Classifying Speech Acts in Political Communication: A Transformer-based Approach with Weak Supervision and Active Learning
Klaus Schmidt, Andreas Niekler, Cathleen Kantner, Manuel Burghardt
DOI: http://dx.doi.org/10.15439/2023F3485
Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 739–748 (2023)
Abstract. We present a study on the automatic classification of speech acts in the domain of political communication, based on J. R. Searle's classification of illocutionary acts. Our research involves creating a dataset using the US State of the Union corpus and the UN General Debate corpus (UNGD) as data sources. To overcome limited labeled data, we employ a combination of weak supervision and active learning techniques for dataset creation and model training. Through various experiments, we investigate the influence of external and internal factors on speech act classification. In addition, we discuss the potential for further analysis of speech act usage, using the trained model on the UNGD corpus. The findings demonstrate the effectiveness of Transformer-based models for automatic speech act classification, highlight the benefits of weak supervision and active learning for dataset creation and model training, and underscore the potential for large-scale statistical analysis of speech act usage in the domain of political communication.
References
- J. L. Austin, How to do things with words. Cambridge, Mass., Harvard University Press, 2003., 1962.
- J. R. Searle, “A classification of illocutionary acts,” Language in society, vol. 5, no. 1, pp. 1–23, 1976. http://dx.doi.org/10.1017/s0047404500006837
- P. L. Berger and T. Luckmann, Die gesellschaftliche Konstruktion der Wirklichkeit: Eine Theorie der Wissenssoziologie. Frankfurt am Main: Fischer, 1966.
- J. Habermas, Theorie des kommunikativen Handelns: Handlungsrationalität und gesellschaftliche Rationalisierung. Frankfurt: Suhrkamp, 1995, vol. 1.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. doi: 10.5555/3295222.3295349. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- S. S. M. Hashim and S. Safwat, “Speech acts in political speeches,” Journal of Modern Education Review, vol. 5, no. 7, pp. 699–706, 2015. http://dx.doi.org/10.15341/jmer(2155-7993)/07.05.2015/008
- M. Ulum, D. Sutopo, and W. Warsono, “A comparison between trump’s and clinton’s commissive speech act in america’s presidential campaign speech,” English Education Journal, vol. 8, no. 2, pp. 221–228, 2018.
- A. Baturo, N. Dasandi, and S. J. Mikhaylov, “Understanding state preferences with text as data: Introducing the un general debate corpus,” Research & Politics, 2017. http://dx.doi.org/10.1177/2053168017712821
- G. Peters and J. T. Woolley, “The state of the union, background and reference table,” The American Presidency Project, Santa Barbara, CA, 1999–2021. [Online]. Available: https://www.presidency.ucsb.edu/node/324107/
- J. Duffield, “What are international institutions?” International Studies Review, vol. 9, pp. 1–22, 2007. http://dx.doi.org/10.1111/j.1468-2486.2007.00643.x
- C. Daase, S. Engert, M.-A. Horelt, J. Renner, and R. Strassner, Apology and Reconciliation in International Relations: The Importance of Being Sorry. London: Routledge, 2015.
- C. Moldovan, V. Rus, and A. C. Graesser, “Automated speech act classification for online chat.” MAICS, vol. 710, pp. 23–29, 2011.
- B. Bayat, C. Krauss, A. Merceron, and S. Arbanowski, “Supervised speech act classification of messages in german online discussions,” in The Twenty-Ninth International Flairs Conference, 2016.
- Y. Liu, K. Han, Z. Tan, and Y. Lei, “Using context information for dialog act classification in DNN framework,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017. http://dx.doi.org/10.18653/v1/D17-1231 pp. 2170–2178. [Online]. Available: https://aclanthology.org/D17-1231
- S. Lee and J. Seo, “Korean speech act analysis system using hidden markov model with decision trees,” International Journal of Computer Processing of Oriental Languages, vol. 15, no. 03, pp. 231–243, 2002. http://dx.doi.org/ 10.1142/s0219427902000625
- W. S. Choi, H. Kim, and J. Seo, “An integrated dialogue analysis model for determining speech acts and discourse structures,” IE- ICE TRANSACTIONS on Information and Systems, vol. 88, no. 1, pp. 150–157, 2005. http://dx.doi.org/ 10.1093/ietisy/e88-d.1.150
- N. Song, K. Bae, and Y. Ko, “Effective korean speech-act classification using the classification priority application and a post-correction rules,” Journal of KIISE, vol. 43, no. 1, pp. 80–86, 2016. http://dx.doi.org/10.5626/jok.2016.43.1.80
- R. Li, C. Lin, M. Collinson, X. Li, and G. Chen, “A dual-attention hierarchical recurrent neural network for dialogue act classification,” in Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL). Hong Kong, China: Association for Computational Linguistics, Nov. 2019. http://dx.doi.org/ 10.18653/v1/K19-1036 pp. 383–392. [Online]. Available: https://aclanthology.org/K19-1036
- D. Yoo, Y. Ko, and J. Seo, “Speech-act classification using a convolutional neural network based on pos tag and dependency-relation bigram embedding,” IEICE Transactions on Information and Systems, vol. 100, no. 12, pp. 3081-3084, 2017. http://dx.doi.org/10.1587/transinf.2017edl8083
- S. Subramanian, T. Cohn, and T. Baldwin, “Target based speech act classification in political campaign text,” in Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019). Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019. http://dx.doi.org/ 10.18653/v1/S19-1030 pp. 273–282. [Online]. Available: https://aclanthology.org/S19-1030
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019