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Abstract—Accurate estimation of absolute distance and height
of objects in open area conditions is a significant challenge. In
this paper, we address these problems and we propose a novel
approach that combines classical computer vision algorithms with
modern neural network-based solutions. Our method integrates
object detection, monocular depth estimation, and homography-
based mapping to achieve precise and efficient estimations of
absolute height and distance. The solution is implemented on the
edge device, which enables real-time data processing using both
visual and thermography data sources. Experimental evaluation
on a height estimation dataset prepared by us demonstrates
an accuracy of 97.06% and validates the effectiveness of our
approach.

I. INTRODUCTION

A
CCURATE estimation of spatial positions and parame-
ters of objects, such as their localization on a bird’s-

eye view map, absolute distance, and absolute height, is an
important computer vision task with wide practical implica-
tions. In this paper, we propose a novel solution for absolute
distance and height estimation that combines homography-
based mapping algorithms with state-of-the-art deep learning
techniques. Our approach harnesses the strengths of both
classical and modern solutions to achieve highly accurate and
efficient estimations under various conditions.

The proposed method integrates several key components
to provide a comprehensive solution for absolute height es-
timation. Firstly, we capture video frames from visual and
thermography cameras and input them into an object detector,
specifically the YOLOv5 model [1]. This model enables robust
identification and localization of objects in the monocular
view. To estimate the relative depth information, we utilize
a transformer-based monocular depth estimation model called
DPT Levit 224 [2], [3]. This model learns to infer depth
information from a single image, allowing us to determine
the relative distances between objects in the scene. Addition-
ally, we incorporate homography-based mapping techniques
to establish correspondences between points in different im-

ages or views. By leveraging homography projection, we can
accurately map objects from the video frame plane to the
bird’s-eye view 2D map, enabling easy estimation of their
distance from the camera. The final stage of our approach
involves polynomial regression-based estimations to compute
the absolute distance and height of objects.

The proposed solution is implemented on the Arabox III-A
edge device, which is based on the Jetson Nano board
and offers real-time data processing capabilities. Arabox is
specifically designed for fully anonymous data acquisition
and is commonly used in the Digital Out-of-Home (DOOH)
advertising industry.

In our experimental evaluation, we demonstrate the effec-
tiveness of our approach and its evaluation on the prepared
by us absolute height estimation dataset. The obtained results
show accuracy equal to 97.06% in real-time performance,
emphasizing the usefulness of our solution in a wide range
of applications requiring precise absolute distance and height
estimation.

The rest of this paper is organized as follows: Section 2 II
provides a detailed overview of related works, including object
detection, homography-based mapping, monocular depth esti-
mation, and absolute height estimation techniques. Section 3
III presents a comprehensive description of the architecture
of our solution, along with information about the necessary
configuration and calibration process. Section 4 IV presents
the experimental results, which are divided into indoor and
outdoor experiments, accompanied by a description of the
dataset used and the methodology employed. Finally, section 5
V discusses the implications of our findings and identifies
potential areas for future improvement.

II. RELATED WORKS

In this chapter, we provide an overview of the existing
research and advancements in the field of computer vision,
with a special focus on object detection, homography-based
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mapping, monocular depth estimation, and absolute height
estimation techniques.

A. Object detection

The task of object detection is widely used in computer
vision and has a wide range of applications [4]–[6]. Currently,
the best object detectors are based on convolutional neural
networks (CNN). The initial success of CNN-based object
detectors came with two-stage detectors like the region-based
convolutional neural network (R-CNN) proposed by Girshick
et al. [7] which has shown remarkable performance. This led
to further advancements such as Fast R-CNN [8] and Faster R-
CNN [9] - improved two-stage detectors, faster and with better
accuracy. Another approach that gained popularity are one-
stage detectors, exemplified by groundbreaking architectures
like You Only Look Once (YOLO) [10] and Single-Shot De-
tector (SSD) [11]. They are faster, part of them can even work
in real-time on edge devices, and currently have comparable
accuracy to two-stage detectors [12].

The leading one-stage detection architecture YOLO has
undergone significant improvements over time. Namely, its im-
proved versions YOLOv2 [13] and YOLOv3 [14] introduced
deeper convolutional backends, residual skip connections,
residual blocks, and upsampling, resulting in one of the fastest
object detection techniques while maintaining respectable ac-
curacy. Bochkovskiy et al. presented YOLOv4 [15], which
brought further enhancements to the training process, includ-
ing data augmentation methods like CutMix, regularization
techniques such as DropBlock, and architectural changes like
the CSPDarknet53 backend network and path aggregation
network with spatial attention blocks.

More recently, Jocher et al. presented YOLOv5 [1], which
refreshed the YOLO architecture and improved its perfor-
mance. The YOLO-based architecture remains a state-of-the-
art object detector, with subsequent versions continually being
developed and published under different names.

These advancements in object detection have significantly
improved the accuracy and speed of detecting objects in
various applications.

B. Homography-based mapping

Homography-based mapping is a widely used technique
in computer vision that establishes correspondences between
points in different images or views. It relies on the concept
of a homography, which is a projective transformation that
maps points from one plane to another. This mapping has
numerous applications, including image stitching, augmented
reality, camera calibration, and object tracking.

Works by Hartley and Zisserman [16], as well as by
Cyganek and Siebert [17] provide a comprehensive overview
of homography estimation algorithms. Additionally, the work
of Szeliski [18] presents techniques for the robust estima-
tion of homographies in the presence of outliers and noise.
These studies serve as foundational knowledge for our use of
homography-based mapping in height estimation.

C. Monocular Depth Estimation

Monocular depth estimation aims to recover depth informa-
tion from a single image. This task is challenging due to the
inherent ambiguity in monocular vision. Nevertheless, it plays
a crucial role in various applications such as 3D reconstruction,
scene understanding, and autonomous navigation.

Over the years, significant progress has been made in
monocular depth estimation techniques. Early approaches were
focused on hand-crafted features, superpixelation, and tradi-
tional computer vision algorithms [19]–[21]. However, with
advancements in deep learning, convolutional neural networks
have emerged as powerful tools for monocular depth estima-
tion.

One notable work in this field is the pioneering study
by Eigen et al. [22] where they introduced a CNN-based
approach for monocular depth prediction. This work paved
the way for subsequent research in deep learning-based depth
estimation. Another significant contribution is the work of
Laina et al. [23], who proposed a faster and lighter solution
by training a fully convolutional residual network based on
ResNet-50 [24]. They replaced the fully connected layers with
up-convolutional blocks and modified the loss function.

Subsequently, the development of CNN-based solutions ac-
celerated, leading to the creation of numerous works address-
ing this area. A few noteworthy contributions deserving special
attention are listed below. Lee et al. [25] proposed a solution
based on the relative depths between objects in the image.
Ranftl et al. [26] presented a tool for mixing multiple datasets
during monocular depth estimation training, even when their
annotations were incompatible. This tool has facilitated future
advancements in this field. Additionally, Ranftl et al. [2]
proposed a dense vision transformer-based depth estimation
architecture with a transformer backbone. Their architecture
produces more fine-grained and globally coherent predictions
compared to fully-convolutional architectures.

D. Absolute height estimation

Absolute height estimation is an intriguing computer vi-
sion task, but less popular than those mentioned above. To
address this problem, various approaches based on image
depth estimation [27], convolutional neural networks [27]–
[29], and convolutional-deconvolutional deep neural networks
(CDNNs) [30] have been proposed.

A notable work in this domain is the study conducted by
Yin et al. [27], where they developed a four-stage estimator
based on multiple CNN networks operating on a single-
depth image. Their approach achieved impressive accuracy
in height estimation, reaching as high as 99.1%. It is worth
mentioning that their solution was limited to a controlled
laboratory environment, where measurements were conducted
on individuals positioned approximately 2 meters away from
the camera. Despite this limitation, the achieved result is truly
remarkable.

The field of absolute height estimation is relatively spe-
cialized, and fewer studies have been conducted compared to
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Figure 1: Arabox device - version with
normal and termovision cameras and
Jetson Nano board.

other computer vision tasks. Therefore, we believe that it is
an interesting area for further research and development.

III. SYSTEM ARCHITECTURE

In this chapter, we present the architecture of our method
for estimating the absolute height and distance of objects,
which is implemented on an edge device called Arabox III-A,
developed by MyLED [31]. Our approach for height esti-
mation relies on two sources of data: a video signal and a
thermal image signal. The system flow consists of integrating
object detection using the YOLOv5 neural network, monocular
depth estimation transformer, homography-based mapping,
and polynomial regression-based estimations. We provide a
detailed explanation of our method in section III-B.

A. Arabox device

Arabox, shown in Figure 1, is a device developed for fully
anonymous data acquisition in the retail industry. It can be
used in both stationary stores (including those operating in
the omnichannel model) and the outdoor advertising industry
(particularly in digitized form, known as DOOH). The device’s
key component is an embedded system that includes a GPU,
such as the Jetson Nano, which is responsible for encrypting
and processing data from the connected cameras. Arabox also
includes a carrier board, power supply, fans, and a special case.
Arabox has many use cases, but below we will focus on its
height estimation functionality.

B. Height estimation pipeline

The main contribution of our paper is the absolute height
estimation pipeline presented in Figure 2. It utilizes two
data sources: a video signal and a thermal image signal.
Both signals are initially processed by the YOLOv5 object

detector before being fed into separate flows. In the first
flow, we project the video signal onto a bird’s-eye view using
homography-based mapping. This enables us to estimate the
spatial position of objects, as well as their distance from the
camera and height (based on initial configuration, polynomial
regressions, and the height of bounding boxes estimated by
YOLOv5). We perform the same process for the thermal image
signal, but with a different homography matrix.

The second flow is only performed for the video signal and
is based on DPT Levit 224 monocular depth estimation model.
This network estimates the relative depth of the image, and its
output is combined with YOLOv5 detections to calculate the
average depth value for the detected bounding boxes. Using
a polynomial regression model from the device configuration
and the relative depths of the detected objects, we can estimate
their absolute distance from the camera, as well as their
absolute height, in the same way as in the first flow. Finally,
we average the results from all three flows to estimate the final
height of the objects. More details on each of the pipeline steps
are provided in the following subsections.

1) YOLOv5 detections: This part of our pipeline comprises
two YOLOv5 models, which have been trained on two datasets
that we prepared - one based on visual and the other on thermal
images. These datasets contain approximately 20,000 anno-
tated photos captured in urban environments. The YOLOv5
models output class of an object (such as human, car, or bus),
its anchor location represented by two coordinates, and the
height and width of the bounding box. All expressed in local
coordinates associated with an image plane. This information
is then used in the subsequent steps of our system, i.e. in the
homography-based mapping and monocular depth estimation.

2) Homography-based mapping: The goal of this step is to
project the location of the detected object from a 3D photo to
a 2D "map" presented from a bird’s-eye view. This projection
enables us to estimate the distance and height of the object
in the next step. To accomplish this, we first calculate the
homography matrix for a given location during the device
calibration process III-C. Subsequently, we use this matrix to
transform the YOLOv5 detections and project them onto a 2D
plane. By knowing their positions on the 2D plane and the
scale of the plane saved during the configuration process, we
can accurately estimate their distance from the camera, as well
as their height, using polynomial regression.

3) Monocular depth estimation: In this step, we utilize
the monocular depth estimation neural network called DPT
Levit 224 [2], [3]. Given an input image, the network returns
a map of relative depth estimates, where lower pixel values
correspond to objects that are further from the camera. To
improve the accuracy of our estimations, we first crop the
image to remove any visible sidewall or casing fragments
before passing it to the neural network.

The DPT Levit 224 model we use was trained using a
publicly available tool for mixing monocular depth estimation
datasets [26]. By using this pre-trained model, we can estimate
the relative depth of objects in the scene with high accuracy,
even in cases where the objects are partially occluded or have
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Figure 2: Block diagram of our height estimation system.

complex geometries.

4) Objects’ absolute distance estimation: The estimation
of object distance from the camera is performed using two
methods, depending on the results of the previous step. If we
estimate the distance based on the spatial position of the object
obtained through homography-based mapping, the calculation
is straightforward. We simply multiply the object’s distance
from the camera (expressed in pixels) by the scale factor
included in the device configuration III-C.

On the other hand, if we estimate distance using monocular
depth estimation, the process is more complex. In this case,
we first calculate the average depth value for each bounding
box returned by YOLOv5, and then substitute these values
into a polynomial regression formula contained in the device
configuration. This formula expresses the relationship between
depth values and distance at a given location, enabling us
to estimate absolute distance accurately. Details on how to
calculate the coefficients of said polynomials are contained in
the configuration section III-C.

5) Objects’ absolute height estimation: After we have
obtained the absolute distance of the object from the camera,
we can estimate its height. However, for the estimate to be
accurate, we need to calibrate the device to a specific location
beforehand and calculate the coefficients of the 3rd-order
polynomial accurately. This polynomial regression formula is
used to determine the relationship between the distance of the
object from the camera and the ratio of its height in pixels
to the height in the real world. The process of calibration
and calculating these coefficients is further explained in the
configuration section III-C.

Once we have the coefficients and the distance value, we
substitute them into the polynomial formula to obtain a height
ratio. We then multiply this ratio by the height of the object in
pixels obtained from the YOLOv5 detector. This calculation

Figure 3: A photo showing the process of calculating the
homography matrix. The person responsible
for the configurations marks the points on
the image from the camera and the
corresponding 2D map.

allows us to obtain an accurate estimate of the absolute height
of the object.

C. Configuration and calibration process

To ensure the proper functioning of the methods described,
it is necessary to configure and calibrate the system. The
most important parameters that we need to configure for each
location where the device is to be used are: homography
matrices, coefficients of the third-order polynomials used in
the polynomial regression of distance and height, and the scale
factor of pixels to meters.

Homography matrices are calibrated for a specific location
using a simple script that requires marking several points on
the original image and the 2D image, as shown in Figure 3.
If the points are marked accurately, the script will return a
homography matrix that allows for the projection of objects’
locations from the camera’s perspective onto a bird’s-eye view.
A separate matrix should be calculated for each camera (i.e.
visual and thermal), since their parameters are different.

The polynomial regression is employed to determine the
relationship between the distance of an object from the camera
and the ratio of its height in pixels to its height in the real
world. To compute the third-order polynomial coefficients used
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Figure 4: Regression curve calculated in the calibration phase
for mapping the height of objects in pixels to
the height of objects in meters.

for this regression, the following steps are proposed: Firstly,
several YOLOv5 detections of a person with a known height
should be made at different distances from the camera, and
the height returned by YOLOv5 in pixels should be recorded.
Next, a plot similar to the one shown in Figure 4 should be
created, and a third-order polynomial regression should be
computed on it. The obtained coefficients should then be saved
in the device configuration. The height estimation module will
then multiply the distance of the object from the camera by
these coefficients and then by the height of the YOLOv5
prediction. This will provide an estimate of the height of
the given object. A similar process should also be performed
for the monocular depth estimation module and its depth-to-
distance regression.

The final parameter needed to calibrate the device to a
specific location is the scale that determines how many cen-
timeters in the real world correspond to one pixel on the 2D
map. This parameter can be easily calculated by measuring
the distance between two characteristic objects on a Google
Maps and then checking how many pixels on our 2D map they
correspond to, as shown in Figure 5. Once all the parameters
have been calibrated and configured, the device is ready for
use in estimating the absolute height and distance of objects
for chosen location. In the future we want to improve and
automate the configuration process.

IV. EXPERIMENTAL PART

To validate the effectiveness of our method, we conducted
an experiment using a small dataset comprising videos of 11
individuals with known heights. The videos were captured in
two distinct locations: one in an open environment and the
other inside the building. By utilizing this dataset, we evalu-
ated the performance of our system following the methodology
outlined in section IV-B and achieved an estimation accuracy
of 97.06%.

The experiment aimed to assess the system’s ability to
accurately estimate the height of individuals in different en-
vironmental conditions and validate the effectiveness of our
proposed approach. In the following sections, we will discuss

Figure 5: An example of distance measurement for device
calibration using Google Maps.

the details of the gathered dataset, our methodology and we
will present the results obtained from our evaluation.

A. Dataset

The dataset comprises 10 recordings, each featuring a
different individual with a known height. The recordings were
captured using two types of cameras: a regular vision camera
(model ELP-USB500W05G-FD100) and a thermal imaging
camera (model SEEK Thermal MS202SP Micro Core).

The dataset includes videos from two distinct locations:
indoors, specifically in an office space, with a total of three
recordings, and outdoors, in a parking lot, with a total of seven
recordings. The individuals participating in the recordings had
heights ranging from 160cm to 185cm. While the dataset may
not be extensive, we believe it provides sufficient variety to
validate and confirm the effectiveness of our absolute growth
estimation method. Sample frames from videos used in our
dataset are presented in Figure 6.

B. Methodology

To validate the performance of our method for estimating
the absolute height of individuals, we employed the following
methodology.

For each video in our dataset, our model conducted height
estimations on every frame in which the YOLOv5 detection
model detected a person. The estimated heights were stored in
a temporary table, and the measurements were averaged at the
end of the video, using the Formula 1. Where, ha represents
the averaged height measurement result, hi represents the
result from a single frame, and N is the number of frames
in which the person was measured.

ha =

N∑

i=1

hi

N
(1)

These estimates were then compared against the known actual
heights of the individuals (he) to calculate the percentage
errors using Formula 2.

δ = |
ha − he

he

| ∗ 100% (2)
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(a)

(b)

(c)

(d)

Figure 6: Sample images from the dataset

To provide a comprehensive evaluation, we stored all the
results, as well as results from every module of our system
in Table I and Table II, respectively. These tables serve as
a consolidated record of the estimated heights, actual heights,
and corresponding absolute errors for each video. Additionally,
they contain the estimated heights from each component of the
pipeline, namely results from the homography-based mapping
using the vision data (HBM vision), homography-based map-
ping using the thermal data (HBM thermo), monocular depth
estimation (MDE), and the fusion module. The fusion module
results are calculated as presented in formula 3.

Fusion =

HBEvision+HBEthermovision

2
+MDE

2
(3)

As can be observed, the fusion formula is not a simple
arithmetic average, as the module based on monocular depth
estimation carries the greatest weight. This is because the
homography-based mapping modules provide similar informa-
tion, whereas the monocular depth estimation module offers
distinct and additional insights. By utilizing this methodology,
we can quantitatively assess the accuracy and reliability of
our height estimation method across the entire dataset. The
percentage error values obtained will allow us to analyze the
performance of our system and identify areas for improvement.

In the subsequent sections, we will present the detailed re-
sults obtained from our evaluation and discuss the implications
of these findings for the effectiveness of our proposed method.

C. Results

The results of our experiments are presented in three sep-
arate tables. Table I displays the measurements conducted
indoors for three individuals, while Table II showcases the
measurements carried out in an open area for eight individuals.
Finally, Table III provides a weighted average summary of
the results obtained from all experiments.

The average accuracy achieved in each experiment is as
follows: 97.73% for Experiment 1, 96.77% for Experiment
2, with an overall weighted average accuracy of 97.06%.
These accuracy percentages represent the degree of agreement
between the estimated heights and the actual heights of the
individuals. A more detailed description of the experiments
and their results is provided below.

1) Experiment 1 - indoor area: In the first experiment
conducted indoors, specifically in an office space; we recorded
the heights of three individuals ranging from 173 cm to 186
cm; the maximum distance from the camera in which they
could walk was around 12 meters. The system performed
around 370 measurements for each person and then averaged
them to obtain the final results presented in Table I. The
average accuracy of the absolute height estimations obtained
in this experiment was 97.73%. The best-performing module
is based on homography mapping with a signal from the video
camera with an error of only 1.14%. On the other hand, the
worst-performing module is also homography-based mapping,
but with a signal from the thermal camera - with a percentage
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Table I: Indoor experiment results

HBM vision HBM thermo MDE Fusion Ground Truth Number of frames

Person 1 185cm 180cm 188cm 185cm 186cm 346
Error 1 0.54% 3.23% 1.08% 0.54% - 346
Person 2 179cm 167cm 170cm 172cm 178cm 350
Error 2 0.56% 6.18% 4.49% 3.37% - 350
Person 3 177cm 167cm 164cm 168cm 173cm 412
Error 3 2.31% 3.47% 5.20% 2.89% - 412

Avg. Error 1.14% 4.29% 3.59% 2.27% - -

Figure 7: Visualization of the described method: Upper left - detection on a video signal,
upper right - detection on a thermal image, bottom left - projection of a person’s
detections into bird’s eye view, bottom right - monocular depth estimation output

error equal to 4.29%. A sample visualization of our method’s
work on data from the indoor experiment was presented in
Figure 7.

2) Experiment 2 - outdoor area: In the second experiment,
we conducted measurements in an open area, specifically
a small parking lot. Seven individuals with heights ranging
from 160 cm to 185 cm participated in this experiment; the
maximum distance from the camera in which they could walk
was around 20 meters. For each person, a varying number
of measurements, ranging from 865 to 1968, were conducted
and averaged. Final results are presented in Table II. The
average accuracy of the estimations obtained in the second
experiment was 96.77%. The best-performing module in this
experiment was the monocular depth estimation model, with
an average percentage error equal to 3.03%, whereas the worst-
performing method was once again thermovision homography
mapping with an error equal to 4.39%.

3) Results summary: Summarizing the results of the afore-
mentioned experiments, we achieved a weighted average accu-
racy of 97.06%. Among the different modules used, the height
estimation module based on homography projecting yielded
the highest accuracy of 97.35%. The other modules, namely
the monocular depth estimation module and homography-
based mapping working on thermal imaging, achieved slightly
lower accuracies of 95.89% and 95.64%, respectively.

Looking for reasons for such results, the lower accuracy of
the model working on thermal imaging data can be attributed

to the less accurate detections of the YOLOv5 on the thermal
images. The thermal images dataset, on which the YOLOv5
model was trained, was smaller than the traditional dataset,
which can correspond to weaker results. Notably, the detec-
tions from the thermal-based model were often 10-15% higher
in the vertical axis, which was not observed in normal data.

Regarding monocular depth estimation, certain challenges
were encountered due to the background conditions. For
instance, if a person passed in front of a car, the model believed
that person to be closer than if they were at the same distance
but there was no car in the background. Despite this limitation,
the results achieved in this experiment were considered very
good, taking into account the difficulty of the scenery.

Experiment no. 2 presented slightly weaker results due
to the more complex scene and higher maximal distance in
which individuals could walk. Particularly, beyond 15 meters,
the system encountered significant challenges in accurately
estimating the distances and therefore absolute heights.

Moving forward, we aim to expand our dataset and conduct
experiments in a larger number of testing locations with a
more diverse group of individuals. This will further validate
and enhance the proposed method. Additionally, we will focus
on improving other aspects of our method, which will be
discussed in detail in the following section.

V. CONCLUSION AND FUTURE WORKS

Presented in this paper a method for absolute distance and
height estimation that incorporates a combination of visual and
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Table II: Outdoor experiment results

HBM vision HBM thermo MDE Fusion Ground Truth Number of frames

Person 4 187cm 188cm 185cm 186cm 185cm 865
Error 4 1.08% 1.62% 0% 5.40% - 865
Person 5 171cm 187cm 169cm 174cm 179cm 1044
Error 5 4.47% 4.47% 5.56% 2.79% - 1044
Person 6 173cm 189cm 179cm 180cm 174cm 937
Error 6 0.57% 7.94% 2.87% 3.45% - 937
Person 7 167cm 180cm 172cm 173cm 170cm 1255
Error 7 1.76% 5.88% 1.18% 1.76% - 1255
Person 8 157cm 179cm 171cm 170cm 168cm 1968
Error 8 6.55% 6.55% 1.79% 1.19% - 1968
Person 9 172cm 171cm 173cm 172cm 167cm 1080
Error 9 2.99% 2.40% 3.59% 2.99% - 1080

Person 10 151cm 157cm 150cm 152cm 160cm 1015
Error 10 5.63% 1.88% 6.25% 5.00% - 1015

Avg. Error 3.29% 4.39% 3.03% 3.23% - -

Table III: Results summary

HBM vision HBM fusion MDE Fusion

Avg. Error 2.65% 4.36% 4.11% 2.94%

thermal imaging data, and which employs advanced technolo-
gies such as object detection, homography-based mapping, and
monocular depth estimation, constitutes a significant scientific
contribution to the field of spacial position estimation in real
conditions.

With an accuracy of 97.06%, our method demonstrates
promising results, making it suitable for applications on edge
devices. However, we acknowledge that there is room for
improvements. In our future endeavors, we aim to enhance
the accuracy of our method and streamline the configuration
and calibration processes.

Moving on to future works, one of our primary objectives
is to expand our dataset by incorporating additional locations
and involving a more diverse range of participants. This ex-
pansion would provide valuable insights into the performance
of different modules of our height estimation method and
their effectiveness in various environmental conditions. By
evaluating our method on a more diverse dataset, we can
identify areas for improvement and optimize its performance
accordingly.

Another improvement of the proposed method will be
streamlining the configuration and calibration process. At the
moment, it takes an experienced operator about 30 minutes
to configure the device for a new location. We would like to
streamline this process and automate it further, especially the
part related to the calculation of the polynomial regression
coefficients of the distance and height estimation modules.

Additionally, we plan to extend our method with new
modules. These could include methods such as monocular
depth estimation based on thermal imaging, a human pose
estimation [32] module, and the utilization of the object
segmentation [33] methods for obtaining more accurate data
for calculating the average depth of objects with monocular
depth estimation module. By incorporating these new modules,

we aim to enhance the capabilities and versatility of our
method in estimating absolute distance and height.

In conclusion, our article shows that the accurate estimation
of absolute distance and height from the monocular view is
possible with high accuracy by using a hybrid solution based
on object detection, homography-based mapping, and monoc-
ular depth estimation. Furthermore, we recognize the potential
for further development and propose future improvements in
this task.

ACKNOWLEDGMENTS

This work was supported by the National Centre for
Research and Development, Poland, under the grant no.
POIR.01.01.01-00-1116/20.

REFERENCES

[1] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek,
L. Diaconu, and M. T. Minh, “ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and Inference,” Feb.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6222936

[2] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense
prediction,” 2021.

[3] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou,
and M. Douze, “Levit: a vision transformer in convnet’s clothing for
faster inference,” CoRR, vol. abs/2104.01136, 2021. [Online]. Available:
https://arxiv.org/abs/2104.01136

[4] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. N.
Asghar, and B. Lee, “A survey of modern deep learning based
object detection models,” CoRR, vol. abs/2104.11892, 2021. [Online].
Available: https://arxiv.org/abs/2104.11892
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