Logo PTI Logo FedCSIS

Communication Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 37

Knowledge-Based Creation of Industrial VR Training Scenarios

, , , ,

DOI: http://dx.doi.org/10.15439/2023F1379

Citation: Communication Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 37, pages 271278 ()

Full text

Abstract. The application of virtual reality (VR) for building training systems has grown in popularity across diverse fields. This trend is particularly prevalent in Industry 4.0, where many real-world training scenarios can be expensive or pose potential dangers to trainees. The most important aspect of professional training is domain-specific knowledge, which can be expressed using the semantic web approach. This approach facilitates complex queries and reasoning against the representation of training scenarios, which can be useful for educational purposes. However, current methods and tools for creating VR training systems do not utilize semantic knowledge representation, making it difficult for domain experts without IT expertise to create, modify, and manage training scenarios. To address this issue, we propose an ontology-based representation and a method of modeling VR training scenarios. We demonstrate our approach by modeling VR training scenarios for Industry 4.0 in the field of the production of household equipment. The domain knowledge used represents training activities, potential errors, and equipment failures in a way comprehensible to domain experts.


  1. M. Dragoni, C. Ghidini, P. Busetta, M. Fruet, and M. Pedrotti, “Using ontologies for modeling virtual reality scenarios,” in The Semantic Web. Latest Advances and New Domains, F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann, Eds. Cham: Springer International Publishing, 2015, pp. 575–590.
  2. H. Fujita, M. Kurematsu, and J. Hakura, Virtual Doctor System (VDS) and Ontology Based Reasoning for Medical Diagnosis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 197–214. [Online]. Available: https://doi.org/10.1007/978-3-642-33959-2_11
  3. A.-S. Dris, F. Lehericey, V. Gouranton, and B. Arnaldi, “OpenBIM Based IVE Ontology: an ontological approach to improve interoperability for Virtual Reality Applications,” in 35th CIB W78 Conference, Chicago, United States, Oct. 2018, pp. 1–10. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01900424
  4. J. Flotyński and K. Walczak, “Ontology-Based Representation and Modelling of Synthetic 3D Content: A State-of-the-Art Review,” Computer Graphics Forum, vol. 35, p. 329–353, 2017.
  5. O. De Troyer, F. Kleinermann, B. Pellens, and W. Bille, “Conceptual modeling for virtual reality,” in Tutorials, posters, panels and industrial contributions at the 26th Int. Conference on Conceptual Modeling - ER 2007, ser. CRPIT, J. Grundy, S. Hartmann, A. H. F. Laender, L. Maciaszek, and J. F. Roddick, Eds., vol. 83. Auckland, New Zealand: ACS, 2007, pp. 3–18.
  6. M. Gutiérrez, D. Thalmann, and F. Vexo, “Semantic virtual environments with adaptive multimodal interfaces.” in MMM, Y.-P. P. Chen, Ed. IEEE Computer Society, 2005, pp. 277–283.
  7. E. Kalogerakis, S. Christodoulakis, and N. Moumoutzis, “Coupling ontologies with graphics content for knowledge driven visualization,” in VR ’06 Proceedings of the IEEE conference on Virtual Reality, Alexandria, Virginia, USA, Mar. 2006, pp. 43–50.
  8. M. Attene, F. Robbiano, M. Spagnuolo, and B. Falcidieno, “Characterization of 3D Shape Parts for Semantic Annotation,” Comput. Aided Des., vol. 41, no. 10, pp. 756–763, Oct. 2009.
  9. L. De Floriani, A. Hui, L. Papaleo, M. Huang, and J. Hendler, “A semantic web environment for digital shapes understanding,” in Semantic Multimedia. Springer, 2007, pp. 226–239.
  10. P. Kapahnke, P. Liedtke, S. Nesbigall, S. Warwas, and M. Klusch, “ISReal: An Open Platform for Semantic-Based 3D Simulations in the 3D Internet,” in International Semantic Web Conference (2), 2010, pp. 161–176.
  11. S. Albrecht, T. Wiemann, M. Günther, and J. Hertzberg, “Matching CAD object models in semantic mapping,” in Proceedings ICRA 2011 Workshop: Semantic Perception, Mapping and Exploration, SPME, 2011.
  12. M. Fischbach, D. Wiebusch, A. Giebler-Schubert, M. E. Latoschik, S. Rehfeld, and H. Tramberend, “SiXton’s curse - Simulator X demonstration,” in Virtual Reality Conference (VR), 2011 IEEE, M. Hirose, B. Lok, A. Majumder, and D. Schmalstieg, Eds., 2011, pp. 255–256. [Online]. Available: http://dx.doi.org/10.1109/VR.2011.5759495
  13. P. Drap, O. Papini, J.-C. Sourisseau, and T. Gambin, “Ontology-based photogrammetric survey in underwater archaeology,” in European Semantic Web Conference. Springer, 2017, pp. 3–6.
  14. Trellet, M., Férey, N., Flotyński, J., Baaden, M., Bourdot, P., “Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data,” Journal of Integrative Bioinformatics, vol. 15 (2), pp. 1–19, 2018.
  15. Y. Perez-Gallardo, J. L. L. Cuadrado, Á. G. Crespo, and C. G. de Jesús, “GEODIM: A Semantic Model-Based System for 3D Recognition of Industrial Scenes,” in Current Trends on Knowledge-Based Systems. Springer, 2017, pp. 137–159.
  16. B. Youcef, M. Ahmad, and M. Mustapha, “Ontophaco: An ontology for virtual reality training in ophthalmology domain – a case study of cataract surgery,” IEEE Access, vol. PP, pp. 1–1, 11 2021.
  17. F. Longo, G. Mirabelli, L. Nicoletti, and V. Solina, “An ontology-based, general-purpose and industry 4.0-ready architecture for supporting the smart operator (part i – mixed reality case),” Journal of Manufacturing Systems, vol. 64, pp. 594–612, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0278612522001303
  18. C. Chokwitthaya, Y. Zhu, and W. Lu, “Ontology for experimentation of human-building interactions using virtual reality,” Advanced Engineering Informatics, vol. 55, p. 101903, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034623000319
  19. M. Heitmayer, M. G. Russell, S. Lahlou, and R. D. Pea, “An Ontology for Human-Centered Analysis and Design of Virtual Reality Conferencing,” in TMS Proceedings 2021, nov 3 2021, https://tmb.apaopen.org/pub/3rbumwgw.
  20. J. Flotyński, M. Krzyszkowski, and K. Walczak, “Semantic Composition of 3D Content Behavior for Explorable Virtual Reality Applications,” in Proceedings of EuroVR 2017, Lecture Notes in Computer Science, J. Barbic, M. D’Cruz, M. E. Latoschik, M. Slater, and P. Bourdot, Eds. Springer, 2017, pp. 3–23.