Logo PTI Logo FedCSIS

Communication Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 37

Forecasting migration of EU citizens to Germany using Google Trends

DOI: http://dx.doi.org/10.15439/2023F3141

Citation: Communication Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 37, pages 301308 ()

Full text

Abstract. The study examines the potential of Google Trends data as an additional data source for forecasting EU migration to Germany. For that aim, candidate search querys with relation to migration intent are proposed. The resulting Google Trends Indices (GTI) are included in a machine learning regression model based on econometric and past migration data. It is shown that GTI predictors can moderately reduce the forecast error and enable a slight expansion of the forecast horizon. However, the presence of outliers emphasizes the need for continuous improvement in data quality to increase the robustness of the approach.

References

  1. European Commission (2022). "Annual report on intra-EU labour mobility." https://ec.europa.eu/social/BlobServlet?docId=26778&langId=en.
  2. Sohst, R., Tjaden, J., de Valk, H., & Melde, S. (2020). "The future of migration to Europe: A systematic review of the literature on migration scenarios and forecasts." International Organization for Migration, Geneva, and the Netherlands Interdisciplinary Demographic Institute, the Hague, https://publications.iom.int/system/files/pdf/the-future-of-migration-to-europe.pdf.
  3. Tjaden, J., Auer, D., & Laczko, F. (2018). "Linking migration intentions with flows: Evidence and potential use." International Migration, 57(1), 36–57, https://doi.org/10.1111/imig.12502.
  4. Zagheni, E., Weber, I., & Gummadi, K. (2017). "Leveraging Facebook’s Advertising Platform to Monitor Stocks of Migrants." Population and Development Review, 43(4), 721–734, https://doi.org/10.1111/padr.12102.
  5. Zagheni, E., & Weber, I. (2012). "You are where you e-mail: using e-mail data to estimate international migration rates" Proceedings of the 4th Annual ACM Web Science Conference, 348–351, https://doi.org/10.1145/2380718.2380764.
  6. Zagheni, E., Garimella, V.K.R., Weber, I., & State, B. (2014). "Inferring international and internal migration patterns from Twitter data" Proceedings of the 23rd International Conference on World Wide Web, 439–444, https://doi.org/10.1145/2567948.2576930.
  7. Hawelka, B. et al (2014). "Geo-located Twitter as proxy for global mobility patterns" Cartography and Geographic Information Science, 41(3), 260–271, https://doi.org/10.1080/15230406.2014.890072.
  8. Böhme, M.H., Gröger, A., & Stöhr, T. (2020). "Searching for a better life: Predicting international migration with online search keywords." Journal of Development Economics, 142, 102347, https://doi.org/10.1016/j.jdeveco.2019.04.002.
  9. Carammia, M., Iacus, S.M., & Wilkin, T. (2022). Forecasting asylumrelated migration flows with machine learning and data at scale. Sci Rep 12, 1457. https://doi.org/10.1038/s41598-022-05241-8.
  10. Boss, K., Gröger, A., Heidland, T., Krüger, F., & Zheng, C. (2023). "Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques." BSE Working Paper 1387, https://www.itflows.eu/wp-content/uploads/2023/03/1387.pdf.
  11. Wanner, P. (2021). "How well can we estimate immigration trends using Google data?" Qual Quant 55, 1181–1202, https://doi.org/10.1007/s11135-020-01047-w.
  12. S. Hawinkel, W. Waegeman, & S. Maere (2023). "Out-of-Sample R2: Estimation and Inference." The American Statistician, https://doi.org/10.1080/00031305.2023.2216252.
  13. Bergmeir, C., Hyndman, R.J., & Koo, B. (2018). "A note on the validity of cross-validation for evaluating autoregressive time series prediction." Computational Statistics & Data Analysis, 120, 70–83, https://doi.org/10.1016/j.csda.2017.11.003.
  14. Ferri, F. J., Pudil P., Hatef, M., $ Kittler, J. (1994). "Comparative study of techniques for large-scale feature selection." Machine Intelligence and Pattern Recognition, 16, 403–413, https://doi.org/10.1016/B978-0-444-81892-8.50040-7.