Mutual Learning Algorithm for Kidney Cyst, Kidney Tumor and Kidney Stone Diagnosis
Sabrina Chowdhury, Snehasis Mukhopadhyay, Kumpati S. Narendra
DOI: http://dx.doi.org/10.15439/2023F378
Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 401–410 (2023)
Abstract. Mutual learning is a machine learning algorithm where multiple machine learning algorithms share knowledge among themselves to improve themselves. The utilization of mutual learning algorithms can effectively enhance the efficiency of machine learning and neural networks within a multi-agent system. This approach is particularly useful in scenarios where the system cannot be adequately trained with a large dataset. By exchanging data in a dynamic teacher-student network system, mutual learning can result in efficient learning outcomes. Typically, a large network serves as a static teacher and transfers data to smaller networks, referred to as student networks, to improve their efficiency. In this study, we aim to demonstrate that two small networks can dynamically alternate between the roles of teacher and student to share knowledge, resulting in improved efficiency for both networks. To exemplify this concept, we apply a mutual learning algorithm using convolutional neural networks (CNNs) and Support Vector Machine (SVM) to accurately identify the kidney diseases -- cyst, tumor and stone using image classification algorithm.
References
- Singh, H., Meyer, A. N. & Thomas, E. J. “The frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving us adult populations”. BMJ Qual. Saf. 23, 727–731 (2014).
- Singh, H., Schiff, G. D., Graber, M. L., Onakpoya, I. & Thompson, M. J. “The global burden of diagnostic errors in primary care”, BMJ Qual. Saf. 26, 484–494 (2017).
- Graber, M. L. “The incidence of diagnostic error in medicine”, BMJ Qual. Saf. 22, ii21–ii27 (2013).
- Singh, H., Giardina TD, Meyer AN, Forjuoh SN, Reis MD, Thomas EJ., “Types and origins of diagnostic errors in primary care settings”. JAMA Intern. Med. 173, 418–425 (2013).
- Liang, H., Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, Cai W, Kermany DS, et al. “Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence”. Nat. Med. 1, 433–438 (2019).
- Topol, E. J. “High-performance medicine: the convergence of human and artificial intelligence”. Nat. Med. 25, 44 (2019).
- De Fauw J., Ledsam J.R., Romera-Paredes B., Nikolov S., Tomasev N., Blackwell S., Askham H., Glorot X., O'Donoghue B., Visentin D., van den Driessche G., Lakshminarayanan B., Meyer C., Mackinder F., Bouton S., Ayoub K., Chopra R., King D., Karthikesalingam A., Hughes C.O., Raine R., Hughes J., Sim D.A., Egan C., Tufail A., Montgomery H., Hassabis D., Rees G., Back T., Khaw P.T., Suleyman M., Cornebise J., Keane P.A., Ronneberger O.. “Clinically applicable deep learning for diagnosis and referral in retinal disease”. Nat Med. 2018 Sep;24(9):1342-1350. http://dx.doi.org/10.1038/s41591-018-0107-6. Epub 2018 Aug 13. PMID: 30104768.
- Yu, K.-H., Beam, A. L. & Kohane, I. S. “Artificial intelligence in healthcare”. Nat. Biomed. Eng. 2, 719 (2018).
- Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. “Artificial intelligence in healthcare: past, present and future.” Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243. http://dx.doi.org/10.1136/svn-2017-000101. PMID: 29507784; PMCID: PMC5829945.
- Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. “A guide to deep learning in healthcare”. Nat Med. 2019 Jan;25(1):24-29. http://dx.doi.org/10.1038/s41591-018-0316-z. Epub 2019 Jan 7. PMID: 30617335.
- Semigran, H. L., Levine, D. M., Nundy, S. & Mehrotra, A. “Comparison of physician and computer diagnostic accuracy”. JAMA Intern. Med. 176, 1860–1861 (2016).
- Miller, R. “A history of the internist-1 and quick medical reference (qmr) computer-assisted diagnosis projects, with lessons learned”. Yearb. Med. Inform. 19, 121–136 (2010).
- Razzaki, S., Baker, A., Perov, Y., Middleton, K., Baxter, J., Mullarkey, D., Sangar, D., Taliercio, M., Butt, M., Azeem Majeed, DoRosario, A., Mahoney, M., Saurabh, J., “A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis”. Preprint at https://arxiv.org/abs/1806.10698 (2018).
- Vembandasamy, K., Sasipriya, R. and Deepa, E. (2015), “Heart Diseases Detection Using Naive Bayes Algorithm”, IJISET-International Journal of Innovative Science, Engineering & Technology, 2, 441-444.
- Chaurasia, V. and Pal, S. (2013) “Data Mining Approach to Detect Heart Disease”, International Journal of Advanced Computer Science and Information Technology (IJACSIT), 2, 56-66.
- Parthiban, G. and Srivatsa, S.K. (2012) “Applying Machine Learning Methods in Diagnosing Heart Disease for Diabetic Patients”. International Journal of Applied Information Systems (IJAIS), 3, 25-30.
- Tan, K.C., Teoh, E.J., Yu, Q. and Goh, K.C. (2009) “A Hybrid Evolutionary Algorithm for Attribute Selection in Data Mining. Journal of Expert System with Applications”, 36, 8616-8630. https://doi.org/10.1016/j.eswa.2008.10.013
- Iyer, A., Jeyalatha, S. and Sumbaly, R. (2015) “Diagnosis of Diabetes Using Classification Mining Techniques”. International Journal of Data Mining & Knowledge Management Process (IJDKP), 5, 1-14. https://doi.org/10.5121/ijdkp.2015.5101
- Sen, S.K. and Dash, S. (2014) “Application of Meta Learning Algorithms for the Prediction of Diabetes Disease”. International Journal of Advance Research in Computer Science and Management Studies, 2, 396-401.
- Kumari, V.A. and Chitra, R. (2013) “Classification of Diabetes Disease Using Support Vector Machine”. International Journal of Engineering Research and Applications (IJERA), 3, 1797-1801.
- Sarwar, A. and Sharma, V. (2012) “Intelligent Naïve Bayes Approach to Diagnose Diabetes Type-2”. Special Issue of International Journal of Computer Applications (0975-8887) on Issues and Challenges in Networking, Intelligence and Computing Technologies-ICNICT 2012, 3, 14-16.
- Ephzibah, E.P. (2011) “Cost Effective Approach on Feature Selection using Genetic Algorithms and Fuzzy Logic for Diabetes Diagnosis”. International Journal on Soft Computing (IJSC), 2, 1-10. https://doi.org/10.5121/ijsc.2011.2101
- Vijayarani, S. and Dhayanand, S. (2015) “Liver Disease Prediction using SVM and Naïve Bayes Algorithms”. International Journal of Science, Engineering and Technology Research (IJSETR), 4, 816-820.
- Gulia, A., Vohra, R. and Rani, P. (2014) “Liver Patient Classification Using Intelligent Techniques”. (IJCSIT) International Journal of Computer Science and Information Technologies, 5, 5110-5115.
- Rajeswari, P. and Reena,G.S. (2010) “Analysis of Liver Disorder Using Data Mining Algorithm”. Global Journal of Computer Science and Technology, 10, 48-52
- Ba-Alwi, F.M. and Hintaya, H.M. (2013) “Comparative Study for Analysis the Prognostic in Hepatitis Data: Data Mining Approach”. International Journal of Scientific & Engineering Research, 4, 680-685.
- Karlik, B. (2011) “Hepatitis Disease Diagnosis Using Back Propagation and the Naive Bayes Classifiers”. Journal of Science and Technology, 1, 49-62.
- Sathyadevi, G. (2011) “Application of CART Algorithm in Hepatitis Disease Diagnosis”. IEEE International Conference on Recent Trends in Information Technology (ICRTIT), MIT, Anna University, Chennai, 3-5 June 2011, 1283-1287.
- Park C, Awadalla A, Kohno T, Patel S. “Reliable and trustworthy machine learning for health using dataset shift detection”. In: Proceedings of the conference on NeurIPS, 2021, pp.1
- Hasani N, Morris MA, Rhamim A, Summers RM, Jones E, Siegel E, Saboury B. Trustworthy “Artificial Intelligence in Medical Imaging”. PET Clin. 2022 Jan;17(1):1-12. http://dx.doi.org/10.1016/j.cpet.2021.09.007. PMID: 34809860; PMCID: PMC8785402.
- Hinton, Geoffrey E., Vinyals, O., Dean, J.,. “Distilling the Knowledge in a Neural Network.” ArXiv abs/1503.02531 (2015): n. pag.
- K. S. Narendra and S. Mukhopadhyay, "Mutual Learning: Part I - Learning Automata," 2019 American Control Conference (ACC), 2019, pp. 916-921, http://dx.doi.org/10.23919/ACC.2019.8814751.
- K. S. Narendra and S. Mukhopadhyay, "Mutual Learning: Part II --Reinforcement Learning," 2020 American Control Conference (ACC), 2020, pp. 1105-1110, http://dx.doi.org/10.23919/ACC45564.2020.9147838
- Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?,” In Advances in Neural Information Processing Systems. 2014.
- Adriana, R., Nicolas, B., Ebrahimi, K. S., Antoine, C., Carlo, G., & Yoshua, B. (2015). “Fitnets: Hints for thin deep nets”. Proc. ICLR, 2, 3.
- David Lopez-Paz, Ankit Singh Rawat Sashank J. Reddi Seungyeon Kim Sanjiv Kumar, “Unifying distillation and privileged information,” International Conference on Learning Representations, 2016.
- Ying Zhang, Xiatian Zhu, Mao Ye,. 2018. “Deep mutual learning”. In Conference on Computer Vision and Pattern Recognition, (CVPR), pages 4320–4328.
- Islam MN, Hasan M, Hossain M, Alam M, Rabiul G, Uddin MZ, Soylu A. “Vision transformer and explainable transfer learning models for auto detection of kidney cyst, stone and tumor from CT-radiography”. Scientific Reports. 2022 Jul 6;12(1):1-4.
- S. Ikemoto, H. B. Amor, T. Minato, B. Jung and H. Ishiguro, 2012. “Physical human-robot interaction: Mutual learning and adaptation”. IEEE robotics & automation magazine, 19(4), pp.24-35.
- Nie, X., Feng, J. and Yan, S., 2018. “Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation”. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 502-517).
- Panait, L. and Luke, S., 2005. “Cooperative multi-agent learning: The state of the art”. Autonomous agents and multi-agent systems, 11(3), pp.387-434.
- Bai, Q., Su, C., Tang, W, Li Y.. “Machine learning to predict end stage kidney disease in chronic kidney disease”. Sci Rep 12, 8377 (2022). https://doi.org/10.1038/s41598-022-12316-z