Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Real-time Communication Model for IoT Systems

, ,

DOI: http://dx.doi.org/10.15439/2023F8513

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 931936 ()

Full text

Abstract. Internet of Things solutions typically involve interaction between sensors, actuators, the cloud, embedded systems and user applications. Often in such cases, there are time constraints specifying the maximum response time to a request. This time depends on the calculation time and transmission time. Existing Internet communication solutions do not ensure the implementation of transmissions in a way that guarantees meeting the set time constraints. This paper proposes a new model of Internet communication dedicated to real-time Internet of Things systems, which includes a communication protocol, as well as a transmission scheduling and routing method. The protocol takes into account information about transmission time constraints, which is used for packet scheduling by routers, allowing to increase quality of service. In addition, the proposed static routing mechanism makes it possible to parallelize transmissions if time constraints are still exceeded. Also presented are preliminary results of experiments showing to what extent the proposed methods allow improving the quality of service in real-time Internet of Things systems.

References

  1. M. Płaza, R. Belka, Z. Szcześniak, “Towards a different world – on the potential of the Internet of everything”, IAPWGIOS, vol. 9(2), pp. 8-11, June 2019, https://doi.org/10.5604/01.3001.0013.2539
  2. P. Pięta, S. Deniziak, R. Belka, M. Płaza, and M. Płaza, “Multi-domain model for simulating smart IoT-based theme parks”, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082T, October 2018.
  3. R. Belka, S. Deniziak, M. Płaza, M. Hejduk, P. Pięta, M. Płaza, P. Czekaj, P. Wołowiec, K. Ludwinek, “Integrated visitor support system for tourism industry based on IoT technologies”, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108081J, October 2018.
  4. M. Płaza, R. Belka, M. Płaza, S. Deniziak, P. Pięta, Sz. Doszczeczko, “Analysis of feasibility and capabilities of RTLS systems in tourism industry”, Proc. SPIE, 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108080C, October 2018.
  5. S. Bąk, R. Czarnecki, S. Deniziak, “Synthesis of real-time cloud applications for Internet of Things”, Turk. J. Elec. Eng. & Comp. Sci., vol 23, pp. 913-929, 2015, https://doi.org/10.3906/elk-1302-178
  6. Intel. Intel Time Coordinated Computing Tools. 2022. Available online: https://www.intel.com.
  7. Intel. Real-Time at the Edge: Overview. https://www.intel.com, 2022.
  8. J. Lee. S. Park, “Time-sensitive network (TSN) experiment in sensor-based integrated environment for autonomous driving”, Sensors, vol. 19(5), pp. 1111, March 2019, https://doi.org/10.3390/s19051111
  9. S. Deniziak, M. Płaza, Ł. Arcab, “Approach for designing real-time IoT systems. Electronics, vol. 11(24), pp. 1-21, December 2022.
  10. J. Lee, J. Kim, S. Kim, Ch. Lim, J. Jung, “Enhanced distributed streaming system based on RTP/RTSP in resurgent ability”, Proc. Fourth Annual ACIS ICIS’05, Jeju Island, South Korea, 14-16 July 2005.
  11. M. Kirsche, R. Klauck, “Unify to bridge gaps: Bringing XMPP into the Internet of Things”, 2012 IEEE Int. Conf. on Pervasive Computing and Communications Workshops, Lugano, Switzerland, 19-23 March 2012
  12. MQTT. MQTT: The Standard for IoT Messaging. 2022. Available online: https://mqtt.org (accessed on 6 January 2023)
  13. C. Bormann, A.P. Castellani, Z. Shelby, “CoAP: An application protocol for billions of tiny internet nodes”, IEEE Internet Computing, vol. 16, pp. 62 - 67, 2012.
  14. G. L. Muller, HTML5 WebSocket protocol and its application to distributed computing. https://arxiv.org/abs/1409.3367.
  15. M. Ha, D. Kim, S. H. Kim, S. Hong, “Inter-MARIO: A fast and seamless mobility protocol to support inter-pan handover in 6LoWPAN” 2010 IEEE GLOBECOM, 06-10 December 2010, pp. 1-6
  16. J.V.V. Sobral, J.J.P.C. Rodrigues, R.A.L. Rabêlo, J. Al-Muhtadi, V. Korotaev, “Routing Protocols for Low Power and Lossy Networks in Internet of Things applications”, Sensors, vol. 19, pp. 2144, 2019.
  17. O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis,  “The collection tree protocol (CTP)”, Proc.(SenSys, November 2009
  18. T. Clausen, J. Yi, U. Herberg, “Lightweight on-demand ad hoc distance-vector routing - next generation (LOADng): Protocol, extension, and applicability”, Computer Networks, vo. 126, pp. 125-140, 2017.
  19. Z. Yang, S. Ping, H. Sun, A. H. Aghvami, “CRB-RPL: A receiver-based routing protocol for communications in cognitive radio enabled smart grid”, IEEE Trans. on Veh. Tech., vol.66(7), pp.5985-5994, 2017.
  20. S. Basagni, C. Petrioli, R. Petroccia, D. Spaccini, “Channel-aware routing for underwater wireless networks”, Proc. Oceans-Yeosu, 2012.
  21. Z. Zhou, B. Yao, R. Xing, L. Shu, S. Bu, “E-CARP: An energy efficient routing protocol for UWSNs in the Internet of underwater things”, IEEE Sensors Journal, vol. 16(11), pp. 4072-4082, June 2016.
  22. S. Malik, S. Ahmad, I. Ullah, D. H. Park, D. H. Kim, “An adaptive emergency first intelligent scheduling algorithm for efficient task management and scheduling in hybrid of hard real-time and soft real-time embedded IoT systems”, Sustainability, vol. 11(8), pp. 2192, 2019
  23. A. M. Alkahtani, M. E.Woodward, K. Al-Begain, “An overview of Quality of Service (QoS) and QoS Routing in communication networks”, Computer Science, 2003.
  24. A. Alanazi, K. Elleithy, “Real-time QoS routing protocols in wireless multimedia sensor networks: Study and analysis”, Sensors, vol. 15, pp. 22209-22233, August 2015, https://doi.org/10.3390/s150922209
  25. N. Kumar R. Khanna, “A compact multi-band multi-input multi-output antenna for 4G/5G and IoT devices using theory of characteristic modes”, Int. J. of RF and Microwave Comp.-Aided Eng., vol. 30(6), Jan. 2020.
  26. Y. Xu, F. Ren, T. He, C. Lin, C. Chen, S. K. Das, “Real-time routing in wireless sensor networks: A potential field approach”, ACM Transactions on Sensor Networks, vol. 9(3), May 2013.
  27. S. R. Heikalabad, H. Rasouli, F. Nematy, N. Rahmani, „QEMPAR: QoS and Energy Aware Multi-Path Routing Algorithm for Real-Time Applications in Wireless Sensor Networks”, International Journal of Computer Science Issues, vol. 8(1), pp. 466-471, January 2011.
  28. A. Razaque, K. Elleithy, “Pheromone termite (PT) model to provide robust routing over Wireless Sensor Networks”, Proc. of the 2014 ASEE Zone 1, pp. 1-6, 2014.
  29. S. Deniziak, R. Tomaszewski, “Codesign of energy and resource efficient contention-free Network-on Chip for real-time embedded systems, 2018 11th NoCArc, Fukuoka, Japan, pp. 1-6, 2018.
  30. S. Deniziak, R.Tomaszewski, “Co-synthesis of contention-free energy-efficient NOC-based real time embedded systems”, Journal of Systems Architecture, vol. 98, pp. 92-101, 2019.
  31. S. Teng, W. Zhang, H. Zhu, X. Fu, J. Su, B. Cui, “A Least-Laxity-First scheduling algorithm of variable time slice for periodic tasks”, in Y. Wang (Ed.), Breakthroughs in Software Science and Computational Intelligence, IGI Global, pp. 316-333.