(i),$$

where i is the current node, $g(i)$ is the cost of the path from O to i, and $h(i)$ is an estimate of the cost of the shortest path from i to D. If $h(i)$ never overestimates the real cost to reach D from i, for all i, then the A* algorithm finds the optimal solution.

The A* algorithm is based on minimizing cost mechanisms, thus it is not directly applicable to prize collection settings such as the MDPM. Therefore, we propose the MDPM which approximates the MPM, searching for a shortest path while maximizing the total score. To do that, we assign a weight s_{ij} with each arc, defined as

$$s_{ij} := t_{ij} + \Delta_j - \mu \sigma_j, \quad \forall (i,j) \in A \text{ s.t. } i, j \in S,$$

where Δ_j is the time spent waiting while the EV is charging at the CS j, and μ is a parameter that indicates the relative importance of the score with respect to the time required to go from i to j, charging time included. The objective function of the MDPM model is then

$$\min \sum_{(i,j) \in A, j \in S} s_{ij} \pi_{ij},$$

This expression is nonlinear, but it can be linearized by introducing new decision variables s_{ij}, and changing the objective function as

$$\min \sum_{(i,j) \in A, j \in S} [(t_{ij} - \mu \sigma_j) \pi_{ij} + s_{ij}]$$

We first discuss the computation of the potentials used to estimate the heuristic function h. We then incorporate the TWs in the heuristic. Finally, we modify the algorithm to account for the scores in h.

Let q_i and q_i be the SoC when the EV arrives and departs from CS i. The variables ξ_i and τ_i are respectively the start and end time for charging an EV. Variables τ_i, τ_i track the time when the EV arrives and leaves CS $i \in S$, respectively. There is also a tolerance φ_i that represents how much time in advance, with respect to γ_i, the EV can arrive in i, for any $i \in S$. The maximum anticipation time is set to φ, but even if the EV arrives in advance, the minimum stopping time t^{stop}_k starts at γ_i and not before.

Let x_{ij} be a binary variable which equals 1 if the EV arrives at node j from node i, 0 otherwise. The variable y_{ij} is also binary and it is 1 if the EV stops in j in TW k, 0 otherwise. The maximum duration of the trip is T^{max} (in Sec. III we show how to compute an upper bound for this value). The variable z_k is binary and is equal to 1 if the EV arrives in D after TW k, 0 otherwise, for any $k \in W^M$. It is used to link the arrival time in node D and avoidable TWs.

A. Potentials

We now find an initial estimate of the total time from any CS i to D, building on techniques used in [14]. We start by dropping the charging and the TW constraints, thus we obtain a problem that can be solved using the Dijkstra’s algorithm. Let $G := (S_{O,D}, A)$ be the directed graph from O to D, where $S_{O,D}$ is the set of nodes and $A := S_{O} \times S_{D}$ the set of arcs. We then apply the backward Dijkstra’s algorithm, which operates on the reversed graph $G' := (S_{D,O}, A')$ where

$$A' := S_{D} \times S_{O} \text{ such that } (i,j) \in A \Rightarrow (j,i) \in A',$$

while considering D as the origin and O as the destination. This allows us to obtain a lower bound on the driving time from any $i \in S_{O,D}$ to D, which we denote by $\pi_d(i)$. To account for energy consumption, we apply the backward Dijkstra’s algorithm considering the energy consumption as the weight for the arcs. This allows us to derive the minimum amount of energy required from $i \in S_{O,D}$ to D. We denote this lower bound by $\pi_{\text{cons}}(i)$.

The EV arrives partially charged at each node, with an amount of energy equal to SoC(i). Since the minimal amount of SoC q_{min} needs to be respected at every node, we can think of SoC$(i) - q_{\text{min}}$ as the available energy at node i. Then, to compute the minimal amount of energy from i to D, we define

$$\pi_{\text{cons}}(i) := \pi_{\text{cons}}(i) - (\text{SoC}(i) - q_{\text{min}}).$$
We now compute a lower bound for the charging time, based on the minimal required energy at a node $i \in \mathcal{S}_{O,D}$. We define $\mathcal{G}_i := (T_i, A_i)$ as a subgraph of \mathcal{G}, where T_i is the set of reachable nodes from i, and A_i is the set of arcs comprising a path from i to any $j \in T_i$ (see Fig. 2).

Let $s_{\text{max}}(i)$ denote the maximum charging rate of all the CSs in T_i. We denote the maximum charging rate of CS j as ρ_j, which corresponds to the largest slope of the piecewise charging function of j. We then set $s_{\text{max}}(i)$ as $\max \{ \rho_j : \forall j \in T_i \}$. This improves the computation of the charging potential with respect to [14], where s_{max} is constant and does not depend on the nodes that are reachable from i.

If the energy available at i is greater than the remaining energy needed to reach D, then $\tilde{\pi}_{\text{cons}}$ can be negative. Thus, two cases are considered when computing a lower bound for the charging time:

$$\tilde{\pi}_{\text{ch}}(i) := \begin{cases} \frac{\tilde{\pi}_{\text{cons}}(i)}{s_{\text{max}}(i)} \text{SoC}(i) - q_{\text{min}} & \text{if } \text{SoC}(i) > q_{\text{min}} \\ 0 & \text{otherwise} \end{cases}$$

This gives a potential that returns the minimal charging time from any node $i \to D$. Thus, a lower bound on the total trip time is given by

$$\tilde{\pi}_a(i) := \tilde{\pi}_{\text{ch}}(i) + \tilde{\pi}_{\text{dr}}(i) \quad \forall i \in \mathcal{S}_{O,D}.$$

We improve this lower bound by accounting for TWs. Let $\pi_{\text{tw}}(i)$ be the minimal stopping time that the EV must perform from $i \to D$ according to the ATWs. The trip accounts for the sum of all the minimum stopping times. Let \tilde{k} be the last TW in the ordered set \mathcal{W}^{R}. Suppose that, when at node i, the EV has not performed all TWs in \mathcal{W}^{R}. Then, $g(i) \leq \gamma_k^L + t_k^{\min}$, where $g(i)$ is the arrival time at i and γ_k^L is the starting time of TW k. In this case, we compute a lower bound for the TWs potential as the sum of all the stopping times that have not been performed by the time $g(i)$. If instead, in node i, the EV has already done all the TWs in \mathcal{W}^{R}, then $g(i) > \gamma_k^L + t_k^{\min}$ and the potential for the TWs must be zero. Therefore, if $\pi_{\text{tw}}(i)$ is the TWs potential for node i, we have

$$\pi_{\text{tw}}(i) := \begin{cases} \sum_{k \in \mathcal{W}^{R}, g(i) < \gamma_k^L} t_k^{\min} & \text{if } g(i) \leq \gamma_k^L + t_k^{\min} \\ 0 & \text{otherwise} \end{cases}$$

For instance, suppose that \mathcal{W}^{R} contains 1 hour stop for lunch, one tourism stop for 2 hours and one for sleeping for 11 hours. Then, before lunch $\pi_{\text{tw}}(i) = 14$, after lunch $\pi_{\text{tw}}(i) = 13$, and the next day $\pi_{\text{tw}}(i) = 0$.

We now incorporate π_{tw} in π_a. The EV charges during each stop. Thus, we cannot simply sum π_{tw} and π_{ch}, since they may overlap. Instead, we can obtain a better lower bound considering the maximum between π_{ch} and π_{tw}, and then adding the driving potential π_{dr}. So,

$$\pi_i^a(i) := \pi_i^a(i) + \max \{ \pi_{\text{ch}}(i), \pi_{\text{tw}}(i) \}$$

defines the lower bound for the total stopping time from $i \to D$. We are not overestimating the real cost, since taking the maximum we consider for each node the best possible charging scenario that at least the EV has to perform.

B. Labels

Label $L_{j,m}$ represents the state of the EV when arriving at the m-th copy of node j, that is dynamically allocated. With this label we keep track of the state of the EV. For notational convenience, we denote $g(j,m)$ by g_j^m. Each label includes the total time needed to reach j_m, so it includes both driving and charging times. For instance, suppose that the EV goes from the n-th copy of i to the m-th copy of j, namely from i_n to j_m. Then the label $L_{j,m}$ considers driving from $i \to j$ and the charge in i that is needed to reach j for the m-th time. It excludes the time the EV spends charging in j. The label of the m-th copy of node j, with i_n as its direct predecessor, is:

$$L_{j,m} := (i, g_j^m, h_j^m, f_j^m, P_j^m, \beta_j^m, q_j^m, \sigma_j^m, \Delta_j^m, \omega_j^m)$$

where

- i is the node from which the EV arrives to j_m;
- g_j^m is the total travel time from O to j_m;
- h_j^m is the estimated travel remaining time from j_m to D;
- f_j^m is the estimated arrival time at D if the path from O to j_m is performed. It is given by $f_j^m := g_j^m + h_j^m$;
- P_j^m is the label from which the EV arrives, i.e., L_{i_n}, which is the label of the n-th copy of node i, with $n \in \{1, \ldots, M_i\}$;
- β_j^m is the additional time spent at j for charging, it is chosen from an ordered set $\beta := \{\beta_1, \beta_2, \ldots, \beta_n\}$;
- q_j^m is the amount of energy that is charged in the predecessor node i_n. It is computed to at least respect the consumption e_{ij} and is given by $q_j^m := \sigma_j^m - q_j^m$, where

$$\sigma_j^m := \max \left\{ q_j^m, e_{ij}, Q \right\};$$

- q_j^m is the amount of energy of the EV when arriving at j_m. It is computed as $q_j^m := q_j^m + e_{ij}$;
- Δ_j^m is the minimum time the EV must charge at j_m. This amount of time is considered in the next label and not in $L_{j,m}$. It is defined as

$$\Delta_j^m := \begin{cases} \max \{ 0, \gamma_k^L - \beta_j^m \} + t_k^{\min} & \text{if } \text{TW } k \text{ is performed in } i_n \\ 0 & \text{otherwise} \end{cases}$$

$$\omega_j^m := \begin{cases} \max \{ q_j^m - q_j^m - e_{ij}, Q \} & \text{if } \text{TW } k \text{ is performed in } i_n \\ 0 & \text{otherwise} \end{cases}$$
where γ_k^T is the starting time of TW k and t_{k}^{min} is its minimum stopping time. TW k is retrieved using ω_k^m (see below);

- Δ_j^m is the charging time in i_j.

It is given by

$$\Delta_j^m := \max \{ \lambda_j^m, \tau_j^m - e_j^m \} + \beta_j^m,$$

where $\tau_j^m := \Phi_j^{-1}(\tau_j^m)$ and $e_j^m := \Phi_j^{-1}(e_j^m)$, with Φ_j^{-1} the inverse of the charging function in node j. The term β_j^m is added to consider the cases in which the EV charges more than needed;

- ω_j^m is the index of the last TW k prior to node j_m.

Parameters Δ, q and β are strictly related to β. As a consequence, also g, h and f depend on β. The value of λ instead depends strictly on ω.

C. A* search algorithms for the MPM and MDPM

Using the labeled descriptions above we now outline the A* search algorithm. We start by implementing a heuristic approach to find the fastest path from O to D, referring to this as AsM.

The origin node O is initialized as follows:

$$L^O_B := (O, g^O_B = t_{\text{start}}, h^O_B = h^O(O), f^O_B = g^O_B + h^O_B, p^O_B = -\infty, 0, 0, g^O_B = Q, 0, 0, 0),$$

where g^O_B is the starting time of the trip. Thus, f^O_B represents the arrival time in D and not the duration of the trip. Let L be the set of all labels, and M_j be a counter of the number of copies of $j \in \mathcal{S}_O, \mathcal{D}$. The algorithm keeps track of open labels using a priority queue Q. Every time a new label is created, it is added to Q in a way that the first element of Q is always the one with the lowest f^m_j, among all labels L^m_j, so

$$\mathcal{J}_m := \arg \min_{j_m \in \mathcal{S}_O \cup \mathcal{D}, m=1, \ldots, M_j} \{ f^m_j \}.$$

We now introduce some of the functions used later in the pseudocode. The function $\text{Pop}(Q)$ returns the label with the lowest f in Q, while function $\text{Push}(Q, L_m)$ adds the label L^m_j to the queue. Function $\text{Star}(G, j)$ returns the set of nodes $h \in \mathcal{S}_D$ such that $(h, j) \in \mathcal{A}$, in descending order with respect to t_{ij}. The function $\text{NextTW}(W^R, \omega_k^m)$ returns the next TW in W^R that is not visited when the EV arrives at node j_m. The EV is allowed to arrive at a node with a maximum anticipation time of $\tilde{\omega}$. The boolean function $\text{NodeHasPOI}(i, \nu)$ returns one if there is at least one POI of the category ν in the neighborhood of node i, and zero otherwise.

Function $\text{MaxSlope}(\mathcal{S})$ applied to a generic subset \mathcal{S} of CS \mathcal{S}, returns the maximum slope among all the charging functions of nodes in \mathcal{S}. To speed up the algorithm, all the subtrees are precomputed. The function $\text{Routing}(i, j)$ returns the pair (t_{ij}, e_{ij}), that are respectively the time and the energy required to go from i to j, for any $i \in \mathcal{S}_O, j \in \mathcal{S}_D$. The function $\text{MinStop}(g_i)$ returns $\pi_i(\epsilon_i)$.

The A* algorithm is described in Alg. 1. It starts by initializing the counters for all the copies and storing the subtree of each node. Then the label associated with the origin is created and added to the queue and to the set of all the labels.

Algorithm 1 AS* Search Algorithm

1. function $\text{AS*Search}(G, Q, q_{\text{min}}, t_{\text{start}}, t_{\text{end}}, W^R, \beta)$
2. for all node $h \in \mathcal{S}_D$ do
3. $T[h] := \text{SubGraph}(G, h)$, $M_h := 0$
4. end for
5. $M_{\text{C}} := 1$, Initialize L^O_C, $L := \{ L^O_C \}$, $Q := \{ O \}$
6. while Q do
7. $L^2 := \text{Pop}(Q) = (O, q^2_B, h^2_B, f^2_B, p^2_B, \beta_j^2, q^2_j, L^2_j, \Delta_j^2, \omega_j^2)$
8. if $i = D$ then
9. if $\omega_j^2 < |W^R|$ then go to 6
10. return L^1, L
11. else
13. if k is not None then
14. $\text{IDX} := w^2_j$, $C := k$
15. while C is not None do
16. if $T[i] \cap \mathcal{S}_C = \emptyset$ then go to 6
17. $\text{IDX} := \text{IDX} + 1$, $C := \text{NextTW}(W^R, \text{IDX})$
18. end while
19. end if
20.Neighbors := $\text{Star}(G, i)$
21. for all $j \in \text{Neighbors}$ do
22. $t_{ij}, e_{ij} := \text{Routing}(i, j)$
23. if $e_{ij} > q_{\text{min}}$ then go to 24
24. for all $\beta \in [0, \beta)$ do
25. $\Delta := \text{ChargingEnergy}(i, e_{ij}, \omega_j^2)$
26. $\omega_j := \max \{ \lambda_j^2, \Delta \} + \beta$, $q := \text{ChargingForTime}(i, \omega_j^2, \Delta)$
27. $s_{ij} := g^2_B + \Delta + t_{ij}$
28. if $s_{ij} > t_{\text{end}}$ then go to 21
29. else
30. if $q_{\text{min}} > s_{ij}$ then go to 21
31. if $f_{ij}^2 \leq q_{\text{min}} < s_{ij}$ then
32. if $D = \text{NodeHasPOI}(i, \nu)$ then go to 39
33. $M_j := M_j + 1$, $m := M_j$
34. $\lambda := \max \{ 0, \omega_j^2 - g_{ij}^2 \} + t_{ij}^\text{min}$
35. $L^m := \text{CreateLabel}(i, j, g_{ij}^2, q_j^2, \Delta, q, t_{ij}, e_{ij}, \lambda, \omega_j^2 + 1, \beta, L^m_i)$
36. $L := L \cup \{ L^m \}$, $\text{Push}(Q, L^m)$
37. end if
38. if $s_{ij} > t_{\text{end}}$ then go to 21
39. $M_j := M_j + 1$, $m := M_j$
40. $L^m := \text{CreateLabel}(i, j, g_{ij}^2, q_j^2, \Delta, q, t_{ij}, e_{ij}, 0, \omega_j^2, \beta, L^m_i)$
41. $L := L \cup \{ L^m \}$, $\text{Push}(Q, L^m)$
42. end for
43. end for
44. return None
45. end function

A Check if the subtree of current node contains the category of POI that is needed for the next TW and the subsequent ones. Otherwise, goes to the next element in the queue.

The label L^m_j with the lowest value of f is selected and then the algorithm finds the next TW k that must be performed. A check is performed to verify if the current label entails the arrival to the destination point; if so, we verify whether the index ω_k^m of the last visited TW is at least equal $|W^R|$. If this is not the case, the EV has not visited yet all the non-avoidable TWs, and thus the current label must be discarded. Otherwise, the current label and the set of all the generated labels are returned and the search terminates.

At this point, if k is not NONE the algorithm checks whether or not there exists at least one node in T_i of the current node i in which the POI constraint of TW k is satisfied. Then it checks the same for all the TWs in W^R that must be performed after k.

The algorithm proceeds by considering the nodes j such that $(i, j) \in \mathcal{A}$. A sequence of operations assures that the trip from i_0 to j_m is feasible, where m is the index of the m-th copy of j that will be created if all the checks are passed. First the energy
constraints. If the energy required on arc \((i, j)\) is greater than the maximum amount for the EV, we discard this label, and the algorithm proceeds to the next node in STAR\((G, i)\). Otherwise, if \(e_{ij} < Q - q_{\text{min}}\), we consider charging a greater amount of energy with respect to \(e_{ij}\) by looping on \(\beta\).

At line 25 of Alg. 1, the charging time and the charged energy are computed, given the current SoC \(q^n\) and the amount of energy required \(e_{ij}\). The two values are then updated on line 26, taking the current SoC and the arrival time.

We then compute a temporary value \(g_{\text{temp}}\) of the arrival time in \(j\). In case \(g_{\text{temp}} > \text{end}\), the current label is discarded. We then verify if the selected TW \(k\) is in \(\mathcal{W}R\). If so, then the algorithm must satisfy the constraints associated with \(k\). First, if \(g_{\text{temp}} > \gamma_k^T\), then the arrival time at \(j\) will be after the ending time of \(k\), which is not feasible. If instead, \(g_{\text{temp}}\) is included in the range \([\gamma_k^T - \varphi, \gamma_k^T]\), then the EV arrives at \(j\) during the TW \(k\). In this situation, the user may decide to stop in \(j\), and respect the TW constraints, or to continue driving to the next node \(h\) and see if it is possible to respect \(k\) in node \(h\). This scenario models the case in which, for instance, instead of respecting the lunch constraints in node \(j\), the user prefers to drive longer and eat at another place. In the case we stay in \(j\) to respect \(k\), we check whether node \(j\) has the POI that is required for \(k\). If so, a label \(L_j^m\) is created, imposing that \(\omega_j^m := \omega_j^b + 1\) (from \(j_m\) on, TW \(k\) is respected) and \(\lambda_j^m = \max\{0, \gamma_k^T - g_{\text{temp}}\} + t_{\text{min}}\). The max function is used to compute how much time in advance the EV arrives in \(j\), so the minimum stopping time imposed from any arc from \(j_m\) is \(\lambda_j^m\). If instead node \(j\) does not have any POI of the given category \(\nu_k\), we can step over and create a label that goes from \(i_n\) to \(j_m\) without imposing a minimum stopping time \(\lambda_j^m\). In this case \(\lambda_j^m = 0\) and \(\omega_j^m := \omega_j^b\). In both cases, the newly created label \(L_j^m\) is added to the set of labels \(L\) and pushed to the queue \(Q\). Finally, the loop on \(\beta\) continues after updating \(\beta\). Alg. 2 and 3 outline the creation of a new label, and its heuristic. Finally, if it is not possible to reach \(D\) respecting all the imposed constraints, the algorithm returns \(\text{NONE}\).

Algorithm 2 CREATELABEL function. It creates the label from node \(a\) to node \(b\), given the arrival time \(g\) in \(a\), the SoC \(q\), the charging time \(\Delta\), the charged energy \(q\), the driving time and energy, \(t, e\), the minimum amount of time needed to charge in node \(b\) in the next label, the index of the last performed TW \(\omega\), the charger additional time \(\beta\) and the previous label \(L\).

1: function CREATELABEL\((a, b, g, q, \Delta, q, t, e, \lambda, \omega, \beta, L)\)
2: \(g := g + \Delta + t; q := q + e - \varphi\)
3: \(h := \text{HEURISTIC}\((b, \varphi, \Sigma)\)
4: \(f := g + f\)
5: \(L := (a, g, h, f, L, \beta, q, q, \lambda, \Delta, \omega)\)
6: return \(L\)
7: end function

We modify the previously described A* search algorithm for the MDPM. We refer to this algorithm as AsDM. We add two parameters in the labels, as follows

\[L_j^m := (i, q^m_j, h^m_j, f^m_j, \tau_j^m, \beta_j^m, g^m_j, q^m_j, \lambda_j^m, \Delta_j^m, \omega_j^m, \Sigma^m_j, \varphi_j^m). \]

The first parameter is \(\Sigma^m_j\), which represents the total score gained from \(O\) to the current label. For copy \(j_m\),

\[\Sigma^m_j := \Sigma^i_j + \sigma_j, \quad \Sigma_O := 0. \]

The second parameter is \(\tau_j^m\), it represents the arrival time in copy \(j_m\). All the TWs constraints are now satisfied using this parameter instead of the arrival time \(g\). This means, for instance, that \(g_{\text{temp}} = \tau_j^m + \Delta - t_{\text{min}}\), and every \(g_{\text{temp}}\) is replaced with \(\tau_j^m\). The minimum waiting time becomes \(\lambda_j^m := \max\{0, \gamma_k^T - \varphi, \gamma_k^T\} + t_{\text{min}}\). For the origin node we have \(\tau_d^m = t_{\text{min}}\) and \(\varphi_0 = 0\). Finally, due to the different definition of labels, the function CREATELABEL is replaced by CREATELABELDISCOUNTED, and is outlined in Alg. 4.

Algorithm 4 CREATELABELDISCOUNTED function. It creates the label from node \(a\) to node \(b\), given the discounted cost \(g\) to \(a\), the SoC \(\varphi\), the charging time \(\Delta\), the charged energy \(q\), the driving time and energy, \(t, e\), the minimum amount of time needed to charge in node \(b\) in the next label, the index of the last performed TW \(\omega\), the charger additional time \(\beta\), the previous label \(L\), the arrival time \(\varphi\), and the gained profit \(\Sigma\).

1: function CREATELABELDISCOUNTED\((a, b, g, \varphi, \Delta, q, t, e, \lambda, \omega, \beta, L, \Sigma, \varphi)\)
2: \(s := g + \Delta + t; q := g + e - \varphi\)
3: \(h := \text{SCORE}(b)\)
4: \(g := g + \Delta + t - \mu\varphi\)
5: \(h := \text{HEURISTICDISCOUNTED}(B, q, \varphi, \Sigma)\)
6: \(f := g + f\)
7: \(L := (A, g, h, f, L, \beta, q, q, \lambda, \Delta, \omega, \Sigma)\)
8: return \(L\)
9: end function

Furthermore, function HEURISTIC, is replaced with HEURISTICDISCOUNTED, described in Alg. 5. The new function takes as input the additional parameter \(\Sigma\) and returns the following discounted estimated time to reach \(D\):

\[\pi_q^h(i) := \pi_q^{h^*}(i) - \mu\Sigma. \]

Thus, the final value of \(f\) computed for node \(D\) can be compared to the one computed with MDPM.
Algorithm 5 HeuristicDiscounted function. It returns the estimated time from node i to D, considering the SoC q, the arrival time g and the gained score Σ.

1: function HeuristicDiscounted(i, q, g, Σ)
2: \(\pi_{\text{disc}}(i) := \max \left\{ 0, \tau_k^p - g + \frac{q_{\text{min}}}{k} \right\} \)
3: if \(\tau_k < q_{\text{min}} \geq \pi_{\text{cons}}(i) \) then \(\pi_{\text{cons}}(i) := 0 \)
4: else \(s_{\text{MAX}} := \text{MaxSlope}(\text{SubGraph}(G, i)) \)
5: \(\pi_{\text{ch}}(i) := \pi_{\text{cons}}(i) - (q - q_{\text{min}}) \)
6: end if
7: return \(\pi_{\text{ch}}(i) \min \sum \pi_k \) − \(\mu \Sigma \)
8: end function

A. Data description and preprocessing

IV. COMPUTATIONAL EXPERIMENTS

A. Data description and preprocessing

We obtain CS locations and specifications from a company, whose name we cannot disclosed due to privacy reasons. The CSs were extracted from a bounding box that goes from 43.55° to 49.05° latitude and from 8.68° to 13.11° longitude, covering parts of Italy, Germany, Austria, Switzerland and the totality of Liechtenstein and San Marino (see Fig. 3).

Figure 3: Distribution of the CSs (created with mapcustomizer.com [7]).

CS i has a charging power \(p_i \). We categorize the CSs as follows:

- slow: \(p_i \leq 11 \text{kW} \),
- medium: \(11 \text{kW} < p_i \leq 30 \text{kW} \),
- fast: \(p_i > 30 \text{kW} \).

We have performed a number of preprocessing actions on the provided data set. The first step was to group CSs at similar locations, for each group the fastest charger within that group was considered. We then considered that CSs within a radius of \(r_M = 100 \text{m} \) form a cluster and if one CS belongs to two or more clusters, then all of them are merged. This reduction is based on the Haversine formula for computing the distance between each pair of nodes and assumes that the distances are symmetric. Merging all the CSs into a cluster produces a new CS that replaces the other CSs in the cluster. The cluster position is set as the average of the GPS coordinates of the CSs that comprise it, while its charging speed is set as the maximum among the CSs that comprise it. The final dataset is denoted by \(\Gamma \). The final number of CSs is summarized in Tab. 1.

Table I: Distribution of CSs for each country.

<table>
<thead>
<tr>
<th>Country</th>
<th>Original # CSs</th>
<th># CSs after grouping</th>
<th># CSs after clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>59339</td>
<td>5955</td>
<td>4135</td>
</tr>
<tr>
<td>Italy</td>
<td>15009</td>
<td>5713</td>
<td>4911</td>
</tr>
<tr>
<td>Switzerland</td>
<td>5400</td>
<td>1583</td>
<td>1334</td>
</tr>
<tr>
<td>Austria</td>
<td>3679</td>
<td>1488</td>
<td>1219</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>65</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>San Marino</td>
<td>34</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>83526</td>
<td>14789</td>
<td>11641</td>
</tr>
</tbody>
</table>

Using the post-processed database, we computed the distance and time matrix for each pair of CSs, obtained from multiple requests to the Open Source Routing Machine API (OSRM, [8]) server. The energy required by each arc was instead given by the product of the arc length and the average consumption per kilometer, as in [10].

The sets of required \(\mathcal{W}_r \), and weakly mandatory time windows \(\mathcal{W}^M \) are given as input. Furthermore, we consider that tourism AWTs \(\mathcal{W}^T \) are also given as input. For \(k \in \mathcal{W}^T \) a single CS location \(P_k \) is given. To construct the set \(S_k \), the Haversine distance is computed by searching for CSs within a radius \(r_T \) centered in \(P_k \). The CSs with a distance less than \(r_T \) are included in \(S_k \). If no eligible nodes are present, the radius is iteratively increased by \(\delta r \) and the search is repeated, up to a maximum of \(\tilde{r}_T \). If \(S_k \) is still empty, the computation is resumed and an error informs that it is not possible to reach \(P_k \) unless the EV is left more than \(\tilde{r}_T \) away. This process simulates the approach that a user needs to search for a CS near the location she wants to visit. If no CS is available at a reasonable distance from \(P_k \), then the user can decide to remove or change that tourism stop. For our experiments, we used \(r_T = 2 \text{km} \), \(\delta r = 200 \text{m} \) and \(\tilde{r}_T = 4 \text{km} \).

Given the origin \(O \), the destination \(D \) and the set of tourism stops \(\mathcal{W}^T \), we construct the set of chargers \(\mathcal{S} \) and the set of arcs \(\mathcal{A} \). Using OSRM, the optimal path without charging stops is computed and is used as a lower bound for SPM. All the CSs that are within a range of 5 km centered on the OSRM optimal route form the set \(\mathcal{S} \). Finally, we construct \(\mathcal{A} \) as the set of all arcs \((i,j) \) connecting nodes in \(\mathcal{S}_O, \mathcal{S}_D \).

In addition, we remove from \(\mathcal{S} \) all the nodes that have a distance from \(O \) that is less then \(r_{\text{min}} \), due to the fact that we want a solution with a small number of stops. Selecting one of those would have caused the EV to stop for just a few
kilometers from the origin point, which is not desirable. The same reasoning is applied to D.

We also remove arcs that are going in the opposite direction with respect to D. More precisely, for each arc $(i,j) \in A$, if by going from i to j the distance to D is reduced, then (i,j) is kept, otherwise it is deleted. This process nearly halves the amount of edges included in A.

Since the EV needs to respect the battery capacity Q, we want the total travel time to be small, we consider only the arcs (i,j) such that $r_{\text{min}} \leq d_{ij} \leq r_{\text{max}}$, where

$$r_{\text{max}} := \left[\frac{(Q - q_{\text{min}})}{\eta}\right].$$

Finally, nodes that were not reachable from any other CS, as well as the corresponding arcs, are deleted.

B. Experiments and results

The codes were implemented in Python, using IBM ILOG CPLEX Optimization Studio 20.1. The tests ran on a single core of an Apple MacBook Pro with 8 core Apple M1 processor of 3.2 GHz, with 8 GB of LPDDR4 RAM.

The considered EV was a Škoda Enyaq iV 60, with a net power charge $\eta = 0.187$ kWh/km [3]. It has a maximum power charge $P = 40$ kW, and we set the minimum required energy level q_{min} to 15 kWh.

Two subsets of CSs were created: a small one, Γ_1, with 650 CSs, used to compare the exact solution obtained with the MILP models with the A* search algorithms, and a larger one, Γ_2, with 5813 CSs, used to test the A* search. Both datasets were obtained by selecting uniformly a certain amount of CSs from Γ.

We tested the MILP shortest path model, SPM, and maximum profit model, MPM, as well as both A^* heuristics, the A^* search algorithm for the SPM, AsM, and its variant for the maximum discount profit model, AsDM, for set Γ_1. In addition, only the heuristics AsM and AsDM were applied to set Γ_2. Then for all AsDM models we solved SPM imposing that the EV must use the arcs selected by the heuristic. CPLEX was unable to solve any instance in Γ_2 within one hour. We denote by $GS_x^y (GT_y^x)$ the relative gap between the total score (trip time) of the models x and y. Also, to ease the notation, in the following we denote by AsDM, the application of AsDM for $\mu = \mu_0$, and use TS for the total score, TT for the trip time, and RT for the run time.

As seen in Tab. II, some instances describe the same trip, with different timings, and thus lead to the same set of unconstrained shortest optimal paths, and to the same set of CSs. For this reason, we subdivide the instances, and for both Γ_1 and Γ_2 extract the set of CSs related to each subdivision and store them. In this way, instances in the same subdivision use the same graph for all the models. In Tab. III we list the size for each subdivision.

Table II: Description of the instances

<table>
<thead>
<tr>
<th>ID</th>
<th>Departure Arrival</th>
<th>Tourism Stops</th>
<th>Lunch Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeZu1</td>
<td>10:00 18:30+1</td>
<td>Lugano 14:00-17:30 2h</td>
<td>-</td>
</tr>
<tr>
<td>GeZu2</td>
<td>10:00 18:30+1</td>
<td>Lugano 14:00-17:30 2h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe1</td>
<td>10:00 18:30+1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LiRe2</td>
<td>10:00 18:30+1</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe3</td>
<td>10:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe4</td>
<td>10:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe5</td>
<td>40:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe6</td>
<td>6:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe7</td>
<td>8:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe8</td>
<td>10:00 18:30+1</td>
<td>Verona 14:00-17:30 2.5h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe9</td>
<td>10:00 18:30+1</td>
<td>Verona 14:00-17:30 2h</td>
<td>Yes</td>
</tr>
<tr>
<td>LiRe10</td>
<td>10:00 18:30+1</td>
<td>Verona 14:00-17:30 2h</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table III: Number of nodes and arcs for each instance

<table>
<thead>
<tr>
<th>Instances</th>
<th>GeZu1, GeZu2</th>
<th>LiRe1, LiRe2</th>
<th>LiRe3 to LiRe10</th>
<th>StAn1</th>
<th>StAn2, StAn4</th>
<th>StAn3, StAn5</th>
<th>StAn6 to StAn8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>36 1260</td>
<td>43 1806</td>
<td>49 2352</td>
<td>84 6972</td>
<td>104 10712</td>
<td>83 6806</td>
<td>103 10506</td>
</tr>
<tr>
<td>After</td>
<td>22 52</td>
<td>36 157</td>
<td>42 244</td>
<td>54 276</td>
<td>73 629</td>
<td>54 276</td>
<td>73 629</td>
</tr>
<tr>
<td>Nodes</td>
<td>296 87320</td>
<td>480 229920</td>
<td>492 241572</td>
<td>667 444222</td>
<td>820 675580</td>
<td>666 442890</td>
<td>819 669942</td>
</tr>
<tr>
<td>Arcs</td>
<td>212 3236</td>
<td>391 22230</td>
<td>403 23889</td>
<td>415 19762</td>
<td>555 34622</td>
<td>414 19698</td>
<td>554 34542</td>
</tr>
</tbody>
</table>

We use the dataset Γ_1 to analyze the performance of the A^* search with respect to the exact solution found. Initially we find the shortest path value T^{opt} of SPM and AsM. Then we compute the maximum relaxed time $T_{\text{max}} = T^{opt} + T^{\text{add}}$ and solve the MPM model. For the evaluation, we fix the value of T^{add} to 1h 30’. The result is then compared to the score gained.
with AsDM for different values of the score multiplier \(\mu, \mu = 1, 2 \). For the heuristic algorithms, we set \(\beta = \{ 0, 1, 4 \} \).

a) Small dataset: We solve the MPM model and apply the A* algorithm for \(\mu = 2 \). The results are in Tab. IV and V.

First, the solutions obtained with the A* search are refined using a MILP formulation. In particular, we create another SPM in which we set \(x_{ij} = 1 \) for each arc \((i, j)\) selected in the final solution of AsDM for \(\mu = 2 \). The total trip times obtained by both approaches are quite similar. The results are summarized in Tab. IV and compared with the shortest path model SPM. The total trip time increases in average 3.3% when the refined SPM is applied, which is a small detour with respect to shortest path.

Table IV: Comparison of total trip time (in hours) between SPM and the refined SPM in \(\Gamma_1 \)

<table>
<thead>
<tr>
<th>ID</th>
<th>SPM</th>
<th>Ref. SPM</th>
<th>(\times)100</th>
<th>SPM</th>
<th>Ref. SPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gezu1</td>
<td>8.6</td>
<td>9.0</td>
<td>4.7</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Gezu2</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LiRe1</td>
<td>14.1</td>
<td>15.7</td>
<td>11.2</td>
<td>15.7</td>
<td>2.5</td>
</tr>
<tr>
<td>LiRe2</td>
<td>23.6</td>
<td>24.4</td>
<td>3.4</td>
<td>24.4</td>
<td>3.7</td>
</tr>
<tr>
<td>LiRe3</td>
<td>15.7</td>
<td>16.1</td>
<td>2.5</td>
<td>16.1</td>
<td>2.5</td>
</tr>
<tr>
<td>LiRe4</td>
<td>24.6</td>
<td>25.5</td>
<td>3.7</td>
<td>25.5</td>
<td>3.7</td>
</tr>
<tr>
<td>LiRe5</td>
<td>30.6</td>
<td>30.9</td>
<td>1.0</td>
<td>30.9</td>
<td>1.0</td>
</tr>
<tr>
<td>LiRe6</td>
<td>28.6</td>
<td>28.6</td>
<td>0.0</td>
<td>28.6</td>
<td>0.0</td>
</tr>
<tr>
<td>LiRe7</td>
<td>26.6</td>
<td>26.7</td>
<td>0.4</td>
<td>26.7</td>
<td>0.4</td>
</tr>
<tr>
<td>LiRe8</td>
<td>25.3</td>
<td>25.4</td>
<td>0.4</td>
<td>25.4</td>
<td>0.4</td>
</tr>
<tr>
<td>LiRe9</td>
<td>25.1</td>
<td>26.2</td>
<td>4.4</td>
<td>26.2</td>
<td>4.4</td>
</tr>
<tr>
<td>LiRe10</td>
<td>27.7</td>
<td>26.6</td>
<td>3.5</td>
<td>26.6</td>
<td>3.5</td>
</tr>
<tr>
<td>StAn1</td>
<td>15.8</td>
<td>17.4</td>
<td>10.1</td>
<td>17.4</td>
<td>10.1</td>
</tr>
<tr>
<td>StAn2</td>
<td>18.2</td>
<td>19.5</td>
<td>7.1</td>
<td>19.5</td>
<td>7.1</td>
</tr>
<tr>
<td>StAn3</td>
<td>16.9</td>
<td>17.3</td>
<td>2.4</td>
<td>17.3</td>
<td>2.4</td>
</tr>
<tr>
<td>StAn4</td>
<td>29.0</td>
<td>29.8</td>
<td>3.8</td>
<td>29.8</td>
<td>3.8</td>
</tr>
<tr>
<td>StAn5</td>
<td>26.3</td>
<td>27.3</td>
<td>3.8</td>
<td>27.3</td>
<td>3.8</td>
</tr>
<tr>
<td>StAn6</td>
<td>19.0</td>
<td>19.3</td>
<td>1.6</td>
<td>19.3</td>
<td>1.6</td>
</tr>
<tr>
<td>StAn7</td>
<td>29.0</td>
<td>29.2</td>
<td>0.7</td>
<td>29.2</td>
<td>0.7</td>
</tr>
<tr>
<td>StAn8</td>
<td>29.8</td>
<td>29.9</td>
<td>0.3</td>
<td>29.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Average 3.3

In Tab. V we compare the total score gained and the run time of MPM and AsDM for \(\mu = 2 \). In average, the relative change between the maximum score computed with MPM and the one computed with AsDM there is an average of 11.9% worse scores with respect to the optimal solution found by MPM. This last value is quite large, with some instances having a relative change of over 25%. A possible approach to obtain better results may be to rely on different values of the parameter \(\mu \). The run time is quite low for all the models, but it is worth noting that we are considering the small graph created with the CSs in \(\Gamma_1 \).

b) Medium dataset: We want to test the A* search algorithm for the medium dataset \(\Gamma_2 \). We tested all the instances using only the heuristic approaches, AsM and AsDM. The results are reported in Tab. VI and VII. According to Tab. VI, we obtain an average increase of the total score with \(\mu = 1 \) with respect to \(\mu = 2 \). The difference is due to the fact that with \(\mu = 2 \) the shortest arcs become more important, even with a lower score in the arrival node. The final solution might improve by tuning \(\mu \), also dynamically for each arc. The run time for the AsM model is quite high, with an average of 118.8 sec for the trip from Livorno to Regensburg and of 81.4 sec for the trip from Stuttgart to Ancona. If instead we analyze the AsDM model, we see a meaningful drop in the run time, with some exceptions. In particular, the instances that continue to have higher run times are the ones that have large time intervals without any TWs constraints. For instance, after the lunch break StAn1 has no other TW that constrains the problem, so the research for a best bound solution is more time-demanding.

The same holds for LiRe1, LiRe2 and StAn6. Instead, StAn8, the instance with more TWs, is solved in less than 1 sec. in each discounted model. When the TWs are balanced along the trip, with not too many uncovered time intervals, the computation with the A* search is very fast, even in medium sized graphs. In Tab. VII we can see an average total trip time variation of less than 6.0% in the AsDM models with respect to the AsM.

Table V: Comparison of total score and run time (in sec.) between MPM and AsDM with \(\mu = 2 \) in \(\Gamma_1 \)

<table>
<thead>
<tr>
<th>ID</th>
<th>MPM</th>
<th>AsDM</th>
<th>(\times)100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gezu1</td>
<td>0.0</td>
<td>7.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Gezu2</td>
<td>0.0</td>
<td>4.6</td>
<td>0.0</td>
</tr>
<tr>
<td>LiRe1</td>
<td>0.5</td>
<td>19.2</td>
<td>33.3</td>
</tr>
<tr>
<td>LiRe2</td>
<td>1.3</td>
<td>16.6</td>
<td>13.8</td>
</tr>
<tr>
<td>LiRe3</td>
<td>1.2</td>
<td>23.2</td>
<td>22.6</td>
</tr>
<tr>
<td>LiRe4</td>
<td>1.3</td>
<td>22.6</td>
<td>18.6</td>
</tr>
<tr>
<td>LiRe5</td>
<td>0.8</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>LiRe6</td>
<td>0.6</td>
<td>20.9</td>
<td>15.1</td>
</tr>
<tr>
<td>LiRe7</td>
<td>0.7</td>
<td>21.6</td>
<td>21.3</td>
</tr>
<tr>
<td>LiRe8</td>
<td>1.4</td>
<td>22.8</td>
<td>17.7</td>
</tr>
<tr>
<td>LiRe9</td>
<td>1.5</td>
<td>23.9</td>
<td>21.4</td>
</tr>
<tr>
<td>LiRe10</td>
<td>0.7</td>
<td>17.4</td>
<td>14.7</td>
</tr>
<tr>
<td>StAn1</td>
<td>1.4</td>
<td>17.1</td>
<td>15.2</td>
</tr>
<tr>
<td>StAn2</td>
<td>3.1</td>
<td>18.5</td>
<td>16.1</td>
</tr>
<tr>
<td>StAn3</td>
<td>1.4</td>
<td>15.2</td>
<td>11.4</td>
</tr>
<tr>
<td>StAn4</td>
<td>2.6</td>
<td>13.7</td>
<td>13.3</td>
</tr>
<tr>
<td>StAn5</td>
<td>2.0</td>
<td>17.5</td>
<td>14.6</td>
</tr>
<tr>
<td>StAn6</td>
<td>0.5</td>
<td>18.2</td>
<td>18.0</td>
</tr>
<tr>
<td>StAn7</td>
<td>0.5</td>
<td>19.3</td>
<td>19.2</td>
</tr>
<tr>
<td>StAn8</td>
<td>0.5</td>
<td>19.3</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Average 1.1 2.1 11.9

with a lower score in the arrival node. The final solution might improve by tuning \(\mu \), also dynamically for each arc. The run time for the AsM model is quite high, with an average of 118.8 sec for the trip from Livorno to Regensburg and of 81.4 sec for the trip from Stuttgart to Ancona. If instead we analyze the AsDM model, we see a meaningful drop in the run time, with some exceptions. In particular, the instances that continue to have higher run times are the ones that have large time intervals without any TWs constraints. For instance, after the lunch break StAn1 has no other TW that constrains the problem, so the research for a best bound solution is more time-demanding.

The same holds for LiRe1, LiRe2 and StAn6. Instead, StAn8, the instance with more TWs, is solved in less than 1 sec. in each discounted model. When the TWs are balanced along the trip, with not too many uncovered time intervals, the computation with the A* search is very fast, even in medium sized graphs. In Tab. VII we can see an average total trip time variation of less than 6.0% in the AsDM models with respect to the AsM.

V. Conclusions

We investigate the problem of finding a path for an EV performing a long trip. The objective is to select CSs that better match the user preferences while respecting ATWs constraints.

We proposed an A* algorithm AsM for the shortest path version of our problem. We then proposed the AsDM algorithm which privileges POIs preferred by the user. This algorithm was quite fast in finding a shortest path solution with high total score. The algorithm performed fairly well with respect
AsDM solve this problem by storing only the promising states of the EV. However, the heuristics cannot manage real values of the additional charging times, so we must discretize those values using the set β. Solving again the SPM model with the arcs selected by the heuristics helps to optimize the charging times on the final solution.

Despite the promising results obtained by AsM, AsDM, there is potential for further improvements. More efficient heuristics can be developed to account for the potentials, leading to speeding up the A* search algorithm. Such speeding ups may allow exploring more labels, yielding improved solutions.

References

