
Comparative Analysis of Low-Code Computation

Systems

Anna Rosłan

Warsaw University of Technology

Warsaw, Poland

Michał Śmiałek

Warsaw University of Technology

Warsaw, Poland

0000-0001-6170-443X

Abstract—The paper aims to systematically compare compu-
tation platforms where the development of custom computation
applications is done visually. By this, we mean platforms equipped
with a visual language to define the flow of actions or data,
thus allowing us to treat them as low-code systems. The cho-
sen platforms include two mature systems: Orange and Azure
Machine Learning Studio, and also a newcomer – BalticLSC.
For the purpose of the study, two sample computing tasks were
created and executed on the three platforms. Based on this, the
platforms were compared with each other taking into account
the following characteristics: versatility, scalability, user entry
barrier, cost of use, availability of documentation, maintainability
and extensibility, availability, security, user interface friendliness,
and variety of interfaces for input data.

Index Terms—BalticLSC, cloud computing, Orange, Azure,
Data Mining, low-code

I. INTRODUCTION

T
HE NEED to use low-code platforms comes from the

need for companies and enterprises to develop digital

tools easily, cheaply and quickly [13]. Currently, digital tools

are developed by teams of developers. Team members know

programming, programming languages and algorithmics. The

development team creates the tool based on the information

provided by people who know the field of business require-

ments and the specifics of the domain in which the tool will

be used. Growing demand for the creation and development

of digital solutions is creating the need for a large number

of programming specialists. Still, there needs to be more

of these specialists to meet the growing demand fully. To

counteract these shortages and meet the increasing demand

for IT solutions, emerging low-code systems aim to develop

software in a simple way that allows less skilled workers

(in terms of programming skills) to participate in software

development tasks related to software development. The paper

indicates that the number of publications on low-code systems

has increased in recent years, proving the interest in low-code

platforms in the commercial market and among the scientific

and academic community. The scientific articles surveyed

demonstrate that the field of low-code is still being developed

and researched and will continue to gain importance.

One such solution is the BalticLSC platform [16], which is

a result of a research project to apply the low-code approach

to large-scale computations. The claim of BalticLSC is that it

should be simple to use and easy to understand by scientists,

researchers and other people not proficient in programming.

In this paper, we aim at verifying this claim by comparing

BalticLSC with two mature platforms that use similar means

for defining computation apps – the Orange platform and the

Azure Machine Learning Studio. These platforms provide the

functionality to create customized computing, data flow and

data analysis applications. The platforms also have in common

the provision of graphical editors. Additionally, access to these

platforms for private use was easy, unlimited and free (except

for Azure).

For this purpose, we use a software quality model to

compare the features of these three platforms.

II. RELATED WORK

The topic of software quality research has been studied

many times [17]. There are many software quality models

like ISO 9126, McCall’s model, Boehm’s model, etc. Most

models consider the internal perspective taking into account

the software development process. There are also approaches

which emphasize the external perspective, i.e. user satisfaction

[4], [7], [17]. The proposed quality models consider func-

tional and non-functional software requirements and focus on

the user perspective and expectations. Examples of software

quality metrics from the user perspective include functionality,

usability, reliability, performance, security or support.

Research papers have used different approaches to com-

parative analysis of applications. Most of them focus on

the technical parameters of the systems and the features

provided [5], [6], [12]. The analyzed features include the

service delivery model (IaaS, PaaS, SaaS), architecture, type

of input supported, network configuration, and security-related

issues. Another set of benchmarks can include various specific

functions provided by the compared tools [8], [14]. This

might include, for example, the types of machine learning

models available, Decision Trees, neural networks, the ability

to load input data in different formats, and types of data

visualization (histograms, graphs). Still, such approaches to

application analysis provide information about the functions

and features of the systems, but provide no data allowing for

explicit comparison between tools.

Another comparative application analysis approach is based

on comparing features related to user experience and ease of

management with each other. Maiya et al. [11] have selected

system features such as the learning time required to complete

Position Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 103–110

DOI: 10.15439/2023F1990

ISSN 2300-5963 ACSIS, Vol. 36

©2023, PTI 103 Thematic track: Practical Aspects of and

Solutions for Software Engineering



a task, the number of steps taken, ease of use, and the availabil-

ity of documentation. Each feature was assigned a qualitative

measure (e.g., easy, complex) or quantitative measure (10 steps

of execution, 10 min). These measures were normalized to

a scale of 1-5. This approach to benchmarking allows for

a comparative evaluation of systems. Another approach [10]

focuses on comparing the computing power of performance

platforms and the price of executing an assumed computational

problem on selected platforms.

The comparative analysis can also involve solving a selected

problem (like heart attack recognition) [9], [15] using the same

kind (e.g. machine learning) model on different platforms.

Measures of the quality of the services offered are then

determined. In the case of using machine learning models, this

is, for example, precision and sensitivity. This type of analysis

provides information regarding which tool to choose to solve

a particular problem (e.g. medical image classification).

III. BALTICLSC PLATFORM CHARACTERISTICS

BalticLSC [16] is a platform for developing or using large-

scale computing applications. The system is designed to

provide access to large-scale computing resources to small

businesses and institutions that often do not have the resources

to buy and maintain the desired infrastructure, as well as

the ability to make unused computing resources available to

companies and institutions in exchange for financial benefits.

The idea is that the system should be easy to use, affordable,

and efficient. The user does not need to have specialized

knowledge, as by using a graphical language, the users,

through the user interface, can design their own applications.

The system offers a platform for using ready-made algorithms

and applications and creating and sharing one’s own designs.

Currently, the system is made available to users in a demo

version. This means that some of the functionality has yet to

be made available to users. In this paper, the platform will be

described in its full version taking into account the functions

not available to users to explore the system’s full potential.

Also, computing centres have not been made available in the

demo version. There is one centre located at the Warsaw

University of Technology, so the research does not take into

account performance tests and speed of execution of test

computing programs. The platform was developed as part

of a research project co-financed by the European Regional

Development Fund. One of the authors of the paper, Michał

Śmiałek, is one of the developers of BalticLSC platform, but

the study was conducted by someone unfamiliar with the

system.

IV. AZURE ML STUDIO CHARACTERISTICS

Azure Machine Learning Studio [2] is a tool that enables

one to create, train and deploy machine learning models in

the Microsoft Azure cloud. It is a fully managed service that

enables machine learning across multiple platforms, including

R and Python. Azure Machine Learning Studio allows users

to create and deploy machine learning models without pro-

gramming or machine learning knowledge. Users can import

data, perform data mining, produce models, and share results

through the user interface. Azure Machine Learning Studio of-

fers many ready-made machine-learning algorithms and allows

users to create their own models. Users can also use existing

models and customize them to suit their needs.

V. ORANGE CHARACTERISTICS

Orange [3] is an open-source data mining and business

analytics platform that allows users to create and visualise

machine learning, neural network, regression, and classifica-

tion models. It is a drag-and-drop tool, which means users

can easily create and modify machine learning models by

dragging and dropping feature blocks. The system is provided

as a desktop application. The application uses the computing

power of the device on which the application is used. Orange

includes many built-in machine-learning algorithms and tools

for data visualization and presentations of descriptive statistics.

The platform also offers many add-ons and plug-ins that allow

users to customize the tool to fit their needs.

VI. METHODOLOGY FOR COMPARATIVE ANALYSIS

In order to perform a comparative analysis, two problems

were formulated and then solved by the author of this paper

on the selected platforms. Following this, the solutions to the

problems were compared, taking into account the following

features of the systems:

• Universality: the openness of the platform to define

custom flows and applications.

• Scalability: the ability to perform selected tasks on

augmented data.

• User entry barrier: the number of technologies and tools

a user needs to know to use a given platform.

• Cost of use: the potential costs associated with perform-

ing tasks on the platform.

• Documentation availability: the amount and quality of

available documentation and information on how to use

a given platform.

• Ease of maintenance and extensibility: the features

provided by the system that enable and facilitate changes,

bug fixes, extensions, and enhancements to the applica-

tion.

• Availability: trouble-free operation of the service,

• Security: the quantity and quality of the data protection

mechanisms used.

• User interface friendliness: the ease and clarity of the

user interface. The number of steps a user must take to

perform a given task.

• Variety of interfaces for input data: the ability to

provide input data of different formats.

The selection of features for benchmarking was modeled

on the software quality models presented in Section II The

features selected for comparative analysis reflect an external

perspective, i.e. user satisfaction. Another important aspect

was to select quality features appropriate to the chosen domain

of systems, i.e. low-code platforms.

104 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Figure 1. Solution of the first problem in the BalticLSC system

Figure 2. Solution of the second problem in the BalticLSC system (part one)

The first problem to be solved is static analysis of the

provided data. We need to create a simple script in Python

or another available language that analyzes the provided data.

The result of the program is a CSV file that contains the

descriptive statistics of the provided data. The second task is

to create a decision tree on input data. We divide the data into

a test set and a learning set, then create a decision tree and

test the model’s performance on the test data. The results of

the program are files showing the effect of the model, e.g. tree

graphics, and analysis of the model prediction, e.g. confusion

matrix, and measures of prediction accuracy.

The first task is to check the selected platforms whether they

enable the execution of user-defined actions, which checks

platform flexibility and versatility. The creation of descriptive

statistics action is used as an example of an action that the user

must prepare himself. The execution of the task is designed

to test the platform’s ability to define custom flows freely

Task two is designed to test the execution of an example

workflow related to machine learning. Task two contains steps

that are typical of an area related to machine learning, i.e. data

processing, data partitioning, training the model, and testing

the model. Evaluation of the system consists of a comparative

analysis of selected platforms for the presented set of features.

As a result of the comparative analysis, systems are ranked by

awarding first, second and third place.

VII. IMPLEMENTATION OF LOW-CODE APPLICATIONS

A. BalticLSC

The BalticLSC system offers integration with technologies

that store data, but it does not have data storage facilities.

It was decided to prepare the input data as a CSV file

available via an FTP server. The computation results would

also be stored on this server. In addition, BalticLSC has no

functionality for configuring computation modules through a

GUI. Instead, configuration parameters such as what columns

to choose for analysis have to be provided as additional

input. This allows to select different parameter sets simply

by changing the address of the file with the parameters.

Figure 1 shows the solution to the first problem. On the left

are graphical representations of the input data, called the data

pins. The user can configure input data on the platform by

specifying the address (e.g. a URL and a file name) through

which the platform obtains the data. In our case, data was

provided through an FTP server. The data pin called “data”

ANNA ROSŁAN, MICHAŁ ŚMIAŁEK: COMPARATIVE ANALYSIS OF LOW-CODE COMPUTATION SYSTEMS 105



Figure 3. Solution of the second problem in the BalticLSC system (part two)

represents a CSV file with the data to be analysed. The data pin

called “columns” represents the list of columns to be analyzed.

These two data elements are input to the first module, called

“select_columns”. It transforms the input dataset using the

selected columns and returns it as the module’s output. The

output effect of the module is passed to the next computation

module, named ”describe_df”. This module creates descriptive

statistics for the transformed data organised into columns. The

effect of these computations is passed to the output data pin

(“Output”). As for the input data pins, this pin is configured

so that the data can be saved to a specific address, which in

this case is on an FTP server.

While designing the solution to the second problem, we

have noticed that it was not possible to use data coming out

of a component iteratively, so two applications had to be

created. The first one (Figure 2) accepts the same kinds of

data as for the first problem (“data” and “columns”). They

are used to create the calculation model. The application

has two additional input data pins - “predicted_column_tree”

and “predicted_column_predict”. They describe what column

from the main input data set (“data”) will be predicted in

the machine model. We need two input data pins because

a data pin cannot be used more than once. Execution of

the application starts with selecting columns for further pro-

cessing using the “select_columns” module. This results in

selecting columns from the main data set to be used for

further processing. The result is passed to the “split_data”

module, which randomly splits the data into a training and

a test set which are output to the “train_df” and “test_df”

pins. The training set is passed along with the information

about column predictions to the “tree” module. This module

creates a decision tree, where the result is a plotted model.

This model is passed to the final “test and score” module.

Apart from the decision tree, this module receives two inputs

– the test dataset “test_df” and information about the predicted

column “predicted_column_predict”. The module tests the

created model and returns a report (“classification_report”)

and a confusion matrix as a heat map (“heat_map”). These

two outputs from this application are then stored in the same

way as in the first application.

The second application is shown in Figure 3 and is prepared

similarly to that from Figure 2. The main difference is the last

module – “tree visualizer”. It receives a trained decision tree

model as input and creates its graphical representation. The

resulting visualisation (diagram) is passed to the output and is

stored on an FTP server, as in the other applications.

B. Orange

As in BalticLSC, the execution of tasks in Orange is

done within the environment. However, computations are done

locally, so there is no need for external storage. In our case,

CSV files containing input data were imported directly into

the system. The resulting data was accessible directly through

a graphical interface.

The application solving the first problem in the Orange

notation is shown in Figure 4. Its execution begins with

loading the CSV file with data into the “CSV File Import”

module. Then, the data is passed to the “Select Columns”

module, which selects data contained in selected columns.

Unlike for BalticLSC, the columns are not input as a sep-

arate file but are defined as direct parameters of the “Select

Columns” module. This is done through a GUI and needs to be

changed for different computations. After selecting columns,

the application runs the “Python script” module to execute a

dedicated Python script that creates descriptive statistics for the

provided data. The script is defined within the module details.

The result of these computations is a data set that is saved to

the local machine using the “Save Data” module. The location

of the file is given in the details of the module. In addition, it

is possible to display data directly in the application using the

module “Data Table”. It can be done by showing the module

details.

To solve the second problem (see Figure 5), we use the

“CSV File Import” and “Selected Columns” modules de-

scribed above. Data from selected columns is passed to the

“Data Sampler” module, which randomly separates the data

into a test set and a training set. The training set is passed to

the “Tree” module, which creates a decision tree. The trained

model is then passed to the “Tree Viewer” module, which

creates a graphical representation of the tree. The “Test and

Score” module uses the test data to test the tree and returns

test information. This information is used by the “Confusion

Matrix” module, which creates a confusion matrix as its name

suggests. Data passed and produced by the “Tree Viewer”,

106 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Figure 4. Solution of the first problem in the Orange system

Figure 5. Solution of the second problem in the Orange system

“Confusion Matrix”, and “Test and Score” modules can be

viewed in the module details. There, one can also specify

additional parameters, for example, the predicted column in

the “Tree” module.

C. Azure ML Studio

The Azure ML Studio platform operates in the cloud,

similar to BalticLSC. We need to create and configure an

appropriate service and then design and execute a dedicated

solution application. Input data was imported through a GUI

into the Azure Blob Storage service, integrated with the

platform. As previously, data was contained in CSV files. The

output data was visible through the platform’s GUI. It was

also saved in the Azure data storage services.

The solution to the first problem (Figure 6) contains the

input data “household_production” module connected with

the “Select columns in Dataset” module. As in the previous

cases, this module creates a dataset for selected columns.

As in Orange, the list of columns is defined in the details

of the module. The resulting data is passed to the “Python

Script” module, which executes a script that creates descriptive

statistics for the provided data. The script is defined using a

graphical interface for editing the module details. The created

statistics are passed to the “Export Data” module, which saves

the data in a database integrated with the service.

The solution to the second task (Figure 7) starts with the

same two modules as in Figure 6. The result is passed to

the “Split Data” module, which randomly splits the data into

training and test sets. The “Two-Class Boosted Decision Tree”

module contains an untrained model, which, together with

the training data, is passed to the “Train Model” module.

This module trains the input machine learning model on the

provided data. The “Score Model” module uses the trained

model and the test data to test the tree’s predictions. The

“Evaluate Model” module calculates various metrics, e.g.

precision sensitivity and confusion matrix for the tested model.

Finally, these results are stored in a database integrated into

the platform.

VIII. COMPARATIVE EVALUATION OF THE SYSTEMS

Universality. In Azure ML Studio, users only can use the

platform’s components. The Orange system allows to use the

platform’s components or create own component, and allows

to install additional packages provided by the developers. Both

of these systems provide machine learning and artificial intel-

ligence functions. The BalticLSC system can create custom

components and applications from any domain and allows to

publish the created components. In addition, extensions can

be created in any programming language. For this reason,

the BalticLSC platform was identified as the most versatile

among the respondents. The Azure ML Studio platform fared

the worst.

Scalability. The Orange system uses the machine’s com-

puting power on which the program is run. The machine’s

computing power should match the computing power needed

to perform the task. Executing a computationally complex task

may require adjusting the physical infrastructure so that the

available computing power matches the required power needed

ANNA ROSŁAN, MICHAŁ ŚMIAŁEK: COMPARATIVE ANALYSIS OF LOW-CODE COMPUTATION SYSTEMS 107



Figure 6. Solution of task one on the Azure ML Studio

to perform the task. The BalticLSC system and Azure ML

Studio offer virtual use of computing power through cloud

computing. The cloud is easier and generates less cost, so it is

tidier. In BalticLSC, choosing the cluster on which to perform

the commissioned task is possible. It is also possible to define

a range of parameters related to the use of resources, such

as GPU, CPU and memory. Since the BalticLSC system is

in the demo version, only one cluster is available, and testing

the above-described functionalities is impossible. Moreover,

BalticLSC offers functions related to the parallelization of

computing operations. It is possible to create applications to

perform some tasks in parallel.

Azure ML studio also provides a choice of a cluster for

processing the task. The computing power is automatically

adjusted to the task and can be increased if necessary. The

user defines the necessary parameters, such as the maxi-

mum/minimum number of clusters and location size and the

scaling process itself is performed automatically. The user

does not influence the process of task scaling and job scaling,

and he only defines specific parameters and limits. Azure ML

Studio offers the most features related to the ability to perform

compute-intensive tasks. The Orange platform performed the

worst.

User entry barrier. To perform tasks on selected platforms,

users should have a basic knowledge of machine learning mod-

els. In addition, the user should know the Python programming

language to create a custom script. To perform tasks in the

Orange system, the user must be familiar with the system’s

components. All interaction with the components, their use

and parameterization are done through a graphical interface.

In order to create a script in Python, one must become familiar

Figure 7. Solution of task two on the Azure ML Studio

with the "Orange Data Mining Library". In the system, it is

possible to import data from a database; thus, basic knowledge

of database systems is needed. The amount of time spent

learning required to complete the task is the least among the

selected applications, so this platform was chosen as the best.

Using the BalticLSC Platform requires knowledge of the

components offered by the system. To run the applications,

users can configure a computing cluster requiring basic phys-

ical infrastructure knowledge. To import data into the ap-

plication, it is necessary to create a dataset and define the

type of access to it. Depending on the chosen technology,

basic knowledge of database systems and FTP servers, Azure-

DataLake platform, Amazon Simple Storage Service platform

is needed. To create a component for BalticLSC (Python

script), you need to make it using the Docker tool. For this,

users need knowledge of this tool and basic knowledge of

containerization. In addition, knowledge of the BalticLSC

library is needed to create the code. The variety of technologies

and tools for using the system is the greatest. Most of the time

was spent learning about the platform and additional tools and

technologies, so this platform was rated the lowest.

In order to use the Azure ML Studio platform, one should

know about the services offered by the Azure platform. Azure

ML Studio requires creating, configuring, and maintaining sev-

eral services available on the platform. Each of these services

108 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



is non-trivial, requiring many parameters to be defined. Azure

ML Studio offers a lot of features and capabilities. In order to

use this tool, users should have spent the most time learning

about the platform, but there was no need to be familiar with

other tools and technologies. The learning time for the new

tools was estimated based on the time difference between the

time it took to complete the entire task and the time it took

to create and run the diagram.

Cost of use. Orange ML Studio is a free platform. The

BalticLSC system in the demo version does not charge fees,

but the full version will require them. There is a fee for using

the Azure platform. You pay for using computing power, i.e.,

running the designed applications. The exact costs depend on

the configuration of the computing cluster. Considering this,

the Orange platform is the best in terms of cost of use, and

the worst is Azure ML Studio.

Documentation availability. The BalticLSC platform has

the least extensive documentation. The user can obtain infor-

mation from the website https://www.balticlsc.eu. The docu-

mentation is in pdf form and is 19 pages long. On the YouTube

platform, three videos discuss the functions of the system and

a video with an example of how to use the platform. The

documentation describes the system’s architecture, available

features and the interface for developing applications. In terms

of availability of documentation and community, this platform

is rated the worst.

The Orange platform offers an overview of the system

through a website at https://orangedatamining.com/. In addi-

tion, there are 63 videos provided on the YouTube platform

describing the components or showing an example use of

the platform. On the website, in addition to a description of

features, there are examples of how the system is used.

The Azure platform provides information about Azure ML

studio through the website https://learn.microsoft.com/en-us/

azure/machine-learning/. The documentation includes a de-

scription of the platform’s features as well as instructions

for creating your environment. It is possible to download

extensive documentation in pdf form (2962 pages). In addition,

there are many videos about the system on the YouTube

platform created by the creators as well as others. Access to

the documentation has been rated as the best for Azure ML

Studio.

Ease of maintenance and extensibility. All of the plat-

forms studied provide application expansion through a graph-

ical interface. Adding more components is done by selecting a

component and dragging it with the mouse to the application

development view. The Orange system has no features to

support making changes, extending and enhancing applica-

tions, so this system was rated the worst. In the BalticLSC

system, components and applications are versioned. Operating

on versions makes the process of maintaining applications

easier. The Azure ML studio platform provides features that

double down on sharing components and pipelines with other

users, scheduling and automatically running pipelines. In ad-

dition, Azure offers features related to model monitoring and

automatic model training. This system was rated the best in

terms of ease of project maintenance.

Availability. The Azure platform, which includes the Azure

ML studio under study, provides 99.99% availability to Virtual

Machines. Azure implements many practices including inter-

center data redundancy, backup. This platform is rated the best

in terms of service availability.

The BalticLSC platform provides the possibility to select a

computing cluster, which makes it possible to operate on the

remaining clusters in case of failure of one cluster. The system

does not store user data on its own. Data is stored in external

services, which means there is no risk of data loss in case of

system failure.

The Orange platform is entirely dependent on the efficiency

and availability of the physical infrastructure on which it

is run, which is why it is rated as the worst in terms of

availability.

Security. The Orange system has no security-related mech-

anisms implemented. The user should secure the physical

infrastructure on which the program is run. Therefore, this

system is rated as the worst in terms of security.

The BalticLSC system is designed in such a way that it does

not store user-supplied data or output data from the operation

of the program. In addition, the use of the Docker tool allows

full separation of the executed program from other elements of

the system. The system uses an encrypted https protocol. The

system does not provide data on how the computing clusters

are protected from unauthorized access or attacks.

ML Studio provides the ability to define and manage user

permissions, which increases security. Azure uses an encrypted

https protocol. Application developers follow many practices

[1] to ensure the security of the physical infrastructure against

unauthorized access or attacks. The Azure system has been

rated as the best in terms of security.

User interface friendliness. The Orange platform provides

the most straightforward user interface. The user can perform

a task on a single view of the application entirely through

the GUI. The least number of steps are taken to perform the

designed tasks.

A more complex system is the BalticLSC system. To

perform a task, the user has to use four separate views to define

input data, select (or design) applications, launch applications,

and track the applications’ progress.

The most complex system in terms of the user interface

is the Azure ML Studio platform. Setting up the platform

requires creating several services and configuring platform

parameters. Performing the task requires using four views of

the application, providing input data, creating an experiment,

designing the application, running the application. The com-

plicated user interface is due to the large number of features

offered by the platform as well as the ability to customize the

platform.

Variety of interfaces for input data. Orange’s system

allows for data transfer in three ways:

• by uploading data from the system or network address,

• downloading data from a relational database,

• self-creating data via the application interface.

ANNA ROSŁAN, MICHAŁ ŚMIAŁEK: COMPARATIVE ANALYSIS OF LOW-CODE COMPUTATION SYSTEMS 109



Table I
PLATFORM COMPARISON SUMMARY

Azure ML Orange BalticLSC
Universality III II I
Scalability I III II
User entry barrier II I III
Cost of use III I II
Documentation availability I II III
Ease of maintenance I III II
Availability I III II
Security I III II
User friendly interface III I II
variety of interfaces for input data II III I

BalticLSC allows data transfer in five different ways:

• by cloud services (Amazon S3, Azure Data Lake),

• FTP server,

• uploading data from the system,

• downloading data from relational databases,

• downloading data from NoSQL databases.

The Azure ML Studio platform allows data transfer in four

ways:

• uploading data from the system directly into the applica-

tion via the GUI or command line.

• downloading data from relational databases,

• via cloud services (Amazon S3, Azure Data Lake).

BalticLSC offers the most variety of data delivery options,

and Orange the least.

IX. SUMMARY

Table I summarises the results of our analysis. We have

compared two mature computation platforms with a new

system stemming from a research project. It should also be

noted that Azure ML Studio and Orange are dedicated to

specific application domains. Their computation capabilities

can be extended with simple Python scripts. When comparing

them to BalticLSC, we have, in fact, reduced the capabilities

of BalticLSC to handle only such simple Python procedures.

However, this system allows executing containers with code

of any size and complexity and written in any language.

The comparative analysis allowed us to identify each ap-

plication’s unique features, advantages and disadvantages. Or-

ange stood out for its intuitive interface and ease of use. Azure

ML Studio offers advanced customization and a wide range

of features to help organize work, which attracts users with

more advanced needs. BalticLSC excels in the universality of

use and the ability to create and share custom components.

Evaluating software quality is a challenging and complex

process influenced by subjective factors like user experience

and expectations, personal preferences, etc. Some wants are

mainly based on subjective feelings like user interface friend-

liness, and others are less like the cost of use. Therefore,

depending on the sample group, the results of the same

analysis may vary.

Having in mind these differences, it can be noted that it is

not possible to isolate a platform that would be unequivocally

the best. Each of the studied systems has its strengths and

weaknesses that contribute to their quality which is a mul-

tidimensional concept. The studied platforms have features

that are attractive to different groups of users. Azure ML

Studio outperforms the other systems in documentation, ease

of maintenance, availability and security. However, Orange

and BalticLSC dominate in such criteria as cost-effectiveness,

learnability and universality.

REFERENCES

[1] Azure facilities, premises, and physical security. https://learn.microsoft.-
com/en-us/azure/security/fundamentals/physical-security. Accessed:
2023-03-10.

[2] Azure Machine Learning documentation. https://learn.microsoft.com/en-
us/azure/machine-learning. Accessed: 2023-03-10.

[3] Orange data mining documentation. https://orangedatamining.com/docs.
Accessed: 2023-03-10.

[4] Anas Bassam Al-Badareen, Mohd Hasan Selamat, Marzanah A Jabar,
Jamilah Din, Sherzod Turaev, and S Malaysia. Users’ perspective of
software quality. In The 10th WSEAS international conference on

software engineering, parallel and distributed systems (SEPADS 2011),
pages 84–89. World Scientific and Engineering Academy and Society
(WSEAS) Cambridge, 2011.

[5] Meenakshi Bist, Manoj Wariya, and Amit Agarwal. Comparing delta,
open stack and xen cloud platforms: A survey on open source iaas. In
2013 3rd IEEE International Advance Computing Conference (IACC),
pages 96–100, 2013.

[6] C. Höfer and G. Karagiannis. Cloud computing services: Taxonomy and
comparison. Journal of Internet Services and Applications, 2:81–94, 01
2010.

[7] Amna Ikram, Isma Masood, Tahira Sarfraz, and Tehmina Amjad. A
review on models for software quality enhancement from user’s per-
spective.

[8] A. Jovic, K. Brkic, and N. Bogunovic. An overview of free software
tools for general data mining. In 2014 37th International Convention

on Information and Communication Technology, Electronics and Micro-

electronics (MIPRO), pages 1112–1117, 2014.
[9] Sarangam Kodati and R Vivekanandam. Analysis of heart disease using

in data mining tools orange and weka. Global journal of computer

science and technology, Feb 2018.
[10] Charlotte Kotas, Thomas Naughton, and Neena Imam. A comparison

of amazon web services and microsoft azure cloud platforms for high
performance computing. In 2018 IEEE International Conference on

Consumer Electronics (ICCE), pages 1–4, 2018.
[11] Madhavi Maiya, Sai Dasari, Ravi Yadav, Sandhya Shivaprasad, and

Dejan Milojicic. Quantifying manageability of cloud platforms. In 2012

IEEE Fifth International Conference on Cloud Computing, pages 993–
995, 2012.

[12] Junjie Peng, Xuejun Zhang, Zhou Lei, Bofeng Zhang, Wu Zhang,
and Qing Li. Comparison of several cloud computing platforms. In
2009 Second International Symposium on Information Science and

Engineering, pages 23–27, 2009.
[13] Niculin Prinz, Christopher Rentrop, and Melanie Huber. Low-code

development platforms-a literature review. In AMCIS, 2021.
[14] Venkateswarlu Pynam, R Spanadna, and Kolli Srikanth. An extensive

study of data analysis tools (Rapid Miner, Weka, R Tool, Knime,
Orange). International Journal of Computer Science and Engineering,
5:4–11, 09 2018.

[15] Ritu Ratra and Preeti Gulia. Experimental evaluation of open source data
mining tools (weka and orange). International Journal of Engineering

Trends and Technology, 68(8):30–35, 2020.
[16] Radosław Roszczyk, Marek Wdowiak, Michał Śmiałek, Kamil Rybiński,

and Krzysztof Marek. Balticlsc: A low-code hpc platform for small and
medium research teams. In 2021 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), pages 1–4, 2021.
[17] Jagannath Singh and Nigussu Bitew Kassie. User’s perspective of soft-

ware quality. In 2018 Second International Conference on Electronics,

Communication and Aerospace Technology (ICECA), pages 1958–1963,
2018.

110 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023


