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Abstract—The article concerns the well-known RIONA algo-
rithm. We focus on the explainability property of this algorithm.
The theoretical results, formulated and proved in the paper,
show the relationships of the RIONA classifiers to both instance-
and rule-based classifiers. In particular, we show the equivalence
(relative to the classification) of the RIONA algorithm with the
rule-based algorithm generating all consistent and maximally
general rules from the neighbourhood of the test case.

I. INTRODUCTION

I
N THE paper, we focus on the learning algorithm for
supervised learning [1], [2], [3]. Specifically, we focus on

the well-known RIONA algorithm [4], [5], [6]. This algo-
rithm combines two widely-used empirical approaches: rule
induction and instance-based learning [7], [8], [9], [10]. Both
these approaches use reasoning schemes comprehensible to a
human. It is essential since, Explainable AI [11], [12], [13] is
becoming more and more useful in real-life applications. The
classifying system should provide for the given test object
not only decision but also its user-understandable explanation.
In the paper, we present theoretical results of considered
algorithm that allow to meet these requirement.

A few concepts form the framework of the RIONA al-
gorithm. First, instead of inducing an excessive number of
decision rules in advance to use them during testing, it induces
decision rules relevant only for the test example. This is a
strategy of so-called lazy learning [14]. Second, only rules
from the neighbourhood of the given test example are consid-
ered. Third, it automatically groups numerical and symbolic
values of attributes by using more general than commonly-
used conditions. Fourth, RIONA computes optimal size for
the neighbourhoods of objects.

The properties of RIONA algorithm are worth studying as
it was reported in the literature as one of the most accurate
classification methods in many experimental comparisons done
by various researchers (the most commonly used RIONA
implementation is a classifier in the WEKA platform named
RseslibKnn [15]), to name a few: Facebook content recogni-
tion [16, Chapter 1] (RIONA was the best one of 21 tested
algorithms), environmental sound recognition [17] (best of 9
algorithms), metabolic pathway prediction of plant enzymes
[18] (2nd of 47 algorithms), acoustic-based environment mon-
itoring [19] (2nd of 8 algorithms), context awareness of a

service robot [20] (2nd of 8 algorithms), student performance
prediction [21] (5th of 47 algorithms).

The novelty of the paper is in theoretical results creating
the basis for explainability of classifications returned by clas-
sifiers. The results concern the relationships of the classifiers
generated by the RIONA algorithm to classifiers obtained by
applying instance-based as well as rule-based approaches. In
particular, it occurs that RIONA classifiers are equivalent (rel-
ative to the classification property) to classifiers produced by
the rule-based algorithm based on all consistent and maximally
general rules generated from the neighbourhood of the test
case. Such rules are easily interpretable by humans.

The paper relates to the PhD thesis [6].

II. BASIC NOTIONS

|X| denotes cardinality (size) of the set X set. If A and B

are algorithms then the equality A(v) = B(w) means that the
values returned by A on input v and by B on input w are the
same.

By X we denote a set of objects, called the domain of
learning and by Atr = A ∪ {d} a finite set of attributes
atr, where atr : X −→ Vatr. Vatr is called the value set
of atr. Attributes from A are called conditional attributes

and the attribute d /∈ A is called the decision. Vd is called
the decision set. We assume for simplicity of notation that
Vd = {1, . . . , nd}. Any object x ∈ X is represented relative
to its signature InfA(x), i.e. a set of pairs (a, a(x)) for each
a ∈ A. We use the symbols Asym and Anum for denoting
the sets of symbolic and numerical attributes, respectively. If
a ∈ Asym then Va is a finite set. If a ∈ Anum then without
loss of generality, we assume that Va is equal to an interval
(la, ua), where la, ua ∈ R (possibly not all of the values from
the interval are used).

A decision system is a triplet (X, A, d) if X is the set of
objects, A is a set of attributes, and d is a decision function. A
pseudometric decision system is a 4-tuple (X, A, d, {ϱa}a∈A)
if (X, A, d) is a decision system and for any attribute a ∈ A,
ϱa is a pseudometric on the respective value set Va, i.e. for
any a ∈ A, (Va, ϱa) is a pseudometric space [22].

In the sequel by D is denoted a given (pseudometric)
decision system of the above form.
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In the paper we study a combination of two methods (learn-
ing algorithms) inducing a classifier from a given subdecision
system (trnSet, A, d), where trnSet ⊆ X and attributes from
A ∪ {d} are restricted to trnSet, which for any x ∈ X

computes the decision d̂(x) in such a way that d̂ is close

to d [2]. It should be noted that in practical experiments, the
normalized Euclidean metric was used for numerical attributes,
and the SVDM [23] pseudometric for symbolic attributes. If
a ∈ Anum, the normalisation is obtained by using amax and
amin, which denote the maximal and the minimal values for
an attribute a among training examples trnSet.

A. Rule-based methods

The induction of rule sets is one of the fundamental Machine
Learning (ML) techniques (see e.g. [7]). Its significance stems
from the fact that a human may easily comprehend knowledge
representation in the form of rules. Decision rules specify the
appropriate course of action in a given circumstance. Decision
rules frequently have the form ‘if φ then ψ’, where φ denotes
the premise of the rule and ψ denotes its consequence; ψ is a
formula defined by the decision attribute d.

Decision rules are generated using rule induction algo-
rithms from a training set. The premises of the rules are
represented by a conjunction of elementary conditions and
the consequences are describing the particular decision. Each
elementary condition describes a collection of the attribute’s
values. Roughly speaking, it has the form a ∈ V , where
V ⊆ Va, and a is an attribute. We first determine how such
sets V of values can be expressed in a formal language. Next,
we define the semantics (meaning) of specified expressions
from this language in the powerset of the attribute value set
Va. For simplicity of notation we do not distinguish between
symbols denoting values (or intervals) and values (or intervals)
themselves.

Definition II.1. Let D be a (pseudometric) decision system.

For symbolic attributes a ∈ Asym, the description of any
elementary set has one of the following forms:

∅ (1)

{v}, where v ∈ Va, (2)

Va, (3)

B(c, r), when D is pseudometric decision system and

where c ∈ Va, r ∈ R, r ≥ 0.
(4)

The description of elementary set for the decision attribute

d is of the form {v}, for v ∈ Vd.

For numerical attributes a ∈ Anum, the description of
elementary set has one of the following forms:

∅ (5)

[b, e], (b, e], [b, e), (b, e), where b, e ∈ R are such that

the corresponding interval between points b and e is

included in Va.

(6)

The semantics ||des||D ⊆ Va of any description des of the

elementary set for attribute a ∈ A∪{d} is defined as follows:

||∅||D = ∅, ||{v}||D = {v}, ||Va||D = Va,

||[b, e]||D = [b, e], ||(b, e]||D = (b, e],

||[b, e)||D = [b, e), ||(b, e)||D = (b, e),

||B(c, r)||D = {w ∈ Va : w ∈ B(c, r)}

= {w ∈ Va : ϱa(c, w) ≤ r} (called the ball set).

Now, the elementary conditions expressed in a language and
their semantics can be defined.

Definition II.2. Let D be a (pseudometric) decision system.

Any expression a ∈ V, where a ∈ A and V is a

description of elementary set for attribute a is called an

elementary condition. The semantics of a ∈ V is defined by

[[a ∈ V ]]D = {x ∈ X : a(x) ∈ ||V ||D}.

[[a ∈ V ]]D may be restricted to subsets of X, e.g.

[[a ∈ V ]]trnSet = [[a ∈ V ]]D ∩ trnSet.
An example (case) x satisfies the elementary condition a ∈

V (or, in short, (a ∈ V )(x) is satisfied) if x ∈ [[a ∈ V ]]D.

The set ||V ||D ⊆ Va for a given elementary condition a ∈ V
is equal to

• {v} for some v ∈ Vd for the decision attribute d (see set
description 2 and its semantics),

• a proper interval for the numerical attribute (see set
description 6 and its semantics), and

• {v} for some v ∈ Va, Va or a ball set for the symbolic
attribute a (see set descriptions 2, 3, 4, respectively and
their semantics).

A given object x satisfies the elementary condition a ∈ V if
the value of a on x, i.e. a(x) is in the set defined in D by V ,
i.e. a(x) ∈ ||V ||D. Instead of a ∈ {v} we write a = v and
instead of trivial elementary condition a ∈ Va (always true,
i.e. the set of objects satisfying this condition is equal to the
set X) we write a = ∗.

Now, we introduce concepts related to syntax and semantics
of decision rules.

Definition II.3. Let D be a (pseudometric) decision system.

A decision rule is an expression of the form

if t1 ∧ t2 ∧ . . . ∧ tm then d = v,

where m = |A|, ti is an elementary condition for an attribute

ai for i = 1, 2...,m, and v ∈ Vd.

The semantics of the premise t1 ∧ t2 ∧ . . . ∧ tm of the rule

r (in D) is defined by

[[t1 ∧ t2 ∧ . . . ∧ tm]]D = [[t1]]D ∩ [[t2]]D . . . [[tm]]D

If x ∈ [[t1 ∧ t2 ∧ . . . ∧ tm]]D then we say that

• the premise of the rule r is satisfied by example x (or x
satisfies this premise),

• example x matches the rule r,

• r covers x.
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One can treat a single rule as a classifier assigning examples
covered by that rule to the decision class from the rule’s con-
sequence. Ideally, we could search for rules if φ then d = v
such that [[φ]]D ⊆ [[d = v]]D. However, the restriction of
this inclusion to trnSet, i.e. [[φ]]trnSet ⊆ [[d = v]]trnSet is
available only. Rules satisfying this last condition (for trnSet)
are induced from trnSet and an hypothesis on extension of the
truth of this inclusion on X is made. Moreover, rules covering
as many as possible examples are generated.

In description of decision rules, trivial conditions are usually
omitted 1. The typical conditions are equations a = v in case
of symbolic attributes and inclusions into intervals in case of
numerical attributes, e.g.:

if a2 = 3 ∧ a4 ∈ [2, 5] ∧ a7 = 3 then d = 2.

In this paper we use for symbolic attributes more general
conditions, i.e. a ∈ V (see Definition II.2), making it possible
to extend singleton sets to the ball sets. If the data set under
consideration has some numerical attributes, then by applying
discretisation the relevant intervals can be constructed. By
applying discretisation to a given decision system a new one
is obtained with new attributes being characteristic functions
of induced intervals including objects from trnSet labeled by
the same decision (see e.g. [24]).

By ti(r), where r is a given decision rule we denote the
i-th condition ti from Definition II.3. We write ta(r) instead
of ti(r) if the condition ti from Definition II.3 concerns the
attribute a.

We define three kinds of decision rules by distinguishing
elementary conditions (used in Definition II.3) occurring in
them. In consequence, we obtain three sets of decision rules.

Definition II.4. Let D be a decision system.

The set SimRules of simple rules is the set of all rules

from Definition II.3 with the elementary conditions of the form

a = v for v ∈ Va and a = ∗ only.

The set CombRules of combined rules is the set of all rules

from Definition II.3 with elementary conditions for symbolic

attributes of the form as in SimRules and for numerical

attributes of the form a ∈ I (where I is a proper interval

description) only.

Definition II.5. Let D be a pseudometric decision system

such that for any symbolic attribute a ∈ Asym there is a

distinguished specific value ca ∈ Va.

The set GenRules
(

{(ϱa, ca)}a∈Asym

)

(or simply

GenRules whenever pairs (ϱa, ca) are clear from the

context or irrelevant due to generality) of general rules is the

set of all rules from Definition II.3 where set descriptions in

elementary conditions in the premises of the rules are

(i) as in the definition of CombRules for numerical at-

tributes and

(ii) of specific form of 4, i.e. B(c, r), where c = ca, r =
ϱa(ca, v), v ∈ Va for symbolic attributes a ∈ Asym.

1In fact, in the description of rules only non-trivial conditions are used. We
use trivial conditions only to make the notation simpler.

More details on general rules presented in Section III-A
will help the reader to better understand our definition.

Definition II.6. A rule if ϕ then d = v is consistent with a

set of objects X ⊆ X (or consistent if X is clear from the

context) if d(x) = v for any object x ∈ X matching this rule.

If the rule if ϕ then d = v is not consistent than it is called

inconsistent.

Typically, in the above definition trnSet is used as X . Any
rule if ϕ then d = v consistent with trnSet classifies correctly
all the training examples covered by that rule i.e. [[ϕ]]trnSet ⊆
[[d = v]]trnSet.

For further considerations the concept of maximality of rule
will be useful.

Definition II.7. Let D be a (pseudometric) decision system

and let a ∈ A, and let V1, V2 be elementary conditions for a.

The condition a ∈ V2 is more general than (or is implied by)

a ∈ V1, in symbols a ∈ V1 ⇒ a ∈ V2 if ||V1||D ⊆ ||V2||D.

For any two rules r1, r2 (over D) with the same consequence

d = v, we say that a rule r2 is more general than (or is implied
by), in symbols r1 ⇒ r2 if ti(r1) ⇒ ti(r2) for i = 1, . . . ,m
and m = |A|.

A consistent rule r with a training set trnSet is maximally
general (relative to trnSet and a given set of rules Rules)
if there is no rule in Rules more general than r which is

different from r and consistent with trnSet.

Definition II.8. Let D be a (pseudometric) decision sys-

tem and let Rules be a given set of admissible rules.

The set of maximally general rules (relative to trnSet)
MaxRules(Rules, trnSet) is equal to the set of all maxi-

mally general rules r ∈ Rules consistent with trnSet.

We use the following sets of rules: SimRules,
CombRules, GenRules from Definitions II.4 and II.5
as Rules (see Definition II.8). We write MaxRules
instead of MaxRules(Rules, trnSet), if from the
context Rules and trnSet are known. Hence,
MaxRules may denote: MaxRules(SimRules, trnSet),
MaxRules(CombRules,trnSet), or
MaxRules(GenRules,trnSet).

Computing from trnSet the set of all consistent and max-
imally general matching at least one case from trnSet is
important for some learning algorithms.

In the case of MaxRules(SimRules, trnSet), a consistent
rule is maximally general relative to trnSet if it becomes
inconsistent (relative to trnSet) after substitution of the trivial
condition instead of a non-trivial one. Hence, consistent rules
from MaxRules(SimRules, trnSet) can be characterised as
the rules with minimal length (measured by the number of non-
trivial conditions in predecessors). Hence, in the considered
case, the problem is to generate the complete set of consistent
and minimal decision rules (see e.g. [25]). One can observe
that searching for the set of minimal rules can be motivated
by the minimum description length principle (MDL) (see
e.g. [26]). However, the computational time complexity of
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algorithms generating MaxRules(SimRules, trnSet) is not
feasible when the number of training objects or attributes are
large. In fact, the size of the MaxRules set can be exponential
relative to |trnSet| (see e.g. [27]). Hence, efficient heuristics
are often used to overcome this drawback, especially when not
necessarily complete sets of minimal rules are required (see
e.g. [28]). There are also other approaches inducing a set of
rules fully covering cases from trnSet (see e.g. [29]). Here,
we focus on the complete MaxRules set.

In the case of MaxRules(CombRules, trnSet), addition-
ally we deal with numerical attributes. From trnSet max-
imally general intervals of reals are induced. Searching for
maximally general rules for numerical attributes is closely
related to the problem of discretisation. A partition of reals in
discretisation is consistent if each interval covers only objects
with the same decision (see e.g. [24], [27]).

The discretisation problem is a complex task. For example,
searching for a consistent partition with the minimal number
of cuts is NP-hard (see e.g. [24]). In Subsection III-A we show
how to overcome this drawback using lazy learning and focus-
ing on a local part of X instead of on the whole universe. This
is illustrated by the lazy rule induction algorithm Algorithm 3
or Algorithm 4.

In the case of MaxRules(GenRules, trnSet), the addi-
tional search is performed for the relevant grouping of values
for symbolic attributes into a partition of value sets of symbolic
attributes. One can define a partition over an attribute a as
any function Pa : Va → {1, . . . ,ma}. It should be noted that
the problem of searching for a consistent family of partitions
with the minimal

∑

a∈A |Pa(Va)| is NP-hard (see e.g. [30]).
We show in the paper how to overcome this drawback by
limiting the number of possible groupings of values of any
attribute (from 2n to n2, where n is the number of values
for an attribute) and by using the lazy rule induction (see
Section III-A).

The induced sets of rules from trnSet are used to classify
objects. First, for any test object tst there are selected all rules
from the set matching this object. Next, the set of matched
rules is checked. If all rules matched by tst have the same
decision then this decision is assigned to tst else it should be
resolved conflict between matching rules voting for different
decisions (see e.g. [31]). Typically, it is selected the decision
with the highest value of a selected measure used for conflict
resolution. We use the commonly used measure for conflict
resolution.

Definition II.9. Let us assume that D – (pseudometric) deci-

sion system, trnSet – training set trnSet, tst – test example

(case), and MaxRules – set of maximally general rules are

given. By supportSet(r) ⊆ trnSet, where r ∈ MaxRules
we denote the set of all objects from trnSet matching r, and

by MatchR(tst, v) ⊆ MaxRules (where v ∈ {1, . . . , nd},

i.e. v is a decision of d on some object from trnSet) the set

of rules from MaxRules with decision v matching the test

object tst. Now, we define

Strength(tst, v) =

∣

∣

∣

∣

∣

∣

⋃

r∈MatchR(tst,v)

supportSet(r)

∣

∣

∣

∣

∣

∣

. (7)

From definition it follows that by computing
Strength(tst, v) it is counted the number of objects
from trnSet covered by some maximally general rule from
MaxRules (i) with the decision v and (ii) covering the test
example tst.

On the basis of MaxRules and the defined conflict resolu-
tion strategy using Strength we define the classifier assigning
to a given test object tst the most frequent decision of such
training examples from trnSet which are covered by matched
by tst rules from MaxRules, i.e.:

decisionMaxRules(tst) = argmax
v∈Vd

Strength(tst, v). (8)

As it was observed, the drawback of the presented approach
comes from the high computational complexity of MaxRules
generation.

B. Lazy rule learning for symbolic attributes

The lazy learning (or memory based learning) algorithms
do not require construction of sets of decision rules before
classification of new objects.

kNN is the well known example of such algorithms (see
Algorithm 1). For these algorithms, first for any test object tst
it is defined its neighbourhood N(tst, trnSet, k, ϱ) ⊆ trnSet
(N, for short) with k the most similar to tst (relative to a
given distance function ϱ) training examples (where k is a
parameter). If more than one example has the same distance
from tst as the one already added to the N under construction
then all of them are added to N(tst, trnSet, k, ϱ). Then the
set N(tst, trnSet, k, ϱ) may contain more than k examples2.

An interesting example of lazy rule-based algorithm for
SimRules is presented in [32]. For a new tst it generates
only the relevant for it decision rules and next tst is classified
as before on the basis of such rules. The value of Eqn. 7 is
computed for any tst object without computing the whole set
MaxRule.

For given two objects tst, trn, we first define simple local

decision rule, in symbols s-rule(tst, trn). The relationship of
the set of such rules with SimRules will be presented in the
following proposition.

Definition II.10. Let D be a decision system, trn ∈ trnSet
and let tst be a test object. A simple local decision rule (for

short s-rule) s-rule(tst, trn) is the decision rule of the form

if
∧

a∈A ta then d = d(trn), where conditions ta for each

symbolic attribute a are as follows

ta =

{

a = a(trn) if a(tst) = a(trn)
a = ∗ if a(tst) ̸= a(trn).

2This assumption is used in RIONA. Hence, we also adopt it for the kNN
algorithm in the paper.
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Algorithm 1: kNN(tst, trnSet, k, ϱ)
Input: a test example tst, training set trnSet, positive

integer k, pseudometric ϱ
Output: predicted decision for tst

1 begin

2 neighbourSet = N(tst, trnSet, k, ϱ)
3 foreach decision v ∈ Vd do

4 supportSet(v) = ∅
5 end

6 foreach trn ∈ neighbourSet do

7 v = d(trn)
8 supportSet(v) = supportSet(v) ∪ {trn}
9 end

10 return argmax
v∈Vd

|supportSet(v)|

11 end

Algorithm 2: isCons(r, verifySet)
Input: a rule r : if α then d = v,

set of examples verifySet
Output: true if rule r is consistent with verifySet, false
otherwise
for all trn ∈ verifySet do

if d(trn) ̸= v and trn satisfies α then

return false
end if

end for

return true

Observe that both objects trn and tst are matching the rule
s-rule(tst, trn) which is maximally specific (the number of
trivial conditions is minimal; or inversely, the number of non-
trivial conditions is maximal). The following crucial relation
between s-rule and maximally general consistent rules from
SimRules holds:

Theorem II.1. [32]3 If trn ∈ trnSet and tst is a test object

than the rule s-rule(tst, trn) is consistent with trnSet if

and only if MaxRules(SimRules, trnSet) contains a rule

covering both objects tst and trn.

Hence, for any test object tst, decision v ∈ Vd
and MaxRules(SimRules, trnSet) set the value
Strength(tst, v) from Eqn. 7 is equal to the number
of trn ∈ trnSet having decision d(trn) = v and for which
the rule s-rule(tst, trn) is consistent with trnSet. The
simple lazy rule induction algorithm for symbolic attributes

(LAZY) presented in Algorithm 3 realises this idea.
isCons(r, verifySet) in Algorithm 3 verifies if r is con-

sistent with a verifySet. For a given object tst and any
trn ∈ trnSet, the rule s-rule(tst, trn) is constructed by

3The formulation of this proposition in [32] was different. However, in the
case of SimRules it is equivalent to the original proposition and makes it
possible in a more direct way present the relationship between local rules as
well as MaxRules and algorithms based on these two types of rules.

Algorithm 3: LAZY(tst, trnSet)
Input: test example tst, training set trnSet
for all decision v ∈ Vd do

supportSet(v) = ∅
end for

for all trn ∈ trnSet do

v = d(trn)
if isCons(s-rule(tst, trn), trnSet) then

supportSet(v) = supportSet(v) ∪ {trn}
end if

end for

return argmax
v∈Vd

|supportSet(v)|

Algorithm 3. Next, Algorithm 3 is testing the consistency
of the rule s-rule(tst, trn) with the set trnSet \ {trn}, i.e.
if all the training examples matching the left-hand side of
s-rule(tst, trn) have identical decision with trn. If the result
of testing is positive than trn is added to the support set
with the relevant decision. Finally, Algorithm 3 predicts the
decision with the support set of the highest cardinality. From
Theorem II.1 we obtain:

Corollary II.2. The following equality holds:

LAZY (tst, trnSet) = decisionMaxRules(tst), where

trnSet is a training set, tst is a test object, and

decisionMaxRules(tst) is the classifier from Eqn. 8 with

MaxRules =MaxRules(SimRules, trnSet).

From the above considerations it follows that LAZY takes
into account only these decision rules that can be involved in
the classification of a given test object.

III. RIONA DESCRIPTION

A. Extension and generalisation of lazy rule learning

We introduce an extension and generalization of the LAZY
algorithm (see Algorithm 3) that was discussed in Subsec-
tion II-B. This novel algorithm permits the use of numerical
attributes as well as more general conditions for symbolic
attributes.

In Subsections III-A1, III-A2 we present a generalisation of
rules introduced before.

For a given test object tst, training object trn ∈ trnSet and
pseudomietric decision system D with pseudometrics ϱa for
a ∈ Asym, in addition to simple local decision rule (in short
s-rule) (see Subsection II-B) denoted by s-rule(tst, trn),
we consider two new types of local rules: combined

local decision rule (in short c-rule) and generalised local

decision rule (in short g-rule) denoted by c-rule(tst, trn),
g-rule

(

tst, trn, {ϱa}a∈Asym

)

(or simply g-rule (tst, trn)),
respectively. In this way we obtain sets composed out of
simple rules, combined rules and general rules, denoted
by SimRules (see Subsection II-A), CombRules,
GenRules, respectively. We already demonstrated (see
Subsection II-B) an important relation between any s-
rule and the set of maximally general consistent rules
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MaxRules(SimRules, trnSet). Here, we show analogous
important relations between any c-rule or g-rule and sets of
maximally general rules MaxRules(CombRules, trnSet),
MaxRules(GenRules, trnSet) corresponding to sets of
rules CombRules and GenRules, respectively.

1) Extension of lazy rule learning for numerical attributes:

In this section we assume that D is a given decision system
and trnSet ⊆ X.

Now, we extend the definition of the local decision rule to
the case of symbolic and numerical attributes.

Definition III.1. Let tst be a test object and trn ∈ trnSet.
By ta for a ∈ Asym we denote a condition as in Def-

inition II.10 and mina = min(a(tst), a(trn)), maxa =
max(a(tst), a(trn)) for a ∈ Anum We define the combined
local decision rule (for short c-rule) if

∧

a∈A Ta then d =
d(trn), denoted by c-rule(tst, trn), where conditions Ta for

a ∈ A are as follows

Ta =

{

a ∈ [mina,maxa] if a ∈ Anum

ta if a ∈ Asym.

Let us note that conditions for numerical attributes contain
intervals with endpoints determined by attribute values of
objects tst and trn.

The relationship of the set
MaxRules(CombRules, trnSet) and c-rule(tst, trn) is
analogous to the relation between
MaxRules(SimRules, trnSet) and s-rule(tst, trn) as the
following lemma states.

Lemma III.1. Any rule

r ∈MaxRules(CombRules, trnSet) covering the given test

object tst and training object trn is implied by the rule

c-rule(tst, trn).

Proof. From r ∈MaxRules(CombRules, trnSet) we have,
in particular that r is consistent with trnSet. Hence, the
postcondition of r is d = d(trn), i.e. the decision of r is
the same as c-rule(tst, trn).

Since r covers tst and trn, ta(r)(trn) and ta(r)(tst)
are satisfied for each a ∈ A, i.e. trn ∈ [[ta(r)]]D and
tst ∈ [[ta(r)]]D.

It is enough to show that for any a ∈ A the
implication ta(c-rule(tst, trn)) ⇒ ta(r) holds, i.e.
Va(c-rule(tst, trn)) ⊆ Va(r), where for any rule r′ if ta(r′)
is of the form a ∈ V then Va(r′) is defined as Va(r′) = ||V ||D.

Let us first assume that a ∈ Asym. If ta(r) is of the form
a ∈ Va, then the implication obviously holds (trivial condition
is implied by any condition, because for any elementary
condition a ∈ V for attribute a, ||V ||D ⊆ ||Va||D. If ta(r)
is for some v ∈ Va of the form a = v (i.e. a ∈ {v})
then v = a(trn) = a(tst). The last equalities hold because
we already concluded that ta(r)(trn) and ta(r)(tst) are both
satisfied. Hence, we have trn ∈ [[a = v]]D and tst ∈ [[a =
v]]D, i.e. a(trn) ∈ {v} and a(tst) ∈ {v}. It means that in
the considered case the equality ta(r) = ta(c-rule(tst, trn))
holds (see Definition III.1 and Definition II.10).

If a ∈ Anum is numerical then ta(r) is of the form
a ∈ I , where I is the description of interval corresponding
to the numerical attribute a of rule r. Because ta(r)(trn) and
ta(r)(tst) are both satisfied then a(trn) ∈ ||I||D and a(tst) ∈
||I||D. Thus {a(trn), a(tst)} ⊆ ||I||D. Hence, all points
between a(trn) and a(tst) are also in ||I||D. In consequence,
[mina,maxa] ⊆ ||I||D, where mina = min(a(tst), a(trn)),
maxa = max(a(tst), a(trn)) what ends the proof of inclu-
sion Va(c-rule(tst, trn)) ⊆ Va(r) (see Definition III.1).

Theorem III.2. The rule c-rule(tst, trn) for the test ob-

ject tst and the training object trn is consistent with the

training set trnSet if and only if there exists a rule r ∈
MaxRules(CombRules, trnSet) covering objects tst and

trn.

Proof. We start from a proof of the following fact: if
c-rule(tst, trn) is consistent with trnSet then it can be ex-
tended to a rule from MaxRules(CombRules, trnSet). Such
a rule can be constructed inductively. From assumption we
have that r0 = c-rule(tst, trn) ∈ CombRules is consistent
with trnSet. In the induction step to define each next rule
ri, for i = 1, 2, . . . ,m, where m = |A|, we assume that
ri−1 is consistent with trnSet and conditions tj(ri−1) for all
j = 1, 2, . . . , i − 1 are maximally general, i.e. if we replace
any condition tj with a more general t (i.e. tj ⇒ t) preserving
consistency, then tj = t.
ti(ri), in i-th induction step, is defined as the maximal gen-

eralisation of ti(ri−1) = . . . = ti(r0) = ti(c-rule(tst, trn))
preserving consistency with trnSet. All others conditions and
the decision of the rule are not changed, i.e. tj(ri) = tj(ri−1)
for j ̸= i; d(ri) = d(ri−1). Hene, in i-th induction step we
simply maximally generalise condition for attribute ai.

If ai ∈ Asym and ti(ri−1) is the trivial condition, then we
put ri = ri−1. If ti(ri−1) is non-trivial, it is substituted by
a ∈ Va if the consistency of the rule is preserved; otherwise,
we put ri = ri−1.

If ai ∈ Anum then ti(ri−1) is of the form ai ∈ [min,max].
Let us denote by rulei(r, t) the result of replacement in r
of i-th condition by a condition t. Now, we define a set
of values of attribute a by a(Inc) = {a(trn) : trn ∈
Inc}, where Inc = {trn ∈ trnSet : d(trn) ̸= d(r0) ∧
rulei(ri−1, ai = ∗) covers trn}, i.e. Inc contains objects
which may violate the consistency of the rule under the
maximal possible extension of the condition ti(ri−1). From
the inductive assumption, ri−1 is consistent with Inc because
Inc ⊆ trnSet. Hence, a(Inc) ∩ [min,max] = ∅. Now
we define newmax = min{v ∈ a(Inc) : v > max}.
This minimum exists because Inc and also a(Inc) are finite
sets. If the set {v ∈ a(Inc) : v > max} is empty we
take newmax = uai

(i.e. maximal possible extension of the
right end of the interval). Analogously, we define newmin =
max{v ∈ a(Inc) : v < min}. If {v ∈ a(Inc) : v < min}
is empty we put newmin = lai

(i.e. maximal possible
extension of the left end of the interval). Finally, we define
ti(ri) by a ∈ (newmin, newmax). From the definition, ri
is consistent with trnSet and is also maximal because other
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ends of the interval (newmin, newmax) even if extended by
one point to a closed interval will cause inconsistency (in case
newmin = lai

this end of the interval cannot be extended;
analogously in case newmax = uai

).
It is easy to prove that all other conditions tj(ri) for

j < i remain still maximal. To prove this, let us assume
that for some j < i tj(ri) could be extended to t with
preserving consistency, i.e. rulej(ri, t) is consistent. We also
have rulej(ri−1, t) ⇒ rulej(ri, t). Therefore rulej(ri−1, t)
is consistent with trnSet. From the inductive assumption t is
identical with tj(ri−1). Because tj(ri−1) is the same as tj(ri)
for (j < i), then t is the same as tj(ri). It means that tj(ri)
is maximally general.

Our inductive reasoning leads to a conclusion that the last
rule rm is consistent with trnSet and maximally general.

We have c-rule(tst, trn) ⇒ r for any rule
r ∈ MaxRules(CombRules, trnSet) covering objects
tst and trn (see Lemma III.1). Hence, inconsistency
of c-rule(tst, trn) implies inconsistency of all rules
r ∈MaxRules(CombRules, trnSet) covering tst and trn.

2) Generalisation of lazy rule learning for symbolic at-

tributes:

In the section by D we denote a given pseudometric decision
system and trnSet ⊆ X is a given training set.

In the previous Definitions II.10 and III.1, the trivial con-
dition a ∈ Va for a symbolic attribute a is introduced.
This condition represents the specific grouping of all possible
values of an attribute and is satisfied by any object. However, a
proper subset of Va may be more relevant for the classification.
Grouping of values can be obtained by applying a given
pseudometric ρa for a. Here, now we formulate the following
generalisation of Definition III.1, related to a grouping of
values for symbolic attributes:

Definition III.2. Let tst be a test object, trn ∈ trnSet, and

mina = min(a(tst), a(trn)), maxa = max(a(tst), a(trn))
for a ∈ Anum. We also use the following notation: (i)

ra = ϱa(a(tst), a(trn)) for radius, (ii) B(c, R) for closed

pseudometric ball of radius R centred at point c defined by the

pseudometric ϱa. Now, we define the generalised local decision
rule (for short g-rule) if

∧

a∈A ta then d = d(trn), denoted

by g-rule
(

tst, trn, {ϱa}a∈Asym

)

or simply g-rule (tst, trn)
(if parameters {ϱa}a∈Asym

are clear from the context or

irrelevant due to generality of considerations), where:

ta =

{

a ∈ [mina,maxa] if a is numerical

a ∈ B (a(tst), ra) if a is symbolic.

Now, we prove that an analogous relationship of the
set MaxRules(GenRules, trnSet) and g-rule (tst, trn) (g-
rule) to the relation between MaxRules(SimRules, trnSet)
and s-rule(tst, trn) holds.

Lemma III.3. Let tst be any test object and

trn ∈ trnSet. Let GenRules be defined by parameters

ϱa (from given pseudometric decision system) and

ca = a(tst) for a ∈ Asym (see Definition II.5),

i.e. GenRules = GenRules
(

{(ϱa, a(tst))}a∈Asym

)

.

Then g-rule
(

tst, trn, {ϱa}a∈Asym

)

⇒ r for any

r ∈ MaxRules(GenRules, trnSet) covering objects

tst and trn.

Proof. The proof is an extension of proof of Lemma III.1. For
numerical attributes, the proof is the same as before. For sym-
bolic attributes, it is enough to change the part of the proof of
Lemma III.1 by the following one. Let a ∈ Asym. Then ta(r)
is of the form a ∈ B(a(tst), Ra), where Ra = ϱa(a(tst), v),
for some v ∈ Va. Hence, Ra ≥ ϱa(a(tst), a(trn)) be-
cause ta(r)(trn) is satisfied. So, we obtain B (a(tst), ra) ⊆
B(a(tst), Ra), where ra = ϱa(a(tst), a(trn)). Hence, we
have ta(g-rule (tst, trn)) ⇒ ta(r).

Theorem III.4. Under the assumptions of Lemma III.3,

the rule g-rule
(

tst, trn, {ϱa}a∈Asym

)

is consistent with

trnSet if and only if there exists a rule r ∈
MaxRules(GenRules, trnSet) such that r covers tst and

trn.

Proof. The proof can be obtained by a modification of the
proof of Theorem III.2.

It is enough to modify the inductive step of the proof of
Theorem III.2 for ai ∈ Asym as follows. If ai ∈ Asym

then ti(ri−1) is of the form a ∈ B(a(tst), ra), where ra =
ϱa(a(tst), v), for some v ∈ Va. Now, let us consider possible
extensions of a ∈ B(a(tst), ra) by a ∈ B(a(tst), Ra), where
Ra = ϱa(a(tst), w), for some w ∈ Va and Ra ≥ ra preserving
consistency (with trnSet) of the rule. In the finite set of such
possible extensions (due to the fact that Va is finite) we select
the one with the maximal value of Ra. The selected extension
is maximally general.

If ai ∈ Anum then we extend the formula as in Theo-
rem III.2.

One can conclude that the last rule rm is consistent with
trnSet and maximally general by performing analogous rea-
soning as in Theorem III.2.

Also, in analogous way as in Theorem III.2 with the use
of Lemma III.3, we obtain that the following implication
holds: if g-rule (tst, trn) is inconsistent with trnSet, then
in MaxRules(GenRules, trnSet) there is no rule covering
tst and trn.

Let us note that the set MaxRules(GenRules, trnSet)
is defined for the given values ca for a ∈ Asym (in
the testing procedure we assume ca = a(tst)). The idea
behind construction of MaxRules(SimRules, trnSet) was
to compute all maximally general rules in advance for the
later use in the classification process. In order to construct
MaxRules(GenRules, trnSet), this should be done for all
possible combinations of all possible values for all symbolic
attributes. It would increase the number of generated rules by
the factor no more than bk, where b is the maximal cardinality
of |Va| for a ∈ Asym and k is the number of symbolic
attributes.
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From Theorem III.4 it follows that it is sufficient to gen-
erate g-rules for all training examples and then check their
consistency with trnSet (instead of computing the support
sets for rules from MaxRules(GenRules, trnSet) covering
a new test case). The lazy Rule Induction Algorithm (RIA)
realises this idea.

Algorithm 4: RIA(tst, trnSet, {ϱa}a∈Asym
)

Input: test example tst, training set trnSet, family of
pseudometrics for symbolic attributes
{ϱa}a∈Asym

Output: predicted decision for tst
1 begin

2 foreach decision v ∈ Vd do

3 supportSet(v) = ∅
4 end

5 foreach trn ∈ trnSet do

6 v = d(trn)
7 if

isCons
(

g-rule
(

tst, trn, {ϱa}a∈Asym

)

, trnSet
)

then

8 supportSet(v) = supportSet(v) ∪ {trn}
9 end

10 end

11 return argmax
v∈Vd

|supportSet(v)|

12 end

isCons(r, verifySet) is defined in Algorithm 2 (see Sub-
section II-B). The RIA (see Algorithm 4) and LAZY (see
Algorithm 3) algorithms differ only in line 7, namely in Al-
gorithm 3 the rule s-rule(tst, trn) is used and in Algorithm 4
this is the rule g-rule

(

tst, trn, {ϱa}a∈Asym

)

.
RIA computes the measure Strength for MaxRules =

MaxRules(GenRules, trnSet) what directly follows from
Theorem III.4. Hence, the results of RIA are equivalent to
the results of the algorithm based on calculating MaxRules
with Strength as a strategy for conflict resolution. In this
way, we obtain the corollary analogous to Corollary II.2 (see
Subsection II-B).

Corollary III.5. For any test object tst, and the classifier

decisionMaxRules(tst) (see Eqn. 8), where

MaxRules =MaxRules(GenRules, trnSet)

and

GenRules = GenRules
(

{(ϱa, a(tst))}a∈Asym

)

,

we have

RIA(tst, trnSet, {ϱa}a∈Asym
) = decisionMaxRules(tst).

B. Combining instance-based learning and rule methods –

RIONA

In this section, we additionally assume that Agr is an
aggregation function defined as sum of individual metrics.

Let us recall that RIONA is based on a combination of
instance-based learning and rule-based methods. The primary

observation used in the development of RIONA concerns the
property of the widely used kNN method. kNN has quite good
performance, usually for small values of k. Hence, one may
expect that that only training examples close to a given test
case are important in the process of inducing (inferring) the
final decision. The intuition supporting this claim is that the
training examples which are far from a given test object are
less relevant for classification than the closer ones. Contrary to
this, in the case of rule-based methods, in general, all training
examples are used in the process of rule generation. Hence,
instead of considering all training examples in constructing
the support set in the case of rule-based approach, like in the
RIA algorithm, one can bound it to a certain neighbourhood
of a test example. In the case of RIONA algorithm, the
classification of a given test case is based on training objects
from a neighbourhood of this example.

Our approach to inducing of decision for a given test case is
basing on a combination of instance-based learning and lazy
rule learning (see Section III-A). The core idea concerns the
strategy for conflict resolution based on Strength measure
(see Eqn. 7) slightly modified by bounding it to the neigh-
bourhood of the test case:

LocStrength(tst, v, k, ϱ) =

=

∣

∣

∣

∣

∣

∣

⋃

r∈MatchR(tst,v)

locSuppSet(r)

∣

∣

∣

∣

∣

∣

,
(9)

where most notation is as in Eqn. 7; additionally ϱ =
Agr({ϱa}a∈A) is the aggregated pseudometric and k is
the number indicating the size of the neighbourhood, and
locSuppSet(r) = supportSet(r) ∩ N(tst, trnSet, k, ϱ).
One can observe that the change from supportSet(r) to
locSuppSet(r) causes that only those examples covered by
the rules matched by a test object that are in a specified neigh-
bourhood of the test example are considered. The predicted
decision based on LocStrength is analogous to the previous
one (see Eqn. 8):

decLocMaxRules(tst, k, ϱ) =

argmax
v∈Vd

LocStrength(tst, v, k, ϱ). (10)

Let us note that the size k of the neighbourhood is optimised
in the learning phase (see [5]) while in the classification
process, we assume that number k for the neighbourhood
N(tst, k) is set to this optimal value.

The above measures can be calculated for a given
MaxRules by bounding the support sets of the rules
from MaxRules covering a test example to the specified
neighbourhood of a given test example. Hence, the algorithm
based on maximally general rules with LocStrength can be
used here.

It is worthwhile mentioning that LocStrength can also
be calculated using the lazy rule learning methodology. This
can be done analogously to computing by RIA the measure
Strength (see Corollary III.5). For this purpose we modified
Algorithm 4 as follows (i) in line 5 of the algorithm, only
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examples trn ∈ N(tst, k) should be considered, (ii) it is not
necessary to consider all the examples from the training set
to check the consistency of the g-rule

(

tst, trn, {ϱa}a∈Asym

)

(see line 7 of Algorithm 4). This follows from the next
proposition.

Proposition III.6. Suppose that ϱa (for a ∈ Anum) in a

given pseudometric decision system are defined as normalised

Eucliean metric, ϱ = Agr({ϱa}a∈A) and Agr is defined

either by sum of metrics or weighted sum of metrics. If

trn′ ∈ trnSet satisfies g-rule
(

tst, trn, {ϱa}a∈Asym

)

, then

ϱ(tst, trn′) ≤ ϱ(tst, trn).

Proof. If trn′ satisfies g-rule
(

tst, trn, {ϱa}a∈Asym

)

, then we
have (see Definition III.2 of g-rule):

• for any a ∈ Asym we have a(trn′) ∈ B (a(tst), ra),
where ra = ϱa(a(tst), a(trn)). Hence, from definition
of the closed ball it follows that ϱa(a(tst), a(trn′)) ≤
ϱa(a(tst), a(trn)).

• for any a ∈ Anum we have a(trn′) ∈ [mina,maxa],
where mina = min(a(tst), a(trn)), maxa =
max(a(tst), a(trn)). Hence |a(tst)− a(trn′)| ≤
|a(tst)− a(trn)|. Thus, using definiton of metric for
numerical attributes (normalised Euclidean metric)

we have ϱa(a(tst), a(trn
′)) =

|a(tst)−a(trn′)|
amax−amin ≤

|a(tst)−a(trn)|
amax−amin = ϱa(a(tst), a(trn)).

Hence, for any a ∈ A we have ϱa(a(tst), a(trn
′)) ≤

ϱa(a(tst), a(trn)). In consequence, we obtain the following
inequality between the global distances4 for Agr defined
by sum of metrics ϱ(tst, trn′) =

∑

a∈A

ϱa(a(tst), a(trn
′)) ≤

∑

a∈A

ϱa(a(tst), a(trn)) = ϱ(tst, trn).

One can observe that we have the same result also for
aggregation function defined by weighted sum of metrics. This
is because adding weights for each attribute preserves the
above inequality.

From the above considerations it follows that the examples
distanced from tst more than the training example trn cannot
cause inconsistency of g-rule

(

tst, trn, {ϱa}a∈Asym

)

. Hence,
one can use N(tst, trnSet, k, ϱ) instead of trnSet in line 7
of Algorithm 4.

The description of classification algorithm RIONA is pre-
sented in Algorithm 5. Later on we prove that Algorithm 5
computes LocStrength (see Theorem IV.2). Algorithm 5
returns the most common class corresponding to decisions on
the training examples covered by the rules satisfied by tst
and belonging to the specified neighbourhood. One should
note that all pseudometrics in the argument of Algorithm 5

4We assume that pseudometrics used for grouping symbolic attributes are
the same as the pseudometrics composing the aggregated pseudometric used
for measuring distance between examples. The analogous assumption is used
for numerical attributes: real values are grouped using interval contained in
the ball B(a(tst), ϱa(a(tst), a(trn))) determined by the Euclidean metric.
The same Euclidean metric (however normalised) is used for components of
the final pseudometric.

are given (used for computation of the final pseudometric).
However, in g-rule only pseudometrics for symbolic attributes
are used (see Definition III.2 and note after it).

Algorithm 5: RIONA-classify(tst,trnSet,k,{ϱa}a∈A)

Input: test example tst, training set trnSet, positive
integer k, family of pseudometrics for attributes
{ϱa}a∈A

Output: predicted decision for tst
1 begin

2 ϱ = Agr({ϱa}a∈A)
3 nSet = N(tst, trnSet, k, ϱ)
4 foreach decision v ∈ Vd do

5 supportSet(v) = ∅
6 end

7 foreach trn ∈ nSet do

8 v = d(trn)
9 if

isCons
(

g-rule
(

tst, trn, {ϱa}a∈Asym

)

, nSet
)

then

10 supportSet(v) = supportSet(v) ∪ {trn}
11 end

12 end

13 return argmax
v∈Vd

|supportSet(v)|

14 end

For every decision value, RIONA computes the support
set restricted to the neighbourhood N(tst, k) rather than the
whole support set of the maximally general rules covering tst
(as in the case of RIA algorithm). This is done as follows. For
any trn ∈ trnSet from N(tst, k) RIONA constructs the rule
g-rule

(

tst, trn, {ϱa}a∈Asym

)

based on trn and tst. Next,
RIONA is testing whether g-rule is consistent with the exam-
ples from the neighbourhood N(tst, k). If g-rule is consistent
with N(tst, k) then the support set of the decision d(trn) is
extended by trn. Finally, RIONA returns the decision value
with the support set of the highest cardinality.

IV. RELATIONSHIPS OF RIONA TO OTHER APPROACHES

A specific combination of kNN approach and lazy rule
induction allowed us to develop the algorithm RIONA. One
can observe that only the line 9 of RIONA, where is examined
the consistency of the rule determined by the training and
testing example, differs from Algorithm 1 (kNN).

The relationships between RIONA, RIA and kNN for k = 1
are as follows.

Proposition IV.1. Let us assume that 1NN is the nearest

neighbour algorithm for k = 1 with a distance defined by

pseudometric ϱ = Agr({ϱa}a∈A). Then for any test object

tst we have

RIONA(tst, trnSet, k, {ϱa}a∈A) =
{

RIA(tst, trnSet, {ϱa}a∈Asym
) for k ≥ |trnSet|

1NN(tst, trnSet, ϱ) for k = 1, |N(tst, trnSet, k, ϱ)| = 1.
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Proof. If k ≥ |trnSet| then the neighbourSet = trnSet,
where neighbourSet is defined in the RIONA algorithm
(see Algorithm 5). Hence, RIONA works exactly as the RIA
algorithm (see Algorithm 4).

If k = 1 and |N(tst, trnSet, 1, ϱ)| = 15 then the
neighbourSet in the RIONA algorithm is a singleton set and
consistency checking can be omitted. Hence, RIONA works
exactly as 1NN (see Algorithm 1).

RIONA behaves like the RIA algorithm for the maximal
neighborhood (and from the Corollary III.5 as the algorithm
based on the maximally general rules with the Strength strat-
egy for conflict resolution). By taking a neighbourhood based
on the one nearest training example, the nearest neighbour
algorithm is obtained. RIONA is positioned between the rule-
based classifier based on the maximally general rules and
the nearest neighbour classifier. If a small neighborhood is
chosen then it acts more like a kNN classifier and if a large
neighbourhood is chosen it works more like a rule-based
classifier based on inducing maximally general rules. Selection
of a neighbourhood that is not the maximal may be interpreted
as taking more specific rules instead of maximally general
rules consistent with the training examples.

Below, we present more properties of RIONA.

Theorem IV.2. The following equality holds:

RIONA(tst, trnSet, k, {ϱa}a∈A) =
decLocMaxRules(tst, k, ϱ),

where

(i) tst is any test object,

(ii) decLocMaxRules(tst, k, ϱ) is the output of classifier from

Eqn. 10 with

– MaxRules =MaxRules(GenRules, trnSet),
– GenRules = GenRules

(

{(ϱa, a(tst))}a∈Asym

)

,

– ϱ = Agr({ϱa}a∈A).

Proof. We have RIA(tst, trnSet, {ϱa}a∈Asym
)

= decisionMaxRules(tst) (see Corollary III.5). This is based
on the following fact: RIA computes measure Strength for
MaxRules = MaxRules(GenRules, trnSet), i.e. for each
v ∈ Vd supportSet(v) (in line 11 of Algorithm 4) =
Strength(v) (see Theorem III.4). RIONA works
only on training examples from N(tst, trnSet, k, ϱ)
and examples consistent with N(tst, trnSet, k, ϱ) are
also consistent with the whole training set, trnSet
(see Proposition III.6). In computing of the measure
LocStrength(tst, v, k, ϱ) are used only training
examples from the neighbourhood N(tst, trnSet, k, ϱ).
Hence, supportSet(v) (see line 13 of Algorithm 5) =
LocStrength(tst, v, k, ϱ) for any v ∈ Vd. From this the
equation of the theorem follows.

Theorem IV.3. The following equality holds:

RIONA(tst, trnSet, k, {ϱa}a∈A) =

5This assumption can’t be omitted. If |N | > 1 then it may happen (even
for consistent training set) that N has (equally distanced from test example)
two cases with different decisions leading to inconsistency.

decLocMaxRules(tst, k, ϱ),
where

(i) tst is any test object,

(ii) decLocMaxRules(tst, k, ϱ) is the output of classifier from

Eqn. 10 with

– MaxRules =
MaxRules(GenRules,N(tst, trnSet, k, ϱ)),

– GenRules = GenRules
(

{(ϱa, a(tst))}a∈Asym

)

,

– ϱ = Agr({ϱa}a∈A).

Proof. The following equality holds (see Theorem IV.2):
RIONA(tst,N(tst, trnSet, k, ϱ), k, f) =

decLocMaxRules(tst, k, ϱ),
where trnSet is substituted by a new training set
N(tst, trnSet, k, ϱ)),
and
f = {ϱa}a∈A,
MaxRules = MaxRules(GenRules,N(tst, trnSet, k, ϱ)).
We also have
RIONA(tst,N(tst, trnSet, k, ϱ), k, f) =

RIONA(tst, trnSet, k, f)
what ends the proof.

From the last two theorems the following interesting corol-
lary follows.

Corollary IV.4. Let us assume that there are given

{ϱa}a∈A, ϱ = Agr({ϱa}a∈A), trnSet,
MaxRules =MaxRules(GenRules, trnSet),
MaxLocalRules =

MaxRules(GenRules,N(tst, trnSet, k, ϱ)),
where GenRules = GenRules

(

{(ϱa, a(tst))}a∈Asym

)

.

Then the outputs returned by the following classifiers are the

same for any tst object:

1. RIONA(tst, trnSet, k, {ϱa}a∈A),
2. decLocMaxRules(tst, k, ϱ),
3. decLocMaxLocalRules(tst, k, ϱ),
4. decisionMaxLocalRules(tst) with a new training set

trnSet′ = N(tst, trnSet, k, ϱ).

Proof. From Theorems IV.2 and IV.3 it follows the
equivalence of the first three classifiers. To obtain the
equivalence of the third and fourth classifiers let us observe
that
trnSet′ = N(tst, trnSet, k, ϱ) =
N(tst,N(tst, trnSet, k, ϱ), k, ϱ) = N(tst, trnSet′, k, ϱ).
We also have supportSet(r) ⊆ trnSet′. Hence, from
the previous equation we obtain supportSet(r) ⊆
N(tst, trnSet′, k, ϱ). Then locSuppSet(r) =
supportSet(r) ∩N(tst, trnSet′, k, ϱ) = supportSet(r).
Now one can see that Eqn. 9 becomes Eqn. 7, what implies
that Eqn. 10 becomes Eqn. 8.

Summarising, the conclusions are the following: (i) RIONA
calculates the LocalStrength measure (see Eqn. 9). (ii)
The LocStrength measure is the Strength measure with
N(tst, k) as the local training set (fourth algorithm). (iii)
The algorithm presented in Eqn. 8 after substitution of a
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new training set trnSet′ = N(tst, trnSet, k, ϱ) instead of
trnSet becomes the fourth algorithm. (iv) One can consider
the RIONA algorithm as an algorithm for computing all
maximally general, consistent rules locally and using (locally)
Strength for conflict resolution.

In Table I and Table II is presented comparison of these
algorithms (the third algorithm is omitted because it is very
similar to the fourth).

Table I
A GENERAL COMPARISON OF THREE ALGORITHMS FROM

COROLLARY IV.4: ALGORITHM (1) RIONA, ALGORITHM (2) BASED ON

THE MEASURE LocStrength AND ALGORITHM (4) BASED ON THE

MEASURE Strength COUNTED LOCALLY.

RIONA algorithm (2) based on algorithm (4) based on
the measure the measure Strength

LocStrength counted locally
counting rules

no need to count counts MaxRules globally counts MaxRules
rules explicitly once at the beginning locally for each test case

counting support

counts support using counts support locally counts support locally
lazy local rules

Table II
A COMPARISON SCHEME OF THREE ALGORITHMS FROM

COROLLARY IV.4: ALGORITHM (1) RIONA, ALGORITHM (2) BASED ON

THE MEASURE LocStrength AND ALGORITHM (4) BASED ON THE

MEASURE Strength COUNTED LOCALLY.

RIONA algorithm (2) based on algorithm (4) based on
the measure the measure Strength
LocStrength counted locally

Global input: trnSet, k ∈ N

1. count MaxRules
for trnSet

Input: test case tst

2. nSet = N(tst, k)
3. count (locally) MaxRules(nSet)

RuleBase = MaxRules RuleBase = MaxRules(nSet)
4. consider rules from RuleBase

with premise satisfied by tst

5. for each decision d

6. consider consider rules from step 4
trn ∈ nSet with decision d
with decision d

7. count the number of count the number of
trn from step 6 trn ∈ nSet supporting rules from step 6
forming consistent
rules with tst

8. choose the decision with the maximal count (maximally supported)

A. RIONA and rules

Some important properties of instance-based classifiers and
rule-based classifiers are inherited by the RIONA algorithm.
Even though rule-based classifiers produce less accurate clas-
sifications, there are several features of them that users prefer
over instance-based classifiers. The ability for a human, non-
computer science professional, to interpret rules is one of these
crucial features. He or she can check to see if the information
found in such rules is non-trivial, accurate, and revealing
brand-new features of the considered case. A rule includes
an explanation for making the specific decision that is simple
enough for a human to comprehend.

Here, we assume that the RIONA algorithm’s parameter
k is fixed (potentially learnt [5]). Let’s now concentrate on

algorithm (4) from Sect. III. Because the local complete set
of consistent and maximally general decision rules must be
computed for each test case tst, the direct computation of
MaxLocalRules may initially appear to be highly expensive
and impractical. However, if we assume that the size of N is
k, then the size of the local training sample is much smaller
than the size of the entire training sample being reduced from
n = |trnSet| to k. As a result, the total cost of computing
MaxRules (globally or locally) is decreased from O(2n) to
O(m ·2k), where m is the number of test cases. We don’t just
present this strategy from a theoretical standpoint only. When a
classifier’s decision needs to be explained, this kind of method
might be useful. In this way, the RIONA algorithm shares
characteristics with rule algorithms and quick lazy learning
algorithms, i.e. its parameters can be converted into rules.

Additionally, algorithm (4) might be extended to construct
all rules globally once at the beginning, analogously to al-
gorithm (2) from Corollary IV.4, except that the rules would
be based on the local neighborhood only. Such rules would
mimic the RIONA algorithm’s behavior. The use of such a
strategy has several benefits. First, a set of rules could be
immediately provided to explain the predicted decision on a
particular test object. Second, the usefulness of the knowledge
acquired might be tested against all potential rules generated
at the beginning.

The approach for construction of these rules is analogous as
in algorithm 4 from Corollary IV.4. One could just construct
MaxRules locally for each training case and use each training
example as a test example. It could be seen as a computation of
specific local reducts i.e. reducts constructed during generation
of maximally general rules for a given object (see e.g. [33],
[34], [35], [32]). Usually, in construction of local reducts
one should be aware to keep discernibility for objects with
various decisions. Only objects with different decisions and at
a distance of no more than determined by k would be required
to be discernible in this case.

V. CONCLUSION

The presented findings indicate some important
relationships of classifiers generated by the RIONA learning
algorithm with instance- and rule-based classifiers. For
example, it is proved the relative to classification equivalence
of the RIONA algorithm to the algorithm generating all
consistent and maximally general rules from a training
set including the close training cases to a given test case.
As a result, the classification by RIONA classifier can be
performed by a relatively small set of rules that are simple for
a person to comprehend. It might be applied in circumstances
where it’s crucial to provide an explanation for the decision
that was reached by classifier. Finally, it is worthwhile to
mention that the RIONA algorithm, based on hybridization
of instance- and rule-based techniques, has the following
properties (i) it is efficient as well as effective from the point
of view of classification, (ii) it can be used as a high quality
tool in the process of explanation of the predicted decisions.
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