Logo PTI Logo FedCSIS

Position Papers of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 36

An Outlook on Natural Language Generation

, ,

DOI: http://dx.doi.org/10.15439/2023F3591

Citation: Position Papers of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 36, pages 2734 ()

Full text

Abstract. This article presents an outlook on current natural language generation (NLG), discusses the impact and challenges of Large Language Models (LLMs), and proposes alternative or complementary models more efficient in the long run. We anticipate negative outcomes and their consequences, raise awareness of the need for human protection, and control, and present suggestions to overcome the most critical challenges, to ensure the sustainability and safety of the technology. Within the scope of the Multi3Generation COST Action (CA18231), we aim at developing and strengthening a common strategy for new models in which the science of language is further explored and used to create new systems and enhance existing ones in a trusting atmosphere between developers and users and an innovation-friendly environment for society at large.


  1. A. Barreiro, J. G. de Souza, A. Gatt, M. Bhatt, E. Lloret, A. Erdem, D. Gkatzia, H. Moniz, I. Russo, F. Kepler, I. Calixto, M. Paprzycki, F. Portet, I. Augenstein, and M. Alhasani, “Multi3Generation: Multitask, multilingual, multimodal language generation,” in Proceedings of the 23rd Annual Conference of the European Association for Machine Translation. Ghent, Belgium: European Association for Machine Translation, Jun. 2022, pp. 347–348. [Online]. Available: https://aclanthology.org/2022.eamt-1.63
  2. B. Scott, “The Logos Model: An Historical Perspective,” Machine Translation, vol. 18, no. 1, pp. 1–72, 2003.
  3. B. Scott and A. Barreiro, “OpenLogos MT and the SAL Representation Language,” in Proceedings of the First International Workshop on Free-Open-Source Rule-Based Machine Translation, J. A. Pérez-Ortiz, F. Sánchez-Martínez, and F. M. Tyers, Eds. Alicante, Spain: Departamento de Lenguajes y Sistemas Informáticos - Universidad de Alicante, 2009, pp. 19–26.
  4. B. Scott, Translation, Brains and the Computer: A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation, ser. Machine Translation: Technologies and Applications. Springer International Publishing, 2018. ISBN 9783319766287
  5. S. Amato and K. Arrieta, “Natural Language Generation in the Logos Model,” in EAMT 2023. ACL Anthology, Jun. 2023.
  6. A. Gatt and E. Krahmer, “Survey of the State of the Art in Natural Language Generation: Core Tasks, Applications and Evaluation,” Journal of Artificial Intelligence Research (JAIR), vol. 61, no. 1, p. 65–170, jan 2018.
  7. E. Erdem, M. Kuyu, S. Yagcioglu, A. Frank, L. Parcalabescu, B. Plank, A. Babii, O. Turuta, A. Erdem, I. Calixto et al., “Neural natural language generation: A survey on multilinguality, multimodality, controllability and learning,” Journal of Artificial Intelligence Research, vol. 73, pp. 1131–1207, 2022.
  8. Leng, Yuanmin and Portet, François and Labbé, Cyril and Qader, Raheel, “Controllable Neural Natural Language Generation: comparison of state-of-the-art control strategies,” in Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+). Dublin, Ireland (Virtual): Association for Computational Linguistics, 12 2020, pp. 34–39. [Online]. Available: https://aclanthology.org/2020.webnlg-1.4
  9. R. Dale, “Natural language generation: The commercial state of the art in 2020,” Natural Language Engineering, vol. 26, pp. 481–487, 07 2020. http://dx.doi.org/10.1017/S135132492000025X
  10. Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, Q. V. Do, Y. Xu, and P. Fung, “A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity,” 2023.