Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Sensitivity Study of a Large-scale Air Pollution Model on the Bulgarian Petascale Supercomputer Discoverer

, , ,

DOI: http://dx.doi.org/10.15439/2023F5063

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 10931100 ()

Full text

Abstract. The focus of this study is on the optimal use of high performance computing in the area of environmental security (air pollution transport, in particular). Contemporary mathematical models of air pollution transport should include a fairly large set of chemical and photochemical reactions to be established as a reliable simulation tool. The investigations and the numerical results reported in this paper have been obtained by using a large-scale mathematical model called the Danish Eulerian Model (DEM).

References

  1. V. Alexandrov, A. Sameh, Y. Siddique and Z. Zlatev, Numerical integration of chemical ODE problems arising in air pollution models, Env. Modeling and Assessment, 2 (1997) 365–377.
  2. G. Archer, A. Saltelli, I. Sobol’, Sensitivity measures, ANOVA-like techniques and the use of bootstrap, J. Stat. Comput. Simul. 58 (1997), 99–120.
  3. K. Chan, A. Saltelli, S. Tarantola, Sensitivity analysis of model output: variance-based methods make the difference, In: S. Andradottir, K.J. Healy, D.H. Withers, and B.L. Nelson, eds., Proceedings of the 1997 Winter Simulation Conference (1997), 261–268.
  4. I. T. Dimov, Monte Carlo Methods For Applied Scientists, World Scientific (2007).
  5. I. Dimov, Z. Zlatev, Testing the sensitivity of air pollution levels to variations of some chemical rate constants, Notes on Numerical Fluid Mechanics 62 (1997), 167–175.
  6. I. Dimov, R. Georgieva, S. Ivanovska, Tz. Ostromsky, Z. Zlatev, Studying the sensitivity of pollutants’ concentrations caused by variations of chemical rates, J. Comput. Appl. Math., Vol. 235 (2010), pp. 391–402.
  7. I. Dimov, K. Georgiev, Tz. Ostromsky, Z. Zlatev, Computational challenges in the numerical treatment of large air pollution models, Ecological Modelling 179 (2004), pp. 187–203.
  8. M. Gery, G. Whitten, J. Killus, M. Dodge. A photochemical kinetics mechanism for urban and regional scale computer modelling, J. Geophys Res. 94 (D10) (1989), 12925–12956.
  9. W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist. 19 (3) (1948), 293–325.
  10. T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering and System Safety 52 (1996), 1–17.
  11. Ø. Hov, Z. Zlatev, R. Berkowicz, A. Eliassen and L. P. Prahm, Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions, Atmospheric Environment, Vol. 23 (1988), pp. 967–983.
  12. J. Jacques, C. Lavergne, N. Devictor, Sensitivity analysis in presence of model uncertainty and correlated inputs, Reliability Engineering and System Safety 91 (2006), 1126–1134.
  13. M. McKay, Evaluating prediction uncertainty, Technical Report NUREG/CR-6311/, US Nuclear Regulatory Commission and Los Alamos National Laboratory (1995).
  14. Tz. Ostromsky, I. Dimov, R. Georgieva, Z. Zlatev, Air pollution modelling, sensitivity analysis and parallel implementation, Int. Journal of Environment and Pollution, Vol. 46 (1-2), (2011), pp. 83–96.
  15. Tz. Ostromsky, Z. Zlatev, Parallel Implementation of a Large-scale 3-D Air Pollution Model, in: Large Scale Scientific Computing (S. Margenov, J. Wasniewski, P. Yalamov, Eds.), LNCS-2179, Springer, 2001, pp. 309–316.
  16. Tz. Ostromsky, Z. Zlatev, Flexible Two-level Parallel Implementations of a Large Air Pollution Model, in: Numerical Methods and Applications (I.Dimov, I.Lirkov, S. Margenov, Z. Zlatev - eds.), LNCS-2542, Springer (2002), pp. 545–554.
  17. H. Rabitz, O. Alis, J. Shorter, K. Shim, Efficient input-output model representations, Computer Phys. Comm. 117 (1999), pp. 11–20.
  18. A. Saltelli, Making best use of model valuations to compute sensitivity indices, Computer Physics Communications 145 (2002), pp. 280–297.
  19. A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, John Wiley & Sons publishers, Probability and Statistics series (2000).
  20. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press (New York, 2004).
  21. I. Sobol’, Multidimensional quadrature formulas and Haar functions, Nauka, Moscow, 1969 (in Russian).
  22. I. M. Sobol’, Sensitivity estimates for nonlinear mathematical models, Matem. Modelirovanie 2 (1) (1990), pp. 112–118.
  23. I. M. Sobol’, Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment 1 (1993), pp. 407–414.
  24. I. M. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, 55 (1-3) (2001), pp. 271–280.
  25. I. M. Sobol’, Theorem and examples on high dimensional model representation, Reliability Engineering and System Safety 79 (2003), pp. 187–193.
  26. A. Takemura, Tensor analysis of ANOVA decomposition, J. Amer. Statist. Assoc. 78 (1983), pp. 894–900.
  27. WEB-site of the Danish Eulerian Model, available at: http://www.dmu.dk/AtmosphericEnvironment/DEM
  28. Z. Zlatev, Computer treatment of large air pollution models, Kluwer (1995).
  29. Z. Zlatev, I. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam (2006).
  30. Z. Zlatev, I. Dimov, K. Georgiev, Modeling the long-range transport of air pollutants, IEEE Computational Science & Engineering, 1 (3) (1994), pp. 45–52.