Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Segmentation Methods Evaluation on Grapevine Leaf Diseases

,

DOI: http://dx.doi.org/10.15439/2023F7053

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 10811085 ()

Full text

Abstract. The problem of grapevine disease detection (VDD) was addressed in a number of research papers, however, a generic solution is not yet available for this task in the community. The region of interest segmentation and object detection tasks are often complementary. A similar situation is encountered in VDD applications as well, in which crop or leaf detection can be done via instance segmentation techniques as well. The focus of this work is to validate the most suitable methods from the main literature on vine leaf segmentation and disease detection on a custom dataset containing leaves both from the laboratory environment and cropped from images in the field. We tested five promising methods including the Otsu's thresholding, Mask R-CNN, MobileNet, SegNet, and Feature Pyramid Network variants. The results of the comparison are available in Table 1 summarizing the accuracy and runtime of different methods.

References

  1. Florent Abdelghafour, Barna Keresztes, Aymeric Deshayes, Christian Germain, and Jean-Pierre Da Costa. “An annotated image dataset of downy mildew symptoms on Merlot grape variety”. In: Data in Brief 37 (2021), page 107250. https://doi.org/10.1016/j.dib.2021.107250.
  2. Florent Abdelghafour, Barna Keresztes, Christian Germain, and Jean-Pierre Da Costa. “In Field Detection of Downy Mildew Symptoms with Proximal Colour Imaging”. In: Sensors 20.16 (2020), page 4380. http://dx.doi.org/ 10.3390/s20164380.
  3. Diego Aghi, Simone Cerrato, Vittorio Mazzia, and Marcello Chiaberge. “Deep Semantic Segmentation at the Edge for Autonomous Navigation in Vineyard Rows”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - October 1, 2021. IEEE, 2021, pages 3421–3428. http://dx.doi.org/10.1109/IROS51168.2021.9635969.
  4. M. Alessandrini, R. Calero Fuentes Rivera, L. Falaschetti, D. Pau, V. Tomaselli, et al. “A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning”. In: Data in Brief 35 (2021), page 106809. https://doi.org/10.1016/j.dib.2021.106809.
  5. Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.12 (2017), pages 2481–2495. http://dx.doi.org/10.1109/TPAMI.2016.2644615.
  6. G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).
  7. A. Casado-García, J. Heras, A. Milella, and R. Marani. “Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture”. In: Precision Agriculture (2022), pages 1–26. http://dx.doi.org/10.1007/s11119-022-09929-9.
  8. Alberto Cruz, Yiannis Ampatzidis, Roberto Pierro, Alberto Materazzi, Alessandra Panattoni, et al. “Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence”. In: Computers and Electronics in Agriculture 157 (2019), pages 63–76. DOI : 10.1016/j.compag.2018.12.028.
  9. Luca Ghiani, Alberto Sassu, Francesca Palumbo, Luca Mercenaro, and Filippo Gambella. “In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment”. In: Sensors 21.11 (2021), page 3908. http://dx.doi.org/10.3390/s21113908.
  10. Salvador Gutiérrez, Inés Hernández, Sara Ceballos, Ignacio Barrio, Ana M. Díez-Navajas, et al. “Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions”. In: Computers and Electronics in Agriculture 182 (2021), page 105991. DOI : 10.1016/j.compag.2021.105991.
  11. Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. “Mask R-CNN”. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017, pages 2980–2988. http://dx.doi.org/10.1109/ICCV.2017.322.
  12. Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark Sandler, et al. “Searching for MobileNetV3”. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pages 1314–1324. http://dx.doi.org/10.1109/ICCV.2019.00140.
  13. David P. Hughes and Marcel Salathé. “An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing”. In: Computing Research Repository abs/1511.08060 (2015).
  14. Hans Knutsson, Carl-Fredrik Westin, and Mats T. Andersson. “Representing Local Structure Using Tensors II”. In: Image Analysis - 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings. Edited by Anders Heyden and Fredrik Kahl. Volume 6688. Lecture Notes in Computer Science. Springer, 2011, pages 545–556. http://dx.doi.org/10.1007/978-3-642-21227-7_51.
  15. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, et al. “Feature Pyramid Networks for Object Detection”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pages 2117–2125. http://dx.doi.org/10.1109/CVPR.2017.106.
  16. Bin Liu, Zefeng Ding, Liangliang Tian, Dongjian He, Shuqin Li, et al. “Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks”. In: Frontiers in Plant Science 11 (2020), page 1082. DOI : 10.3389/fpls.2020.01082.
  17. Ertai Liu, Kaitlin M. Gold, David Combs, Lance Cadle-Davidson, and Yu Jiang. “Deep semantic segmentation for the quantification of grape foliar diseases in the vineyard”. In: Frontiers in Plant Science 13 (2022), page 978761. DOI : 10.3389/fpls.2022.978761.
  18. Szilárd Molnár, Benjamin Kelényi, and Levente Tamás. “Feature Pyramid Network Based Efficient Normal Estimation and Filtering for Time-of-Flight Depth Cameras”. In: Sensors 21.18 (2021), page 6257. DOI : 10.3390/s21186257.
  19. Szilárd Molnár, Barna Keresztes, and Levente Tamás. “Feature Pyramid Network based Proximal Vine Canopy Segmentation”. In: IFAC-PapersOnLine (2023).
  20. Antonios Morellos, Xanthoula Eirini Pantazi, Charalampos Paraskevas, and Dimitrios Moshou. “Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning”. In: Remote Sensing 14.18 (2022), page 4648. DOI : 10.3390/rs14184648.
  21. Seyed Amirhossein Mousavi and Gholamreza Farahani. “A Novel Enhanced VGG16 Model to Tackle Grapevine Leaves Diseases With Automatic Method”. In: IEEE Access 10 (2022), pages 111564–111578. DOI : 10.1109/ACCESS.2022.3215639.
  22. Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”. In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pages 62–66. http://dx.doi.org/10.1109/TSMC.1979.4310076.
  23. Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.6 (2017), pages 1137–1149. DOI : 10.1109/TPAMI.2016.2577031.
  24. Thiago T. Santos, Leonardo L. de Souza, Andreza A. dos Santos, and Sandra Avila. “Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association”. In: Computers and Electronics in Agriculture 170 (2020), page 105247. http://dx.doi.org/10.1016/j.compag.2020.105247.
  25. Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Edited by Yoshua Bengio and Yann LeCun. Association for Computing Machinery, 2015.
  26. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, et al. “Going deeper with convolutions”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 2015, pages 1–9. http://dx.doi.org/10.1109/CVPR.2015.7298594.
  27. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. “Rethinking the Inception Architecture for Computer Vision”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pages 2818–2826. http://dx.doi.org/10.1109/CVPR.2016.308.
  28. The GIMP Development Team. GIMP. Version 2.10.12. June 12, 2019. URL: https://www.gimp.org.
  29. M. Weiss, F. Jacob, and G. Duveiller. “Remote sensing for agricultural applications: A meta-review”. In: Remote Sensing of Environment 236 (2020), page 111402. https://doi.org/10.1016/j.rse.2019.111402.