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PROBLEM

C
ODE smell is a risky pattern in code that can lead, in the

future, to problems with code maintenance. One of the

approaches to identifying smells in the code is metric-based

smell detection. A classic example is the God Class smell

which can be detected by using three metrics (see, e.g., [1],

[2], [3]):

• Weighted Method Count (WMC – sum of McCabe’s

complexity of all methods in the analysed class),

• Tight Class Cohesion (TCC – relative number of directly

connected methods within the analysed class), and

• Access to Foreign Data (ATFD – number of classes

containing attributes referenced by the analysed class

directly or via get/set methods).

To make a decision (smelly / not smelly), computed

metrics are compared against predefined thresholds. So,

the quality of smell detection depends not only on a set of

chosen metrics, but also on their thresholds.

Unfortunately, the quality of the existing smell detectors is

still not satisfactory (cf. [4]) and there is a need for more

research in the area. One of the issues worth investigation

is the impact of a set of code smells on severity of the

detriment caused by them. To conduct this research in a clear

and reproducible way one needs an appropriate workbench (a

critical review of the literature in the area is presented in [5]).

THE PROPOSED WORKBENCH

In this paper, it is postulated that empirical research on smell

detectors should be based on (1) precise definitions of the

analysed smells, and (2) smell detection rules (including metric

thresholds) should be mined from software repositories using

machine learning (ML).

The overall architecture of the proposed workbench is

illustrated in Fig. 1. Given a code repository, a code smell

detector identifies all smelly classes while the issue detector

identifies troublesome classes (e.g., defective classes - here

one can use an idea proposed by Śliwerski et al. in [6]).

The reports generated by both detectors are consolidated to

produce a decision table (the decision table of Fig. 1 refers to

the God Class smell with three thresholds, WMC, TCC, and

ATFD, corresponding to the three metrics mentioned earlier).

Given a decision table, one can use e.g. C4.5 algorithm to get

a decision tree (see [7] or [8]). Another option is to apply

rough-set approach (see e.g., [9]).

Fig. 1. Architecture of the proposed workbench.

THE MCPYTHON LANGUAGE

For defining metric-based code smells we propose a domain-

specific language, McPython (Meta Code in Python). Its

notation is based on Python. Description of a smell detector

consists of three parts: code model, smell definitions, and

query.

Code model defines all the code attributes needed for

detection of a given smell (it corresponds to view model in

the 3-layer model of code proposed in [10]). Those attributes

are provided by another program, code modeller, and code

model just defines what is needed from the code modeller. As

McPython is focused on object-oriented languages, there are

four categories of entities represented in each model, namely:

classes, their attributes, methods, and their parameters. An

example of code model is presented in the first part of Listing

1. Each code entity has a number of attributes along with their

JSON types (nat is an extra type denoting natural numbers and

it is a subset of int). Each description of entity category starts

with the ent keyword and ends with a double colon (::).

A smell definition is a Python-like function returning a

Boolean value. It is accompanied by a set of auxiliary func-

tions (some of them can be imported). The second part of

Listing 1 contains a function named GodClass defining

the God Class smell and an auxiliary function WMC. The

GodClass function uses three special parameters called

thresholds: _WMC, _TCC, and _ATFD. A threshold represents

an upper/lower bound on some metric. It is declared in a

separate line, its name begins with an underscore (’_’) and

is preceded with the thr keyword.

Smell definitions can refer to attributes specified in the code

model and they can contain mathematical symbols such as

summation (
∑

) or quantifiers(∀, ∃). On the other hand there

are some restrictions imposed on McPython code:
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Listing 1. God Class detector in McPython.

--- Model:

ent class:

name: string, # class’s name

methods: list, # method ids

ent method:

name: string, # method’s name

McCABE: nat :: # cyclomatic complx.

--- Smells:

import TCC, ATFD

def WMC(c: class):

return
∑

m ∈ c.methods: m.McCABE::

thr _WMC

thr _TCC

thr _ATFD

def GodClass(c: class):

return WMC(c) ⩾ _WMC ∧
TCC(c) < _TCC ∧ ATFD > _ATFD

--- Query:

_WMC ∈ [45, 47]

_TCC ∈ [0.4, 0.3, 0.2]

_ATFD ∈ [4, 6]

select c.name for c ∈ class \

where GodClass(c)

• each variable is assigned a value only once;

• there are no compound statements like while or if.

Parameters of McPython functions can have types assigned

to them. Those types are categories of code entities, e.g.,

class or method.

The third part of code in McPython is a query. It starts

with specifying the values of the thresholds one is interested

in. Then comes the select clause which resembles the one

known from SQL. The result of the query is a report showing

the requested attributes of all the code entities matching the

query for all the possible combinations of the values of

thresholds.

IMPLEMENTATION REMARKS

McPython definition of a smell detector is encoded in Unicode

what makes all the mathematical symbols easily available.

When McPython code is ready one has:

• to translate it to Python 3, and

• to generate a model of the analysed code (smell detector

expects on the input a code model, not the code itself).

The process is illustrated in Fig. 2. An advantage of running

smell detector on a code model instead of the code itself

is possibility of using the same definition of a code smell

on repositories written in different programming language,

provided that one has a code modeller for a given language.

Current version of McPython translator is written in Python

3 (Python accepts Unicode as an input). Model of the analysed

code is implemented as a list of all its entities (position of

an entity on the list serves as its identifier) and it is read

with the library function json.loads. McPython constructs

concerning operations over sets, e.g., a universal quantifier (∀)

or summation (
∑

), are translated as calls to an appropriate

function (definitions of those functions are added to the

generated code). Those functions have two parameters: a set of

code entities (represented by their identifiers) and a condition

or expression that is evaluated for each element of a given set

(here lambda expressions of Python proved very useful).

Code modeller for the Python language (cf. Fig. 2) is built

with the help of Python’s ast module and the NodeVisitor

class contained in it. First all class nodes of a given abstract

syntax tree are visited and then their method are analysed.

The collected data are stored as an array of dictionaries and

transformed into JSON with the dumps function of the json

module.

Fig. 2. Translation and detection phase.
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