Logo PTI Logo FedCSIS

Proceedings of the 18th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 35

Deep Neural Networks application for Cup-to-Disc ratio estimation in eye fundus images

,

DOI: http://dx.doi.org/10.15439/2023F944

Citation: Proceedings of the 18th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 35, pages 11911195 ()

Full text

Abstract. Glaucoma is the second eye disease causing blindness worldwide. Optic Cup-to-Disc ratio (CDR) is a commonly applied method in glaucoma detection. The CDR is calculated based on Optic Disc (OD) and Optic Cup (OC) in eye fundus image screening. Therefore, the accurate segmentation of these two parameters is very important. Lately, Deep Neural Networks have demonstrated great effort in automated Optic Disc and Optic Cup segmentation but the overlapping between regions of OC and OD cause the challenge to obtain CDR automatically with high accuracy. In this paper, we assess the performance of CDR evaluation on three modifications of the Convolutional Neural Network (CNN) U-Net, namely Attention U-Net, Residual Attention U-Net, and U-Net++ applied on publicly available datasets RIM-ONE, DRISHTI, and REFUGE. We calculated the ground truth CDR value of testing eye fundus images of these datasets and compared it with the CDR value obtained by trained CNNs. Our results show that Attention U-net obtains the closest CDR to the ground truth CDR value but the identification of early-stage glaucoma needs an improvement.

References

  1. P. Yi, Y. Xu, J. Zhu, J. Liu, Ch. Yi, H. Huang, and Q. Wu, “Deep level set learning for optic disc and cup segmentation,” Neurocomputing, 2021, pp. 330–341, https://doi.org/10.1016/j.neucom.2021.08.102.
  2. S. Virbukaitė and J. Bernatavičienė, “Deep Learning Methods for Glaucoma Identification Using Digital Fundus Images,” Baltic J. Modern Computing, 2020, pp. 520–530, https://doi.org/10.22364/bjmc.2020.8.4.03.
  3. M. N. Cheema, A. Nazir, B. Sheng, P. Li, J. Qin, J. Kim and D. D. Feng, “Image-Aligned Dynamic Liver Reconstruction Using Intra-Operative Field of Views for Minimal Invasive Surgery,” IEEE Trans Biomed Eng., 2019, pp. 2163–2173, https://doi.org/10.1109/TBME.2018.2884319.
  4. H. Xiong, S. Liu, R. V. Sharan, E. Coiera, S. Berkovsky, “Weak label based Bayesian U-Net for optic disc segmentation in fundus images,” Artificial Intelligence In Medicine, vol. 126, 2022, https://doi.org/10.1016/j.artmed.2022.102261.
  5. Y. Jiang, F. Wang, J. Gao and S. Cao, “Multi-Path Recurrent U-Net Segmentation of Retinal Fundus Image,” Applied Sciences, vol. 10, 2020, https://doi.org/10.3390/app10113777.
  6. J. Civit-Masot, F. Luna-Perejon, S. Vicente-Diaz, J. M. Rodriguez Corral and A. Civit, “TPU Cloud-Based Generalized U-Net for Eye Fundus Image Segmentation,” IEEE Access, vol. 7, 2019, pp. 142379–142387, https://doi.org/10.1109/ACCESS.2019.2944692.
  7. R. Zhao, X. Chen, X. Liu, Z. Chen, F. Guo and S. Li, “Direct Cupto-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning,” IEEE Journal of Biomedical and health informatics, 2020, pp. 1104–1113, https://doi.org/10.1109/JBHI.2019.2934477.
  8. H. Alghmdi, H. Lilian Tang, M. Hansen, A. O’Shea, L. Al Turk and T. Peto, “Measurement of optical cup-to-disc ratio in fundus images for glaucoma screening,” 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), 2015, pp. 1–5, https://doi.org/10.1109/IWCIM.2015.7347097.
  9. E. Sudheer Kumar and C. Shoba Bindu, “Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique,” Journal of Ambient Intelligence and Humanized Computing, 2021, https://doi.org/10.1007/s12652-021-02977-5.
  10. G. Rakesh and V. Rajamanickam, “A Novel Deep Learning Algorithm for Optical Disc Segmentation for Glaucoma Diagnosis,” Traitement du Signal, vol. 39, 2022, pp. 305–311, https://doi.org/10.18280/ts.390132.
  11. J. Sivaswamy, S. R. Krishnadas, G. D. Joshi, M. Jain and A. U. S. Tabish, “Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation,” Proceedings of 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, pp. 53–56, https://doi.org/10.1109/ISBI.2014.6867807.
  12. F. J. F. Batista, T. Diaz-Aleman, J. Sigut, S. Alayon, R. Arnay, and D. Angel-Pereira, “RIM-ONE DL: A Unified Retinal Image Database for Assessing Glaucoma Using Deep Learning,” Image Analysis and Stereology, vol. 39, 2020, pp. 161-–167, https://doi.org/10.5566/ias.2346.
  13. J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-Pinto, R. Fang, P. Heng, J. Kim, J. Lee, J. Lee, X. Li, P. Liu, S. Lu, B. Murugesan, V. Naranjo, S. S. R. Phaye, S. M. Shankaranarayana, A. Sikka, J. Son, A. van den Hengel, S. Wang, J. Wu, Z. Wu, G. Xu, Y. Xu, P. Yin, F. Li, X. Zhang, Y. Xu and H. Bogunovic, “REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs,” Medical Image Analysis, vol. 59, 2020, pp. 101570, https://doi.org/10.1016/j.media.2019.101570.
  14. S. Virbukaitė and J. Bernatavičienė, “Image Resizing Level Impact on Eye Fundus Optic Disc and Optic Cup Segmentation,” Proceedings of the 30th Jubilee International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2022, https://www.doi.org/10.24132/CSRN.3201.39.
  15. Z. Zhou, Md M. R. Siddiquee, N. Tajbakhsh and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2018. Lecture Notes in Computer Science, 2018, https://doi.org/10.48550/arXiv.1807.10165.
  16. T. Shyamalee and D. Meedeniya, “Attention U-Net for Glaucoma Identification Using Fundus Image Segmentation,” 2022 International Conference on Decision Aid Sciences and Applications (DASA), 2022, https://doi.org/10.1109/DASA54658.2022.9765303.
  17. Z. Ni, G. Bian, X. Zhou, Z. Hou, X. Xie, C. Wang, Y. Zhou, R. Li and Z. Li, “RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments,” Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science, 2019, https://doi.org/10.48550/arXiv.1909.10360.
  18. ITAPC, “Information technology research center of Vilnius University,” Energy Economics, 2023.
  19. T. Akshat, P. Kumar and S. Pathan, “Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture,” Biocybernetics and Biomedical Engineering, vol. 41, 2021, pp. 819–832, https://doi.org/10.1016/j.bbe.2021.05.011.
  20. Y. Jiang, F. Wang, J. Gao and S. Cao, “Multi-Path Recurrent U-Net Segmentation of Retinal Fundus Image,” Applied Sciences, vol. 10, 2020, https://doi.org/10.3390/app10113777.
  21. J. Carrillo, L. Bautista, J. Villamizar, J. Rueda, M. Sanchez, and D. Rueda, “Glaucoma detection using fundus images of the eye,” 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 2019, pp. 1–4, https://doi.org/10.1109/STSIVA.2019.8730250.
  22. D.M.S. Barros, J.C.C. Moura, C.R. Freire, A.C. Taleb, R.A.M. Valentim, P.S.G. Morais, “Machine learning applied to retinal image processing for glaucoma detection: review and perspective,” BioMed Eng OnLine, 2020, https://doi.org/10.1186/s12938-020-00767-2.
  23. D.M.S. Barros, J.C.C. Moura, C.R. Freire, A.C. Taleb, R.A.M. Valentim, P.S.G. Morais, “Machine learning applied to retinal image processing for glaucoma detection: review and perspective,” BioMed Eng OnLine, 2020, https://doi.org/10.1186/s12938-020-00767-2.