Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Simulating Large-Scale Topographic Terrain Features with Reservoirs and Flowing Water

, , ,

DOI: http://dx.doi.org/10.15439/2023F2137

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 385392 ()

Full text

Abstract. The flow and accumulation of water are essential aspects when it comes to generating realistic terrains. In this article, we have set out to create a method for generating the distribution and levels of water in a virtual world. Our method fully simulates the water entering and exiting the system through rainfall, perspiration, and flowing out of the domain. Also, it simulates the phenomena of flow and accumulation in an iterative process. According to our observations, only allowing the user to influence the terrain and then simulating the placement of water bodies provides a natural result while preserving a high level of control.

References

  1. J.-D. Champagnac, P. Molnar, C. Sue, and F. Herman, “Tectonics, climate, and mountain topography,” Journal of Geophysical Research: Solid Earth, vol. 117, no. B2, 2012. http://dx.doi.org/10.1029/2011JB008348
  2. R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on procedural modelling for virtual worlds,” Computer Graphics Forum, vol. 33, no. 6, pp. 31–50, 2014. http://dx.doi.org/10.1111/cgf.12276
  3. J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Grosbellet, and B. Benes, “Terrain modelling from feature primitives,” Computer Graphics Forum, vol. 34, no. 6, pp. 198–210, 2015. http://dx.doi.org/10.1111/cgf.12530
  4. M. Luckner and K. Rzążewska, “3D model reconstruction and evaluation using a collection of points extracted from the series of photographs,” in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, 2014. http://dx.doi.org/10.15439/2014F304 pp. 669–677.
  5. E. Michel, A. Emilien, and M.-P. Cani, “Generation of folded terrains from simple vector maps,” in Eurographics 2015 short paper proceedings. The Eurographics Association, 2015. http://dx.doi.org/10.2312/egsh.20151019
  6. O. Argudo, E. Galin, A. Peytavie, A. Paris, J. Gain, and E. Guérin, “Orometry-based terrain analysis and synthesis,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019. http://dx.doi.org/10.1145/3355089.3356535
  7. D. B. Adams, “Feature-based interactive terrain sketching,” Master’s thesis, Brigham Young University, 2009. [Online]. Available: hdl.lib. byu.edu/1877/etd3221
  8. S. T. Teoh, “River and coastal action in automatic terrain generation,” in Proceedings of the 2008 International Conference on Computer Graphics and Virtual Reality, 2008, pp. 3–9. [Online]. Available: citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=316be57e56662a0113a5678eb29dd5b3b951694a
  9. G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie, and E. Guérin, “Large scale terrain generation from tectonic uplift and fluvial erosion,” Computer Graphics Forum, vol. 35, no. 2, pp. 165–175, 2016. http://dx.doi.org/10.1111/cgf.12820
  10. M. Becher, M. Krone, G. Reina, and T. Ertl, “Feature-based volumetric terrain generation and decoration,” IEEE Trans. Vis. Comput. Graphics, vol. 25, no. 2, pp. 1283–1296, 2019. http://dx.doi.org/10.1109/TVCG.2017.2762304
  11. A. Paris, E. Galin, A. Peytavie, E. Guérin, and J. Gain, “Terrain amplification with implicit 3d features,” ACM Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–15, 2019. http://dx.doi.org/10.1145/3342765
  12. A. Peytavie, E. Galin, J. Grosjean, and S. Mérillou, “Arches: a framework for modeling complex terrains,” Computer Graphics Forum, vol. 28, no. 2, pp. 457–467, 2009. http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
  13. G. Cordonnier, M.-P. Cani, B. Benes, J. Braun, and E. Galin, “Sculpting mountains: Interactive terrain modeling based on subsurface geology,” IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 5, pp. 1756–1769, 2017. http://dx.doi.org/10.1109/TVCG.2017.2689022
  14. B. B. Cael, A. J. Heathcote, and D. A. Seekell, “The volume and mean depth of Earth’s lakes,” Geophysical Research Letters, vol. 44, no. 1, pp. 209–218, 2017. http://dx.doi.org/10.1002/2016GL071378
  15. R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972. http://dx.doi.org/10.1109/SWAT.1971.10
  16. J. Cheriyan and S. N. Maheshwari, “Analysis of preflow push algorithms for maximum network flow,” SIAM Journal on Computing, vol. 18, no. 6, pp. 1057–1086, 1989. http://dx.doi.org/10.1137/0218072