Logo PTI Logo FedCSIS

Communication Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 37

Harness Old Media: a cross-disciplinary approach to utilizing television data for media content analysis.

DOI: http://dx.doi.org/10.15439/2023F1961

Citation: Communication Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 37, pages 147152 ()

Full text

Abstract. The phenomenon of disinformation has become a common theme in studies across various fields. Both qualitative and quantitative methodologies are typically used, focusing primarily on content sourced from the internet. This article introduces a method to extend this focus to include content from 'Old Media' specifically from Television which as an unstructured medium, presents a combination of textual and visual layers. Despite this complexity, the integration of these elements allows for the design of algorithms capable of analyzing video streams and extracting individual news from main news programs of nationwide broadcasters. The proposed solution facilitates the extraction of transcriptions generated by the research tool. The aim of this research is to allow access to the content of television to enable its inclusion in research, performed in a manner analogous to Internet content. This research is part of a project that deals with the development of algorithms for combining, classifying and comparing content from different media in order to design an imprecise classifier of disinformation content.


  1. W. J. Dizard, Old Media New Media: Mass Communications in the Information Age, Second edition. New York: Longman, 1996, ISBN : 9780801317439.
  2. D. Halagiera, “Fake news jako nowe (stare) wyzwanie dla świata mediów – portal YouTube w walce z nieprawdziwymi informacjami,” in Kryzysy współczesnego świata. Różne ujęcia problemów globalnych i regionalnych, 2019, pp. 91–105.
  3. Narodowe Centrum Badań i Rozwoju, “Program Strategiczny INFOSTRATEG „Zaawansowane technologie informacyjne, telekomunikacyjne i mechatroniczne”,” Narodowe Centrum Badań i Rozwoju, Warszawa, Tech. Rep., Apr. 2020. [Online]. Available: https://archiwum.ncbr.gov.pl/fileadmin/Programy_Strategiczne/Opis_Programu_INFOSTRATEG.pdf.
  4. X. Naturel and P. Gros, “Detecting repeats for video structuring,” Multimedia Tools and Applications, vol. 38, no. 2, 2008, ISSN: 13807501. DOI : 10.1007/s11042-007-0180-1.
  5. S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news online,” Science, vol. 359, no. 6380, 2018, ISSN: 10959203. http://dx.doi.org/10.1126/science.aap9559.
  6. Instytut Badań Internetu i Mediów Społecznościowych and Instytut Badań Rynkowych i Społecznych. “Badanie preferencji Polaków dot. źródeł informacji o Polsce i świecie.” (Jan. 2021), [Online]. Available: https://ibims.pl/skad-polacy-czerpia-informacje-o-polsce-i-swiecie-raport-ibims-i-ibris/.
  7. Eurostat, Digital economy and society statistics, Dec. 2022. [Online]. Available: https://ec.europa.eu/eurostat/ databrowser/view/isoc_ci_in_h/default/table?lang=en.
  8. S. J. Shaikh, “Television versus the internet for information seeking: Lessons from global survey research,” International Journal of Communication, vol. 11, 2017, ISSN: 19328036.
  9. Faculty of Political Science na Journalist. “CAST.” (2020), [Online]. Available: https://wnpid.amu.edu.pl/en/home/cast.
  10. J. Wyszyński, Content Analysis System for Television, 2017. [Online]. Available: http://cast.info.pl/.
  11. A. Stępińska and J. Wyszyński, “Ilościowa analiza zawartości przekazów w badaniach nad dyskursem populistycznym,” in Badania nad dyskursem populisty- cznym: wybrane podejścia, 2020, ch. VII, pp. 107–129.
  12. N. Andhale and L. A. Bewoor, “An overview of text summarization techniques,” Proceedings - 2nd International Conference on Computing, Communication, Control and Automation, ICCUBEA 2016, 2017. http://dx.doi.org/10.1109/ICCUBEA.2016.7860024.
  13. A. Gillioz, J. Casas, E. Mugellini, and O. A. Khaled, “Overview of the transformer-based models for nlp tasks,” Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020, 2020. http://dx.doi.org/10.15439/2020F20.
  14. P. Subasic and A. Huettner, “Affect analysis of text using fuzzy semantic typing,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 483–496, Aug. 2001, ISSN: 10636706. http://dx.doi.org/10.1109/91.940962.
  15. H. D. Lasswell, “The structure and function of communication in society,” The Communication of Ideas, no. 1948, 1948.
  16. A. Veglis and T. A. Maniou, “The mediated data model of communication flow: Big data and data journalism,” KOME, vol. 6, no. 2, 2018, ISSN : 20637330. DOI : 10.17646/KOME.2018.23.
  17. Y. Zhang, M. Pietrasik, W. Xu, and M. Reformat, “Hierarchical topic modelling for knowledge graphs,” pp. 270–286, 2022. http://dx.doi.org/10.1007/978-3-031-06981-9_16.