Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Towards Enhancing Open Innovation Efficiency: A Method for Ontological Integration of BPMN and EMMO

, , , , , , ,

DOI: http://dx.doi.org/10.15439/2023F8906

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 471479 ()

Full text

Abstract. The process of open innovation based on advanced materials involves the collaborative sharing of knowledge, ideas, and resources among different organizations such as academic institutions, businesses, and government agencies. To accelerate the development of new materials and technologies and to address complex material challenges, it is suggested that Business Process Modeling and Notations (BPMN) and Elementary Multiperspective Material Ontology (EMMO) be closely integrated. In this paper, we examine the integration of EMMO and BPMN through an initial investigation with the aim of streamlining workflows, enhancing communication, and improving the understanding of materials knowledge. We propose a four-step approach to integrate both ontologies which involves ontology alignment, mapping, integration, and validation. Our approach supports faster and more cost-effective research and development processes, leading to more effective and innovative solutions.

References

  1. P. Klein, N. Konchakova, D. G. Hristova-Bogaerds, M. Noeske, A. Simperler, G. Goldbeck, and D. Höche, “Translation in materials modelling: Process and progress,” OntoTrans – FORCE, White Paper, 2021.
  2. “The open innovation publications,” https://digital-strategy.ec.europa.eu/en/library/open-innovation-publications, accessed: 2023-2-24.
  3. M. T. Horsch, S. Chiacchiera, M. A. Seaton, I. T. Todorov, K. Šindelka, M. Lísal, B. Andreon, E. Bayro Kaiser, G. Mogni, G. Goldbeck et al., “Ontologies for the virtual materials marketplace,” KI-Künstliche Intelligenz, vol. 34, pp. 423–428, 2020.
  4. S. Belouettar, C. Kavka, B. Patzak, H. Koelman, G. Rauchs, G. Giunta, A. Madeo, S. Pricl, and A. Daouadji, “Integration of material and process modelling in a business decision support system: Case of composelector h2020 project,” Composite Structures, vol. 204, pp. 778–790, 2018.
  5. N. Konchakova, H. A. Preisig, C. Kavka, M. T. Horsch, P. Klein, and S. Belouettar, “Bringing together materials and business ontologies for protective coatings,” FOMI 2022: Formal Ontologies Meet Industry, 2022.
  6. H. Tomaskova, P. Maresova, M. Penhaker, M. Augustynek, B. Klimova, O. Fadeyi, and K. Kuca, “The business process model and notation of open innovation: The process of developing medical instrument,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 5, no. 4, p. 101, 2019.
  7. C. Kavka, D. Campagna, M. Milleri, A. Segatto, S. Belouettar, and E. Laurini, “Business decisions modelling in a multi-scale composite material selection framework,” in 2018 IEEE International Systems Engineering Symposium (ISSE). IEEE, 2018, pp. 1–7.
  8. G. Goldbeck, E. Ghedini, A. Hashibon, G. Schmitz, and J. Friis, “A reference language and ontology for materials modelling and interoperability,” 2019.
  9. “Notation (bpmn) version 2.0 howpublished =https://www.omg.org/spec/bpmn/2.0, author=OMG, publisher=PDF.”
  10. E. Ghedini, A. Hashibon, J. Friis, G. Goldbeck, G. Schmitz, and A. De Baas, “Emmo the european materials modelling ontology,” in EMMC Workshop on Interoperability in Materials Modelling. St John’s Innovation Centre Cambridge, 2017.
  11. S. Zivkovic, H. Kuhn, and D. Karagiannis, “Facilitate modelling using method integration: An approach using mappings and integration rules,” ECIS 2007 Proceedings, pp. 2038–2049, 2007.
  12. C. Feltus, E. Dubois, and M. Petit, “Alignment of remmo with rbac to manage access rights in the frame of enterprise architecture,” in 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS). IEEE, 2015, pp. 262–273.
  13. C. Feltus and A. Rifaut, “An ontology for requirements analysis of managers’ policies in financial institutions,” in Enterprise Interoperability II: New Challenges and Approaches. Springer, 2007, pp. 27–38.
  14. S. Spaccapietra and C. Parent, “Database integration: the key to data interoperability,” Advances in Object-Oriented Data Modeling, pp. 221–253, 2000.
  15. C. Feltus and E. H. Proper, “Conceptualization of an abstract language to support value co-creation,” in 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2017, pp. 971–980.
  16. C. Feltus, E. H. Proper, and K. Haki, “Towards a language to support value cocreation: An extension to the archimate modeling framework,” in 2018 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2018, pp. 751–760.
  17. S. Ferndriger, A. Bernstein, J. S. Dong, Y. Feng, Y.-F. Li, and J. Hunter, “Enhancing semantic web services with inheritance,” in The Semantic Web-ISWC 2008: 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings 7. Springer, 2008, pp. 162–177.
  18. S. Belouettar, C. Kavka, B. Patzak, H. Koelman, G. Rauchs, G. Giunta, A. Madeo, S. Pricl, and A. Daouadji, “Integration of material and process modelling in a business decision support system: Case of composelector h2020 project,” Composite Structures, vol. 204, pp. 778–790, 2018.
  19. J. Taylor and J. Purchase, Real-world decision modeling with DMN. Meghan-Kiffer Press Tampa, 2016.
  20. A. Correia, “Elements of style of bpmn language,” arXiv preprint https://arxiv.org/abs/1502.06297, 2015.
  21. C. Kavka, D. Campagna, and H. Koelman, “A business decision support system supporting early stage composites part design,” in Advances in Computational Methods and Technologies in Aeronautics and Industry. Springer, 2022, pp. 263–279.
  22. M. T. Horsch, D. Toti, S. Chiacchiera, M. A. Seaton, G. Goldbeck, and I. T. Todorov, “Osmo: Ontology for simulation, modelling, and optimization,” 2021.
  23. M. Büschelberger, J. F. Morgado, K. Frei, C. Eichheimer, J. Boehm, A. Calzolari, and A. Hashibon, “Report on intersect developed ontologies and moda.”
  24. M. T. Horsch, C. Niethammer, G. Boccardo, P. Carbone, S. Chiacchiera, M. Chiricotto, J. D. Elliott, V. Lobaskin, P. Neumann, P. Schiffels et al., “Semantic interoperability and characterization of data provenance in computational molecular engineering,” Journal of Chemical & Engineering Data, vol. 65, no. 3, pp. 1313–1329, 2019.
  25. D. Nicolas, C. Feltus, and D. Khadraoui, “Multidimensional dih4cps ontology,” 21st International Conference on e-Society, p. 20, 2023.
  26. ——, “Towards a multidimensional ontology model for dih-based organisations,” International Journal of Knowledge and Systems Science (IJKSS), vol. 14/1, 2023.
  27. R. Cobe and R. Wassermann, “Ontology merging and conflict resolution: Inconsistency and incoherence solving approaches,” BNC@ ECAI 2012, p. 20, 2012.
  28. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl reasoner,” Journal of Web Semantics, vol. 5, no. 2, pp. 51–53, 2007.
  29. “Protégé – the open-source ontology editor and framework,” https://protege.stanford.edu/, accessed: 2023-2-24.