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Abstract—This paper investigates the Non-dominated Tour-
nament Genetic Algorithm (NTGA2) to examine how selection
methods and population interact in solving multi-objective opti-
mization problems with constraints. As NTGA2 uses tournament
and GAP selections that link the current population and popula-
tion’ archive, the experiments’ results show that the population
role is significantly reduced in some cases. The study considers
two benchmark problems: Multi-Skill Resource Constrained
Project Scheduling Problem (MS-RCPSP) and Travelling Thief
Problem. Moreover, the paper’s experimental study consists of
new instances for multi-objective MS-RCPSP to show some
interesting results that, in some cases, the proposed Genetic
Algorithm does not need population in the evolution process.

I. INTRODUCTION

T
HE POPULATION in Genetic Algorithms (GA) plays a

very important role. Too small a population size could

significantly reduce the exploration and get stuck in local op-

tima (a premature convergence). However, too large a popula-

tion also blocks the evolution progress, where selection cannot

efficiently do its work. The population size in GA also plays a

crucial role in multi-objective optimization (MOO) problems,

where the final results consist of a set of solutions (non-

dominated, Pareto Front Approximations, PFA). GA applied

to MO to be efficient can store all explored non-dominated

solutions in the archive. Moreover, some methods use the

archive set to select individuals under selection pressure, like

Non-dominated Tournament Genetic Algorithm (NTGA2)[7].

It allows the current population to work on temporal solutions,

where the archive stores all non-dominated solutions, which

makes a ”permanent” memory. Such phenomena exist in over-

constrained MOO problems, where genetic operators could

make an offspring individual worse, and additional space (pop-

ulation) could help. In this paper, two MO NP-hard problems

with constraints – Travelling Thief Problem (TTP)[3] and

Multi-Skill Resource-Constrained Project Scheduling Problem

(MS-RCPSP)[8] – are examined to investigate how NTGA2

explores the solution landscape and effectively uses archive

and population in individual selection.

The rest of the paper is organized as follows. In Sec.II, a

short related work is given. The investigated MS-RCPSP and

TTP problems are briefly defined in Sec.III. An investigated

NTGA2 is given in Sec.IV. Sec. V includes experimental

results of the proposed NTGA2 MOO. Lastly, the paper is

concluded in Sec.VI.

II. RELATED WORKS

Effective cooperation between population, archive, and

GAP selection works in GaMeDE2 [1] - an enhanced

Multi-Modal Optimization technique (GaMeDE[6]), inspired

by NTGA2, where GAP operator was introduced. While

GaMeDE2 simplified the algorithm, empirical research con-

firmed the importance of alternating between broad explo-

ration using the archive and local optimization with the popu-

lation. This is achieved by triggering local optimization when

the number of newly discovered optimal solutions exceeds

a threshold or reverting to archive sampling when further

optimization becomes unfeasible. Although this presents some

form of adaptive operator switching, the main drawback is

the requirement of fine-tuning the threshold value. It has

been indicated as the area for future work to develop a

fully adaptive solution that eliminates the need for manual

parameter specification. For this purpose, it is necessary to

answer the question of how to effectively switch between

population- and archive-based selection, and on what basis

to make this decision.

The authors of the survey [13] designed the adaptation

taxonomy scheme for GA. They highlight three aspects to

be considered: adaptation objects, adaptation evidence, and

adaptation methods. Adaptation objects refer to the compo-

nents within a GA. These objects include control parameters

(crossover or mutation probability), evolutionary operators,

and other elements. Adaptation evidence determines the basis

on which adaptation occurs within a GA. There are four

categories of adaptation evidence highlighted by the authors:

deterministic factors, fitness values, population distribution,

and combinations of fitness values and population distribu-

tion. There are several adaptation methods that might be

implemented, including simple rules-based heuristics, or co-

evolution. This paper examines how the structure and con-

straints of the problem affect the population- and archive-
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based selection with a view to using it for the phase switching

control.

III. PROBLEM(S) DEFINITION

Two practical multi-objective problems have been selected

to investigate the NTGA2 method. Both TTP and MS-RCPSP

are constrained NP-hard problems with near-to-real-world

combinatorial landscapes. Results have been compared using

standard HyperVolume (HV, see Sec.V-B) measure.

A. Multi-Skill Resource-Constrained Project Scheduling Prob-

lem

The MS-RCPSP is a specific case of combinatorial NP-

hard scheduling problems. It encompasses two interrelated

sub-problems: task sequencing, and resource assignments. The

objective of the MS-RCPSP is to determine a schedule that

is both feasible and satisfies all the defined constraints. This

involves assigning available resources to tasks and arranging

the tasks on a timeline. In order for a schedule, denoted as PS,

to be considered feasible, it must adhere to a predetermined

set of constraints.

Each resource is connected to its salary rsalary , no salary

can be negative. The set of skills Sr possessed by the resource

r cannot be empty. Each task’s duration dt and finish time

Ft are not negative. Tasks are constrained by a precedence

relation – all task’s predecessors must be finished before work

on it can be started. All tasks must have assigned exactly one

resource.

The skill extension of the MS-RCPSP is described in Eq.

1. The resource must have the skill at the required level or

higher if it is assigned to a task.

∀t∈T r ∃sr∈Sr hst = hsr ∧ lst ≤ lsr (1)

where T r is a set of tasks assigned to a resource r, st
is the skill required by the task t, Sr is the set of skills

possessed by the resource r, h and l are the type and level of

the skill respectively.

The latest definition of the MS-RCPSP is a many-objective

optimization problem with five objectives (see [7][8]). The

original two objectives – schedule duration (makespan) and

cost – can be defined by Eq.2 and Eq.3. Further MS-RCPSP

objectives tackle specific project scheduling aspects: average

cash flow, skill overuse, and the average use of resources.

The Makespan fτ (PS) of the project schedule PS is given

as Eq.2.

fτ (PS) = max
t∈T

tfinish (2)

where T is a set of all tasks, tfinish is the finish time of

the task t. The Cost of the schedule is fC(PS) defined as Eq.

3.

fC(PS) =

n∑

i=1

Rsalary
i ∗ T duration

i (3)

where n is the number of all task-resource assignments,

Rsalary
i is the salary of a resource of the i’th assignment,

T duration
i is the duration of the task of the i’th assignment.

The MS-RCPSP originally optimises 2-objectives fτ (PS)
and fC(PS), where all objectives must be minimized:

min f(PS) = min [fτ (PS), fC(PS)] (4)

B. Travelling Thief Problem

The TTP is a combination of two well-known optimization

problems: the Traveling Salesman Problem (TSP) and the

Knapsack Problem (KNP). A collection of cities is given, each

characterized by its geographical coordinates, along with a set

of associated items. These items are characterized by their

weight and profit values. The objective is to determine an

optimal route that visits all the cities while simultaneously

selecting items from certain cities. The primary objective of

the TTP, as expressed by Eq.5, encapsulates the main goal of

this problem.

min f(π, z) = min fτ (π, z),max fP (z) (5)

where π and z are the permutations of cities visited and the

picking plan. The objective fτ is to minimize the traveling

plan. The fP objective is the profit maximization based on

the picked items. The relation between those problems is that

picking items decreases travel speed.

fτ (π, z) =
n−1∑

i=1

dπi,πi+1

v(w(πi))
+

dπn,π1

v(w(πn))
(6)

where dπi,πi+1
denotes the distance between two consecu-

tive cities, n is a number of cities, v(w(πi)) is the velocity in

city πi, which depends on weight w. As items are selected,

the entire travel duration, as indicated by Eq. 6, undergoes

modifications, and the velocity decreases in accordance with

Eq. 7.

v(w) = vmax −
Wc

W
(vmax − vmin) (7)

where Wc and W are the current and maximum allowed

weights. The model defines the speed: maximum vmax and

minimum vmin speed depending on W . The weight w is the

accumulated sum of items picked up so far.

fP (z) =
m∑

j=1

zjz
profit
j (8)

where m is the number of items, zj is equal to 1 if the j’th

item has been picked, 0 otherwise. zprofitj is the profit of the

j’th item.

The Eq.8 defines the profit as the second TTP objective.

Furthermore, in order for the picking plan to be considered

feasible, it is imperative that KNP constraint, as represented

by Eq.9, is satisfied.

m∑

j=1

zjz
weight
j ≤W (9)
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where m denotes the total number of items, while zj is

defined as per Eq.8, and zweight
j represents the weight of the

j’th item. The aforementioned equation guarantees that the

cumulative weight of the selected items remains within the

W , which denotes the maximum permissible weight of the

knapsack.

IV. METHOD

In this section, the NTGA2 method is introduced, and a

greedy-based algorithm (see Sec.1) is used to get feasible

solution in the MS-RCPSP problem.

A. Greedy–based Schedule Builder

Each investigated metaheuristic in this work to solve MS-

RCPSP uses a greedy–based Schedule Builder to build the

feasible schedule – see Algorithm 1 [7]. The method processes

the tasks (in the given order). First, tasks with successors,

then other tasks. The main goal is to assign each task at the

earliest possible time it can be started. Namely, it is when

all the predecessors of the tasks are finished, and its assigned

resource finished its previous task assignment.

Algorithm 1 Greedy Schedule Builder for MS-RCPSP

for task t do

2: predEnd = maxFinish(t.predecessors)
resEnd = t.getResource().getF inish()

4: t.start = max(predEnd, resEnd)
end for

B. Non-Dominated Tournament Genetic Algorithm 2

NTGA2[7] is an evolutionary metaheuristic promoting di-

versity by utilizing a Gap selection (GS) operator. GS works

in the objective space, favoring the least explored parts of the

archive – Gap in detail is given below. NTGA2 uses archive to

store all non-dominated solutions and actively use it – see Al-

gorithm 2. Firstly, NTGA2 initializes the population (usually

a random one – see line 2). Then all individuals are evaluated

(separately by each objective), and then UpdateArchive takes

place, where all non-dominated already found individuals are

added and just dominated ones are removed.

The main loop starts (line 5) and repeats Generations
times. Each generation starts with a selection of individuals

to the new population Pnext. GS and the second selec-

tion (Pareto-dominance tournament selection) is used. The

gsGenerations parameter (line 8) switches selections a de-

cides which one is used in the current generation. Line 15

presents the clone elimination mechanism used in NTGA2

to keep diversity in the population at a high level. Lastly,

the genetic operators (e.g. mutation and crossover) should be

specialized per problem. However, they can default to standard

single-point crossover and random bit mutation.

The Gap Selection (GS) operator [7] aims to increase the

diversity in archive. It operates in an objective space and con-

siders each objective separately. The authors decided to select

objectives as follows: offspring generation is divided into m

Algorithm 2 Pseudocode of NTGA2 [7]

1: archive← ∅
2: Pcurrent ← GenerateInitialPopulation()
3: Evaluate(Pcurrent)
4: UpdateArchive(Pcurrent)
5: for i← 0 to Generations do

6: Pnext ← ∅
7: while |Pnext| < |Pcurrent| do

8: if i mod (2 * gsGen) < gsGen then

9: Parents← Tour_selection(Pcurrent)
10: else

11: Parents← Gap_selection(Archive)
12: end if

13: Children← Crossover(Parents)
14: Children←Mutate(Children)
15: while Pnext contains Children do

16: Children←Mutate(Children)
17: end while

18: Evaluate(Children)
19: Pnext ← Pnext ∪ Children
20: UpdateArchive(Children)
21: end while

22: Pcurrent ← Pnext

23: end for

parts (as the number of objectives), where each objective is

selected during the corresponding part. It starts by calculating

the “gap” size for each individual in the archive. It is calculated

considering the two neighbor individuals using the minimal

Euclidean distance. Those are the closest individuals, one with

a worse objective value and one with a better value. The

GapV alue is used as the Euclidean distance to the farther

of those two neighbors. Additionally, individuals at the ”edge”

(i.e., the highest and lowest objectivities’ values) of the archive

have this distance set to an infinity value, which is favored

in selection.

Thus, the GS uses a tournament selection, considering

GapV alues instead of fitness directly. In this way, GS is

more likely to select those individuals that lie close to the

largest “gaps” in the archive and also promote the spread of the

result archive. The second parent is selected as the random
neighbor of the first individual. For the individuals lying on

the “edge” of PF approximation, it is possible that a second

parent will not be selected. It will be selected similarly to the

first one.

V. EXPERIMENTS

The main goal of conducted experiments is to investigate

further the effectiveness of the GS operator inside the NTGA2

method, applied to different scenarios. It can be hypothesized

that its effectiveness varies depending on the problem, and

further - instances. To carry out the structured experiments,

the following Research Questions have been developed:
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• RQ0. How the gsGen (Gap Selection %) parameter

affects the effectiveness of the NTGA2 method in bi-

objective MS-RCPSP?

• RQ1. How do the characteristics (size, number of con-

straints) of the instance affect the effectiveness of the

NTGA2 method in bi-objective MS-RCPSP?

• RQ2. Are the observations made for the TTP consistent

with those for the MS-RCPSP?

• RQ3. Does the size of the computational budget affect the

effectiveness of the Gas Selection in the NTGA2 method?

• RQ4. What aspects (differing or connecting two prob-

lems) can be used to adapt gsGen parameter control?

A. Instances

In experiments, the iMOPSE dataset [7][8] is used. The

original suite contains 36+6 MS-RCPSP instances created

using real-world scheduling problems. All instances have

varying tasks, resources, and skills to define problems. The

final suite used in this paper contains 3 small and 6 randomly

selected instances from the original set. Furthermore, several

new instances were prepared using the iMOPSE generator to

show the influence of constraints (e.g. introducing extreme

low and high values for precedence relations or no skill

requirements) and a number of tasks for NTGA2 effectiveness

(e.g. 500 and 1000)1.

For TTP, the benchmark dataset [2] has been selected -

16 instances differ in varying items per city (between 51 to

100). They could be divided into three groups that show the

correlation between weights and profits of items: (1) with a

strong correlation, (2) completely uncorrelated, and (3) with

similar weights.

B. Quality measure of multi–objective optimisation

The most popular multi-objective metric is HyperVolume

(HV) [9] – measures the diversity and convergence of the

Pareto Front Approximation (PFA) that includes all non-

dominated solutions calculated by a given method.

Results are normalized using the NadirPoint - worst pos-

sible values for all objectives. For the MS-RCPSP: makespan

– total sum of all tasks’ duration; cost – the cost of schedule,

where the most expensive resource performs all tasks. For the

TTP: time – is twice the minimum time value; profit – equal

to 0. On the other side - the Ideal Point is the point with

the best possible values for all objectives. For MS-RCPSP:

makespan – duration of the shortest task multiplied by the

number of tasks, divided by the number of resources; cost

– the cost of the schedule, where all tasks are assigned to

the cheapest resource. For TTP: time – the total length of the

minimum spanning tree divided by the maximum speed; profit

– achieved by a brute-force algorithm starting from the items

with the highest profit/weight ratio.

1All used MS-RCPSP instances and gained results are published in
http://imopse.ii.pwr.edu.pl

C. Reference methods

For a more comprehensive presentation of NTGA2 results,

results of the state-of-the-art and best-known multi-objective

optimization methods should also be considered.

Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

[5] is the classical method proposed in the year 2002 for

MOO, utilizing the population sorting by rank and crowding
distance. The Strength Pareto Evolutionary Algorithm 2

(SPEA2) [11], a well-established method for MOO, em-

ploys environmental selection to enhance the exploration of

the Pareto front. The Multi-objective Evolutionary Algorithm

Based on Decomposition (MOEA/D) [12] is an evolutionary

computation method designed for solving MOO problems by

decomposing problems into a set of scalar sub-problems that

are concurrently optimized.

D. Configurations

For all methods, the 5-Level Taguchi Parameter Design

[10] was employed to fine-tune the parameters systematically.

The best-found configurations used as the base values in the

experiments are presented in Tab.I. Population Size (PopSize)

is the constant number of individuals in a generation. For

the MOEA/D, population size is derived from the number of

decomposition vectors achieved using [4] algorithm for the

given number of partitions (PartNr). The number of genera-

tions was adjusted to match the constant number of maximum

births/fitness evaluations, for the MS-RCPSP computational

budget was set to 50.000. For the TTP it was set to 250.000.

Mutation probability (Pm) is a probability in [0, 1]. In the

MS-RCPSP, it represents a chance of a single gene’s random

mutation. For the TTP, it is described using two different

values: the chance of the random path segment being reversed;

and the chance of a random item decision change (bitflip).

Crossover probability (Px) is the probability of two individuals

crossover. All implemented methods use the same Uniform

crossover operator for the MS-RCPSP and a combination of

OX (route) with SX (knapsack) for the TTP. Tournament

Size (TourSize) is the number is individuals considered

whenever the tournament selection operator is used. Based on

the original NTGA2 implementation, 2 values were found to

be used, first for the Standard Tournament and second for the

Gap tournament selection. The neighborhood Size (NhSize)

is the number of adjacent decomposition vectors considered

by MOEA/D when solutions are compared.

A number of generations (gsGen, see Tab.I) is the selection

switch parameter used by the NTGA2. In the original NTGA2

paper, it has been interpreted as the number of generations that

has to pass for the selection to switch, and it was set to 50.

Although this parameter originally referred to the frequency

of changes, a value of 50 can also be interpreted as 50 per

100 generations using the GS (Gap Selection %). Therefore,

further in this paper, gsGen is evaluated as the number of

consecutive generations using the GS per 100 generations.
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TABLE I
THE BEST FOUND CONFIGURATIONS FOR INVESTIGATED METHODS

MSRCPSP PopSize Pm Px TourSize gsGen NhSize PartNr

NTGA2 50 0.01 0.6 6 / 20 50*
MOEA/D (50) 0.015 0.2 6 50
SPEA2 200 0.015 0.99
NSGA-II 300 0.015 0.99 2

TTP PopSize Pm Px TourSize gsGen NhSize PartNr

NTGA2 50 0.9 / 0.9 0.3 / 0.3 6 / 20 50*
MOEA/D (100) 0.4 / 0.3 0.5 / 1.0 3 100
SPEA2 100 0.4 / 0.3 0.1 / 0.8
NSGA-II 300 0.4 / 0.7 0.9 / 0.3 2

E. Experimental procedure

The research environment with the NTGA2 method and

additional reference methods have been implemented in Java

based on the literature: MOEA/D, SPEA2, and NSGA-II.

Additionally, some methods (e.g. MOEA/D) use reference

points in calculations (objectives normalization). Others do not

require them (like NTGA2) as they treat objectives separately.

Reference points (NadirPoint and IdealPoint) calculations

as presented in the Sec. V-B.

The result of each run is a set of non-dominated solutions

found for a given instance. Solutions are saved using absolute

coordinates in the objective space. The experimental results

have been evaluated on all selected instances for MS-RCPSP

and TTP. Due to the non-deterministic nature of evolutionary

computation, all runs have been repeated 30 times, and results

have been averaged. To verify the statistical significance

of the presented results Wilcoxon signed-rank test is used

with p value = 0.05. A simple average is not an appro-

priate solution as HV strongly differs across the instances.

Therefore, a ranking system has been applied to compare

configurations and methods in all conducted experiments. The

procedure starts with descending sort by the average HV and

assigning the best rank (1) to the first configuration. Then,

each configuration is considered subsequently. If its result is

not significantly lower than the best of the current setup, it gets

assigned the same rank. If the rank is significantly lower - the

rank is incremented and assigned to this configuration. Each

experiments table contains three summary rows at the bottom:

average rank, median rank, and the dominance information (+
sole-best / ∼ co-best / − worst).

F. Results for MS-RCPSP

To address the RQ0, five variants with different values

of the gsGen parameter were examined. The configurations

utilized Gap selection in 0%, 25%, 50%, 75%, and 100% of

generations, respectively. The results are presented in Tab.II.

As observed in Tab.II, the configuration employing 100%
GAP selection clearly dominates in nearly all original

instances. However, in the case of two small instances

(15_6_10_6, 15_9_12_9), only GS from the archive does

not yield the best results. Similarly, configuration alternat-

ing two selection methods prove to be the most effective

for new instances with a high number of constraints (e.g.,

100_10_4096_15). While the differences are statistically sig-

nificant, they are very small.

The newly added instances (with suffix _0_0), devoid of

skill constraints and task orders, did not introduce noticeable

changes. It can be assumed that they are sufficiently similar

to the existing cases. Considering the number of precedence

relations, where the maximum theoretical number of direct

relationships is n ∗ (n − 1)/2, for 100 tasks, it amounts to

4950. Therefore, the highest number of constraints in the

set, which is 145, is still very small. Hence, the absence of

constraints does not differ significantly. On the other hand,

including instances with precedence relations at the level of

several thousand introduce interesting cases that have not been

observed before.

Fig. 1 indicates that, for dense PFA, there is no need to

employ a population. It is easy to transition between solutions

as they are close to one another. There is a large number

of solutions that exploration based on the archive alone is

sufficient, at least until a certain point. However, relying solely

on the archive may become inadequate if the search space is

highly constrained and all the ’low-hanging apples’ are found.

Theoretically, it is still unnecessary. In the current encoding,

any feasible solution can transition to another in a single

generation (as each gene can be modified independently), but

it might not be very probable.

Using a population allows for delving "deeper" into certain

areas of the sparse Pareto Front, as visible in Fig. 2. Classi-

cally, this brings about a solution to the problem of balance

between exploration and exploitation. It is well illustrated

in Fig. 3 containing results for the biggest instance in the

suite. None of the configurations have sufficiently searched

the space yet. The ’population-only’ approach focused on

a particular area, while the ’archive-only’ covered a wider

range. As both approaches perform their role well, the latter

achieves significantly better HV . It would likely be beneficial

to activate the population search when relying on the archive

ceases to yield progress instead of static parameters. To answer

the second RQ1, the effectiveness does not explicitly depend

on the instance size. However, rather constraints density and

it changes over time as the archive saturates. This claim is

supported by the results, where a lower budget (25.000, half

of the original) results in better ranks for the ’archive-only’

approach.

Experimental results presented in this section showed that

Gap affect the effectiveness of the NTGA2 applied to MS-

RCPSP. How does such a mechanism work for TTP?

G. NTGA2 results for TTP

In order to verify if similar results can be observed for

the TTP (RQ2), analogous experiments have been conducted

using five configurations, which utilize GS in 0%, 25%, 50%,

75%, and 100% of generations, respectively. The results are

presented in Tab.IV.

Compared to the MS-RCPSP, results achieved for the TTP

(see Tab.IV) are more balanced, and there is no visible

dominance of either configuration. The higher usage of GS has
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TABLE II
RESULTS (HV) OF MS-RCPSP WITH 50K BUDGET

Gap Selection Usage (%)
instance 0 25 50 75 100

15_3_5_3 1 (0.320398±1.67e-16) 1 (0.320398±1.67e-16) 1 (0.320398±1.67e-16) 1 (0.320398±1.67e-16) 1 (0.320398±1.67e-16)
15_6_10_6 1 (0.545211±8.31e-06) 1 (0.545213±2.51e-06) 1 (0.545211±4.76e-06) 2 (0.545207±1.19e-05) 3 (0.544863±8.89e-05)
15_9_12_9 1 (0.595148±1.30e-04) 1 (0.595115±1.75e-04) 1 (0.595092±2.05e-04) 2 (0.595009±2.58e-04) 3 (0.594575±2.96e-04)
100_5_20_9_D3 4 (0.429317±3.45e-03) 3 (0.435507±2.45e-03) 2 (0.436230±2.94e-03) 2 (0.436880±2.22e-03) 1 (0.438390±1.94e-03)
100_5_48_9 3 (0.171241±2.63e-03) 2 (0.175926±8.50e-04) 1 (0.176215±9.45e-04) 1 (0.176347±8.66e-04) 1 (0.176715±9.23e-04)
100_10_65_15 3 (0.458327±2.84e-03) 2 (0.469056±1.98e-03) 2 (0.469367±1.80e-03) 1 (0.470235±1.74e-03) 1 (0.470540±1.68e-03)
100_20_0_0 5 (0.683409±5.12e-03) 4 (0.726044±2.19e-03) 3 (0.733052±1.55e-03) 2 (0.734951±1.51e-03) 1 (0.736693±1.19e-03)
100_40_0_0 5 (0.656597±7.34e-03) 4 (0.728598±5.49e-03) 3 (0.752332±3.74e-03) 2 (0.763022±2.99e-03) 1 (0.769273±2.62e-03)
100_10_4096_9 2 (0.181034±2.51e-05) 1 (0.181041±3.64e-06) 1 (0.181042±2.93e-06) 2 (0.181039±5.45e-06) 3 (0.181026±7.46e-06)
100_10_4096_15 4 (0.250829±7.23e-05) 3 (0.250859±3.14e-05) 1 (0.250865±0.00e+00) 1 (0.250865±0.00e+00) 2 (0.250859±4.42e-06)
100_20_1024_9 4 (0.517370±2.50e-03) 3 (0.527683±9.73e-04) 1 (0.528931±3.82e-04) 1 (0.528962±3.47e-04) 2 (0.528699±2.60e-04)
100_20_2048_15 4 (0.380175±5.93e-04) 1 (0.380732±2.20e-05) 1 (0.380737±1.16e-05) 2 (0.380730±1.32e-05) 3 (0.380689±3.39e-05)
100_20_4096_9 3 (0.268188±9.21e-05) 1 (0.268304±1.78e-06) 1 (0.268299±3.12e-05) 1 (0.268305±1.92e-06) 2 (0.268295±4.01e-06)
100_20_4096_15 3 (0.259517±1.60e-04) 2 (0.259638±9.18e-05) 1 (0.259664±4.59e-05) 1 (0.259678±3.28e-05) 2 (0.259650±3.17e-05)
100_40_1024_9 4 (0.570528±8.13e-04) 3 (0.574741±5.45e-04) 2 (0.575724±4.14e-04) 1 (0.576005±3.15e-04) 1 (0.576010±2.64e-04)
200_10_84_9 5 (0.636125±2.91e-03) 4 (0.670534±2.13e-03) 3 (0.678506±1.42e-03) 2 (0.681494±1.19e-03) 1 (0.682893±1.26e-03)
200_20_97_9 5 (0.629058±7.46e-03) 4 (0.696804±4.35e-03) 3 (0.713753±2.85e-03) 2 (0.720315±1.71e-03) 1 (0.724045±1.59e-03)
200_20_145_15 5 (0.571673±4.72e-03) 4 (0.617373±3.41e-03) 3 (0.627285±2.49e-03) 2 (0.630914±1.26e-03) 1 (0.632386±1.49e-03)
200_20_0_0 5 (0.649978±5.06e-03) 4 (0.737694±5.42e-03) 3 (0.763551±4.12e-03) 2 (0.778068±2.52e-03) 1 (0.784937±2.58e-03)
200_40_0_0 5 (0.719199±5.39e-03) 4 (0.778408±4.13e-03) 3 (0.798334±3.72e-03) 2 (0.808493±2.45e-03) 1 (0.815440±2.66e-03)
500_10_512_5_A 5 (0.398676±1.58e-03) 4 (0.412768±1.24e-03) 3 (0.418172±1.13e-03) 2 (0.421138±7.19e-04) 1 (0.422460±8.19e-04)
500_10_2048_5_A 5 (0.536240±1.56e-03) 4 (0.555732±1.62e-03) 3 (0.563177±1.46e-03) 2 (0.567528±1.55e-03) 1 (0.570074±1.23e-03)
500_20_512_5_A 5 (0.553193±3.07e-03) 4 (0.587305±3.20e-03) 3 (0.601718±2.95e-03) 2 (0.609410±2.19e-03) 1 (0.614964±1.90e-03)
500_20_0_0 5 (0.591966±4.23e-03) 4 (0.643410±3.08e-03) 3 (0.660743±3.52e-03) 2 (0.668717±2.71e-03) 1 (0.675124±2.36e-03)
500_40_0_0 5 (0.619020±5.67e-03) 4 (0.681662±4.88e-03) 3 (0.705443±3.41e-03) 2 (0.717776±3.53e-03) 1 (0.725970±3.46e-03)
1000_20_1024_5_A 5 (0.585542±3.56e-03) 4 (0.617928±3.22e-03) 3 (0.634121±3.98e-03) 2 (0.644301±4.14e-03) 1 (0.650263±2.98e-03)
1000_20_4096_5_A 5 (0.564774±3.19e-03) 4 (0.583085±2.47e-03) 3 (0.594726±2.26e-03) 2 (0.599670±2.44e-03) 1 (0.600960±2.24e-03)
1000_40_1024_10_A 5 (0.506093±4.80e-03) 4 (0.545322±4.19e-03) 3 (0.565749±4.58e-03) 2 (0.580091±4.65e-03) 1 (0.587114±4.27e-03)
1000_20_0_0 5 (0.450345±3.67e-03) 4 (0.503184±4.13e-03) 3 (0.527720±3.98e-03) 2 (0.540095±3.83e-03) 1 (0.549674±3.52e-03)
1000_40_0_0 5 (0.535800±5.89e-03) 4 (0.594065±4.69e-03) 3 (0.619015±4.71e-03) 2 (0.633995±4.26e-03) 1 (0.643587±3.53e-03)

avg rank 4.067 3.067 2.233 1.733 1.4
med rank 5 4 3 2 1
dominance (+0/∼ 3/−27) (+0/∼ 6/−24) (+0/∼ 10/−20) (+0/∼ 8/−12) (+18/∼ 4/−8)

TABLE III
METHODS COMPARISON (HV) OF MS-RCPSP WITH 50K BUDGET

method ntga2 0% ntga2 50% [7] ntga2 100% moea/d nsgaii spea2

avg rank 4.1 2.033 1.367 2.033 4 3.7
med rank 4 2 1 2 4 4

+ 0 5 12 3 0 0
∼ 3 6 8 7 1 1
− 27 19 10 20 29 29

a slightly better average ranking, but none reaches above 2.5
rank. This is most likely due to the difference in the encoding.

Permutation-based (ordering) genotype encoding with inverse

mutation does not allow for free transition between any

solution – the transition from one solution to another might

require multiple inverse operations on the genotype, which

requires ’temporal’ individuals - population.

Fig. 4 presents some similarities to the previous results. For

the dense PFA, the best configuration uses an ’archive-only’

approach, which scans the space wider, while the ’population-

only’ is focused in a single direction. On the other end,

Fig. 5 presents an instance with sparse PFA, where the

’population-based’ approach significantly finds better results.

Furthermore, to verify whether the budget has an impact on the

GS effectiveness, other ’low-budget’ experiments were carried

out. Results achieved for lowered budget (50.000, i.e. one-fifth

of the original). The effect is significant, as configuration for

75% GS improves from rank 2.5 to 2, and the 100% Gap
configuration from 2.5 to 1.5. It supports the hypothesis of

the increasing importance of ’population-based’ selection (or

decreasing importance of ’archive-based’ selection).

H. Summary

Experiments presented in previous sections showed that

for MS-RCPCP and TTP, the computation budget plays an

important role. For MS-RCPSP, a lower budget (25.000, half

of the original) results in better ranks for the ’archive-only’

approach. Respectively, for TTP effect is also significant, as

configurations that use the archive more ’frequently’ (i.e. 75%
or 100% Gap) improve their rank, which answers to RQ3.

Except for highly constrained instances, utilizing 100% GS
yields the best results for the MS-RCPSP. This dominance of a

single configuration is not that clear in the TTP. The potential

reason could be the encoding difference since association

encoding provides an easier transition between solutions than

permutation encoding. Which is related to the constrainedness

of the search space. The expected result for both problems

is the better effectiveness of the 100% ’archive-based’ GS
in less constrained instances - having dense PFA. In the most

sparse PFA, ’population-based’ selection provides a significant
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TABLE IV
NTGA2 RESULTS (HV) OF TTP WITH 250K BUDGET

Gap Selection Usage (%)
instance 0 25 50 75 100

eil51_n50_bounded-strongly-corr_01 1 (0.786307±2.22e-16) 5 (0.784464±0.00e+00) 4 (0.784500±2.22e-16) 2 (0.785861±1.11e-16) 3 (0.784563±2.22e-16)
eil51_n50_uncorr_01 5 (0.880994±1.11e-16) 4 (0.881789±2.22e-16) 1 (0.884046±2.22e-16) 2 (0.883577±2.22e-16) 3 (0.881914±3.33e-16)
eil51_n50_uncorr-similar-weights_01 2 (0.732453±1.11e-16) 3 (0.731714±0.00e+00) 1 (0.733751±3.33e-16) 4 (0.731639±2.22e-16) 5 (0.731452±2.22e-16)
eil51_n150_uncorr-similar-weights_01 4 (0.851645±2.22e-16) 1 (0.856558±1.11e-16) 3 (0.855674±1.11e-16) 5 (0.851625±2.22e-16) 2 (0.856388±2.22e-16)
berlin52_n51_bounded-strongly-corr_01 1 (0.884818±2.22e-16) 5 (0.880486±2.22e-16) 4 (0.881869±3.33e-16) 3 (0.883038±2.22e-16) 2 (0.883507±3.33e-16)
berlin52_n51_uncorr_01 2 (0.838511±1.11e-16) 5 (0.833224±2.22e-16) 3 (0.837703±2.22e-16) 4 (0.837138±1.11e-16) 1 (0.838970±0.00e+00)
berlin52_n51_uncorr-similar-weights_01 1 (0.722264±2.22e-16) 4 (0.720164±1.11e-16) 3 (0.720849±2.22e-16) 2 (0.721720±2.22e-16) 5 (0.719742±0.00e+00)
pr76_n75_bounded-strongly-corr_01 4 (0.813571±1.11e-16) 2 (0.818288±2.22e-16) 5 (0.813531±1.11e-16) 3 (0.816954±2.22e-16) 1 (0.821745±0.00e+00)
pr76_n75_uncorr_01 5 (0.841923±2.22e-16) 3 (0.854713±1.11e-16) 1 (0.858719±2.22e-16) 4 (0.854683±2.22e-16) 2 (0.855487±0.00e+00)
pr76_n75_uncorr-similar-weights_01 2 (0.767799±0.00e+00) 1 (0.771500±1.11e-16) 5 (0.762926±0.00e+00) 3 (0.765856±1.11e-16) 4 (0.765030±1.11e-16)
kroA100_n99_bounded-strongly-corr_01 5 (0.866310±2.22e-16) 4 (0.874710±1.11e-16) 3 (0.881084±2.22e-16) 2 (0.884684±0.00e+00) 1 (0.885007±3.33e-16)
kroA100_n99_uncorr_01 4 (0.844482±2.22e-16) 5 (0.838833±2.22e-16) 2 (0.852879±2.22e-16) 1 (0.854227±3.33e-16) 3 (0.846971±0.00e+00)
kroA100_n99_uncorr-similar-weights_01 4 (0.886399±2.22e-16) 3 (0.887283±0.00e+00) 5 (0.883876±2.22e-16) 1 (0.897105±0.00e+00) 2 (0.889732±2.22e-16)
rd100_n99_bounded-strongly-corr_01 5 (0.882900±2.22e-16) 1 (0.892562±3.33e-16) 3 (0.889671±0.00e+00) 2 (0.892136±2.22e-16) 4 (0.889643±1.11e-16)
rd100_n99_uncorr_01 5 (0.851845±2.22e-16) 4 (0.856888±2.22e-16) 2 (0.857302±2.22e-16) 3 (0.857012±2.22e-16) 1 (0.862809±2.22e-16)
rd100_n99_uncorr-similar-weights_01 4 (0.892621±3.33e-16) 5 (0.890683±2.22e-16) 2 (0.898613±2.22e-16) 1 (0.898724±2.22e-16) 3 (0.893712±2.22e-16)

avg rank 3.375 3.438 2.938 2.625 2.625
med rank 4 4 3 2.5 2.5
dominance (+3/∼ 0/−13) (+3/∼ 0/−13) (+3/∼ 0/−13) (+3/∼ 0/−13) (+4/∼ 0/−12)

Fig. 1. Comparison of PFA for MS-RCPSP – 200_20_97_9 for GS configs.:
0%, 50% and 100%.

TABLE V
METHODS COMPARISON (HV) OF TTP WITH 250K BUDGET

method ntga2 0% ntga2 50% [7] ntga2 100% moea/d nsgaii spea2

avg rank 1.938 1.312 1.312 3 3.75 2.812
med rank 2 1 1 3 4 3

+ 0 2 5 0 0 0
∼ 5 9 6 0 0 2
− 11 5 5 16 16 14

boost. Another potential cause is the computational budget vs

the instance size. The importance of the ’population-based’

approach improves over the execution time as the archive

becomes more saturated. To answer the RQ4, the potential ev-

Fig. 2. Comparison of PFA for MS-RCPSP – 100_20_2048_15 for GS

configs.: 0%, 50% and 100%.

idence for the gsGen value adaptations are constraint density,

encoding (transition freedom), and archive saturation. Where

some or all of the above might be entangled.

VI. CONCLUSIONS AND FUTURE WORK

This paper shows the results of an investigation of how

NTGA2 with Gap selection effectively uses archives in solv-

ing multi-objective problems with constraints (MS-RCPSP

and TTP). There are five answered research questions: the

size of the problem instance and number and how aspects,

and problems (TTP and MS-RCPSP) differ to determine the

Gap (%) selection parameter. The main conclusion is that in

some cases (instances), the archive (and the Gap selection)
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Fig. 3. Comparison of PFA for MS-RCPSP – 1000_40_1024_10_A

Fig. 4. Comparison of PFA for TTP – kroA100_n99_bounded-str.-corr_01

plays a crucial role, and the population could be eliminated.

Experimental results presented a correlation between the Gap
selection effectiveness and constraints density, as well as

optimization progress.

There are several promising future directions of research.

The GS in most cases (TTP and MS-RCPSP) prefers gap

selection 100%, but in some cases (i.e. a large number of

constraints) reduces to 50%. It encourages further work on Gap

adaptation in NTGA2 to increase final NTGA2 effectiveness.

Moreover, we empirically showed that such a situation occurs

in two benchmark problems (TTP and MS-RCPSP), and plan

Fig. 5. Comparison of PFA for TTP – eil51_n50_uncorr-similar-weights_01

to investigate other multi-objective problems (including many-

objective).
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