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Abstract—Context: Speech Emotion Recognition (SER) is a
valuable technology that identifies human emotions from spoken
language, enabling the development of context-aware and per-
sonalized intelligent systems. To protect user privacy, Federated
Learning (FL) has been introduced, enabling local training of
models on user devices. However, FL raises concerns about the
potential exposure of sensitive information from local model
parameters, which is especially critical in applications like SER
that involve personal voice data. Local Differential Privacy (LDP)
has prevented privacy leaks in image and video data. However, it
encounters notable accuracy degradation when applied to speech
data, especially in the presence of high noise levels. In this
paper, we propose an approach called LDP-FL with CSS, which
combines LDP with a novel client selection strategy (CSS). By
leveraging CSS, we aim to improve the representatives of updates
and mitigate the adverse effects of noise on SER accuracy while
ensuring client privacy through LDP. Furthermore, we conducted
model inversion attacks to evaluate the robustness of LDP-
FL in preserving privacy. These attacks involved an adversary
attempting to reconstruct individuals’ voice samples using the
output labels provided by the SER model. The evaluation results
reveal that LDP-FL with CSS achieved an accuracy of 65-70%,
which is 4% lower than the initial SER model accuracy. Fur-
thermore, LDP-FL demonstrated exceptional resilience against
model inversion attacks, outperforming the non-LDP method by
a factor of 10. Overall, our analysis emphasizes the importance of
achieving a balance between privacy and accuracy in accordance
with the requirements of the SER application.

Index Terms—Federated Learning, Privacy-preserving Mech-
anism, Differential Privacy, Speech Emotion Recognition

I. INTRODUCTION

S
PEECH Emotion Recognition (SER) is a cutting-edge

technology that detects and interprets emotions conveyed

through spoken language [1]. Its potential impact spans mul-

tiple sectors, including customer service, mental health, ed-

ucation, and entertainment [2], [3]. However, the traditional

centralized SER model, which involves gathering user speech

data and training a single model on a central server, poses

privacy risks. Analyzing speech data can expose sensitive

information like biometric identity, personality traits, location,

emotional state, age, gender, and overall health [4]. To address

these ethical and privacy concerns, regulation like the General

Data Protection Regulation (GDPR) [5] has been implemented

to safeguard personal data. Privacy must be a top priority when

developing and implementing SER applications across various

domains.

Federated learning (FL) has emerged as a promising so-

lution to privacy concerns in various fields and applications

[6]. FL maintains local data on end devices and trains ML

models on local client devices without transferring raw data

to a central server. This preserves data privacy and ensures

compliance with regulations such as GDPR. For SER applica-

tions, the initial processing of speech data and training perform

on clients’ devices, and only local model parameters are sent

to the central server for model aggregation [7].

However, FL faces new privacy concerns when it comes

to transmitting local model parameters between clients and

servers [8]. This is a significant concern because the trans-

mission parameters can be exploited by third parties, enabling

them to launch attacks that reconstruct raw speech data or fea-

tures, thereby revealing sensitive information [9]. To address

this issue, additional privacy mechanisms have been proposed

together with FL to safeguard such applications.

One promising mechanism that has emerged is differential

privacy (DP), which offers a potential solution to protect

individual data points in certain cases. DP can be implemented

in FL through two forms: local differential privacy (LDP)

applied on the client side and global differential privacy (GDP)

used on the server side [10]. LDP, a well-established technique,

involves the addition of carefully calibrated noise to each

client’s model parameters before transmitting them to the

central server [11], [12], [13].

Integrating LDP in FL for SER applications offers several

benefits. It ensures the privacy and confidentiality of individual

speech data, protecting sensitive information from unautho-

rized access and potential attacks. By introducing noise to the

model parameters, LDP prevents the reconstruction of raw

speech data or features by malicious third parties, thereby

preserving users’ privacy. Despite the promising potential of

LDP in FL for SER applications, there is a noticeable lack

of research published in reputable conferences or journals
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specifically addressing the utilization of LDP in this context.

This gap highlights the need for further investigation and

exploration to fully understand the effectiveness and practical

implications of integrating LDP into FL for SER.
However, when applied to SER applications, LDP does

not offer acceptable accuracy due to the adverse effects of

adding noise to voice data, which can distort the audio signal

[14]. Furthermore, adding noise to SER model parameters

can affect the model’s utility by distorting or misaligning the

parameters, leading to errors in the model’s output [15]. This

compromise in accuracy is especially detrimental to most SER

applications, which rely on precise results for industrial use

[16]. Therefore, when developing LDP mechanisms in FL for

SER, it is necessary to find a concrete solution that effectively

mitigates the impact of noise on SER accuracy while still

maintaining robust privacy protections.
This paper proposes a method, referred to as LDP-FL with

CSS, which integrates LDP with a novel client selection

strategy (CSS) to enhance privacy while preserving the ac-

ceptable accuracy of SER in the FL system. LDP is utilized

to protect clients’ speech datasets, while CSS is employed to

minimize the negative impact of noise scaling on the model

updates, resulting in more representative updates and improved

accuracy.
Moreover, our study focuses on adapting the model inver-

sion attack, initially developed for facial recognition models

[17], for the SER model through appropriate configuration

adjustments. This attack attempts to reconstruct speech fea-

tures by considering the adversary’s knowledge of a particular

client’s emotion label and their local SER model. The primary

goal is to evaluate the effectiveness of the LDP method

in safeguarding against such attacks within the FL setup.

Finally, we comprehensively evaluated the LDP-FL with CSS

approach, specifically focusing on assessing its alignment

with SER requirements and analyzing the trade-off between

accuracy and privacy.
The novel contributions of this paper can be summarized as

follows:

• We introduce a novel approach that combines local dif-

ferential privacy in federated learning (LDP-FL) with a

client selection strategy (CSS) to enhance privacy while

mitigating the impact of noise on SER accuracy.

• We implement model inversion attacks to assess the

robustness of LDP-FL and determine its effectiveness in

preserving privacy. These attacks involve an adversary

attempt to reconstruct individuals’ voice samples based

on the output labels provided by the SER model.

• We conduct a comprehensive evaluation of the LDP-FL

with CSS approach on public SER datasets, considering

important parameters such as privacy budget, noise scale,

failure probability, and clipping threshold value. Our eval-

uation focuses on assessing how well our method meets

SER requirements and analyzing the balance between

accuracy and privacy.

The rest of the paper is structured as follows. Section II

covers background and related work on privacy-preserving

FL and SER. A reference system description is provided in

Section III, including the SER non-functional requirements,

threat model, the proposed method, and implementation of the

model inversion attack. Section IV presents the experimental

results obtained using the proposed approach. Lastly, Section

V concludes the paper and provides insights for future devel-

opments.

II. BACKGROUND AND RELATED WORKS

In this section, we will provide an overview of the back-

ground and related work on LDP mechanisms in FL. We will

then discuss the use of FL for SER applications and its related

work.

A. Privacy-preserving Federated Learning

FL protects user privacy by decentralizing data from the

central server to edge devices; however, sharing information

with servers (e.g., model weights) can pose privacy threats

[8]. Since FL requires central servers and clients to exchange

model update parameters, attackers with white-box access

obtain the model, its architecture, weight parameters, and any

hyperparameters needed for predictions. When using black-

box scenarios, the adversary can observe only the outputs of

the model on arbitrary inputs [9].

LDP has become an increasingly popular technique for

privacy-preserving in FL [10]. LDP can prevent individual

devices’ data from being leaked to the central server during

the model training process [11], [12]. This technique involves

adding artificial noise to each model’s updated parameters

before sharing it with the central server. Recent work proposed

a framework called NbAFL that utilized LDP and demon-

strated its capability to meet DP requirements under different

protection levels by appropriately adapting various variances

of artificial noise [12]. Another study proposed LDP-based

stochastic gradient descent (SGD) that guarantees a given LDP

level by providing a noise variance limit after multiple rounds

of weight updates using a tight composition theorem [13].

B. Speech Emotion Recognition using Federated Learning

SER technology aims to recognize and understand human

emotions through speech. SER systems analyze the audio

signals from human speech and use ML algorithms to detect

patterns and classify the emotional states conveyed by the

speech [2]. Building SER models requires significant amounts

of data, including sensitive personal information such as

speech signals and emotions. However, centralized storage

of this data presents privacy risks. To mitigate these risks,

FL is a promising solution that allows models to be trained

collaboratively on decentralized devices without the need to

transfer raw data [7].

The paper [18] introduces an FL-based approach for build-

ing a private decentralized SER model. The proposed method

utilizes data-efficient federated self-training to train SER

models with minimal on-device labelled samples. However,

the proposed method only relies on the FL framework as

a privacy-preserving technique and does not consider any
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Fig. 1: An overall overview of LDP-FL with CSS for SER application.

threat models from clients or servers in FL, nor does it

consider any other privacy-preserving techniques. Similarly,

another work [19] proposes a federated adversarial learning

framework to protect both data and deep neural networks in

SER. The framework comprises an FL framework for data

privacy and adversarial training during the training stage for

model robustness. However, like the previous method, it only

relies on the FL framework for privacy preservation and does

not consider other privacy-preserving techniques in FL.

III. SYSTEM DESCRIPTION

In this section, we will address the non-functional require-

ments of the SER application (III-A), discuss the associated

threat model (III-B), present the proposed LDP-FL with CSS

method (III-C) along with algorithms and details, and finally

describe the model inversion attack for speech features using

algorithms (III-D).

A. Non-functional Requirements of Speech Emotion Recogni-

tion Application

Non-functional requirements refer to the characteristics or

qualities of a system that are related to its performance

rather than its specific functionality. In the context of SER

applications, important non-functional requirements include

privacy and accuracy. Satisfying these requirements is critical

to ensure user needs and expectations while complying with

legal requirements. In this part, we provide a more detailed

explanation and explain how we meet these requirements in

the evaluation section IV.

1) Privacy:

a) Personal speech data must be kept on local devices

only [5].

b) The central server or a potential eavesdropper must be

not able to infer sensitive information from the local

model parameters

2) Accuracy:

a) The level of accuracy of SER applications must be

kept high enough to identify the correct emotions from

speech samples reliably. We can consider a baseline

accuracy of a minimum 70% in detecting the four basic

emotions - neutral, sad, happy, and angry [20].

It is important to highlight that those requirements can be

highly interdependent. For instance, privacy-preserving ap-

proaches can have an impact on accuracy due to e.g. the

distributed setup the usage of FL, applied noise of the LDP

method, etc. Additionally, when implementing a SER in an FL

setup, it has been demonstrated in reference [18] that there is

a potential for a 0-5% accuracy drop.

B. Threat Model

In this paper, we assume the server follows the honest-but-

curious (HBC) paradigm. Under this paradigm, the server is

not malicious and adheres to the FL protocol, but may still pos-

sess a curiosity about the data or models of other clients [21].

While the individual client datasets are kept locally in FL, the

intermediate parameter wi needs to be shared with the server,

which can potentially expose clients’ private information, as

evidenced by model inversion attacks. For instance, in [17],

researchers demonstrated a model inversion attack capable of

reconstructing images from a facial recognition system.

C. Proposed Method: LDP-FL with CSS

We present "LDP-FL With CSS," a novel approach that

combines local differential privacy (LDP) and a client selection
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strategy (CSS) in federated learning to balance client privacy

and the accuracy of the SER model. Our method addresses

privacy requirement 1.a by processing and training clients’

speech data locally on their devices within the FL setup. By

leveraging LDP techniques, Gaussian noise is incorporated

into the local updates before transmitting them to the central

server. This implementation provides robust protection against

the inference of sensitive information, thereby fulfilling the

requirement of 1.b and mitigating potential risks in the threat

model. To meet the accuracy requirements 2.a, we incorporate

CSS, prioritizing clients with larger data pools and involving

them in each training round. This strategy aims to mitigate the

potential negative impact of LDP on accuracy while enhancing

it to meet the desired accuracy levels.

Figure 1 outlines the proposed method, which consists of

three main steps. Firstly, the server broadcasts the initialized

global SER model and uses the CSS method to select clients

for training. In the second step, the chosen clients analyze

speech data, extracting Emobase features (explained in Sec.

IV-A) and train their models. They also update their local

model parameters using the global model. Privacy is ensured

by applying the LDP method to each parameter before sharing

them with the server. The clients then share the noisy model

parameters with the server. In the third step, the server aggre-

gates the received noisy local model parameters and returns the

updated global model to the clients. We provide Algorithm 1

as a comprehensive outline of the LDP-FL with CSS approach.

Subsequently, we will delve deeper into the concepts of LDP

and CSS in the context of FL.

Algorithm 1: LDP-FL with CSS

Input: Number of iterations: T, Number of selected

clients: K, Local minibatch size: B, Initial

global model: w0, Learning rate: η, Clipping

threshold: C, LDP parameters: ϵ and δ
1 Initialization:

2 Initialize the global model parameters w0

for t ≤ T do

3 The server broadcasts current model wt

4 K: Client Selection Strategy (CSS)

5 Clients-side:

for i ∈ 1, 2, ...,K do

6 for each batch b ∈ Bi do

7 Compute gradient g(b)← ∇wL
i(wt; b)

8 Clip gradient g(b)← g(b)/Max(1,
∥g(b)∥
C

)

9 Add Noise

g̃i =
1

|B| (
∑

b∈B g(b) +N(0, σ2C2I)

10 Share g̃i with server

11 Server-side:

12 Aggregate g̃ = 1
K

∑K
i=1 g̃i

13 Global model update wt+1 ← wt − η.g̃

1) Local Differential Privacy (LDP): LDP is defined under

the setting where the user does not trust anyone (not even the

central data collector) [11]. In this setting, users themselves

apply a random perturbation to protect their privacy. Each

user runs a random perturbation algorithm, denoted as M , on

their data and shares the perturbed results with the aggregator

or central server. In LDP, the privacy budget, denoted as ϵ,
represents the amount of privacy protection desired, with a

higher value of ϵ implying a lower level of privacy. While

δ represents the probability that an LDP mechanism fails

to provide the specified privacy guarantee. Here is a formal

definition of LDP:

Definition 1 ((ϵ, δ)-LDP [22]): A randomized mechanism

M satisfies (ϵ, δ)-LDP if and only if for any pairs of input

values v and v′ in the domain of M , and for any possible

output y ∈ S , it holds:

Pr[M(v) = y] ≤ eϵPr[M(v′) = y] + δ. (1)

Theoretically, (ϵ, δ)-LDP means that a mechanism M
achieves (ϵ, δ)-LDP with probability at least 1 − δ.

To implement the LDP mechanism in a FL setup, we

followed the approach described in reference [23]. Specifically,

we incorporated artificial Gaussian noise into the clients’

model parameters. In order to ensure that the given noise

distribution Z ∼ N(0, σ2C2I) preserves (ϵ, δ)-LDP, for any

ϵ < cq2T , δ > 0, and T number of epoch, we choose noise

scale σ ≥ c
q
√

Tlog(1/δ)

ϵ , where the constant c and sampling

probability q. In this result, Z is the value of an additive noise

for client gradient.

In Algorithm 1, during time slot t, each selected client i ∈ k
trains its local dataset by minimizing the loss function ∇Li

(lines 6-8). For each client, the gradient g(b) is calculated

for each b ∈ Bi. To limit the impact of each gradient g(b),
we apply clipping using the ∥L∥2 norm. Specifically, g(b)

is replaced by g(b)/max(1,
∥g(b)∥

2

C ) where C is the clipping

threshold (line 7). This clipping mechanism ensures that if the

norm ∥g∥2 is less than or equal to C, the gradient g remains

unchanged. However, if ∥g∥2 exceeds C, it is scaled down to

have a norm of C, thereby controlling the contribution of large

gradients.

After clipping the gradient, we compute the average of

all gradients in set B and add a scaled Gaussian noise

Z ∼ N(0, σ2C2I) to each client’s gradient to achieve LDP

in lines 9-10. The resulting noisy gradient g̃i is then shared

with the server in line 11. On the server side, upon receiving

the noisy gradients g̃i from the selected clients, the server

performs the FedSGD algorithm by aggregating the gradients

g̃ = 1
K

∑K
i=1 g̃i. Subsequently, the global model is updated

using Wt+1 ← Wt − η · g̃ and utilized for the next iteration

in lines 13-14.

2) Clients Selection Strategy (CSS): To mitigate potential

noise effects and uphold the initial accuracy of SER models

in FL, we introduce a refined client selection strategy named
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(CSS). Our proposed approach involves carefully selecting

clients for FL training, employing two distinct criteria.

Algorithm 2: Clients Selection Strategy (CSS)

Input: Number of iterations: T , Clients list: L,

Number of selected Clients: K
Output: List of selected clients

1 for t ≤ T do

2 Half of selection: M = K/2
3 C = sorted L in descending order by sample size

4 Selected clients = C [:M]

5 Remaining clients = randomly select C [M:]

6 Return K = selected clients + remaining clients

Firstly, we select half of the clients from a larger pool of

candidates based on their sample size. This criterion ensures

that clients with larger local datasets are given preference.

By incorporating larger local datasets, which are more likely

to yield accurate and representative model updates, we aim

to enhance the overall model accuracy. Secondly, to mitigate

selection bias, the remaining half of the clients are randomly

chosen. This random selection mechanism introduces an el-

ement of diversity and reduces the potential bias that could

arise from selecting clients based solely on their sample size.

Algorithm 2 outlines the client selection strategy (CSS)

method used in each training round of the overall Algorithm

1. Our method selects the top half of the clients based on

their sample size, giving those clients with the largest sample

sizes a higher probability of being chosen for each round of

training (line 4). To reduce bias in client selection, we combine

our proposed method with random selection for the remaining

clients (line 5). We then combine the two sets of selected

clients to obtain the final selection (line 6).

We ensure that there is no overlap between the two sets

of selected clients to guarantee that each client is selected

precisely once per training round. By employing the CSS

approach, we strike a balance between leveraging large local

datasets for training and maintaining diversity within the FL

system. This methodology effectively minimizes noise effects

and fosters the preservation of the initial model accuracy in

SER models trained through FL.

D. Model Inversion Attack for Speech Emotion Recognition

Models

A model inversion attack takes place when an adversary

gains access to a model’s output and potentially its parameters,

aiming to infer sensitive training data. In our paper, we adjust

the existing work conducted in the field of face recognition

[17] and adapt it for speech emotion recognition by changing

some configurations. In this scenario, we assume that the

attacker possesses knowledge of a single emotion label, such

as neutral, sad, happy, or angry, as well as the model used by

the clients. The objective of the adversary is to reconstruct the

speech data features associated with a specific client and the

corresponding emotion label.

The target of model inversion attack in this case is the

inversion of speech features, which represent high-level statis-

tical characteristics of a client’s speech. Each intensity value

in the features corresponds to a floating-point value. In our

attack scenarios, we assume that the attacker does not possess

exact knowledge of the feature values they are trying to infer.

We consider feature vectors with n components and four

emotion label classes, and we model each emotion recognition

classifier as a function f̃ : [0, 1]n → [0, 1]4. The output

of the model is a probability vector, where each component

represents the probability that the feature vector belongs to a

specific emotion label. We use the notation f̃label(x) to refer to

the ith component of the output corresponding to the emotion

label. The Algorithm 3 provides a comprehensive outline of

the model inversion attack specifically designed for speech

emotion recognition models.

Algorithm 3: Model inversion attack for speech emo-

tion recognition models

Input: Number of iteration: T , Best score: γ, Target

model: f̃ , Learning rate: η
Output: Related speech features to target label

1 c = 1− f̃label(x)
2 x0 ← 0
3 for t ≤ T do

4 xt ← Process(xt−1 − η · ∇c(xt−1))
5 if c(xt) ≥ max(c(xt−1), . . . , c(xt−β)) then

6 break

7 if c(xt) ≤ γ then

8 break

9 return [argminxt
(c(xt)),minxt

(c(xi))]

The algorithm utilizes gradient descent to minimize a cost

function involving the emotion recognition model f̃ for model

inversion. Gradient descent iteratively updates a candidate

solution by moving towards the negative gradient direction.

The cost function, denoted as c, is defined based on f̃ .

The model inversion attacks employ gradient descent for a

maximum of T iterations with a step size of η. After each

iteration, the resulting feature vector is processed using a post-

processing function called Process, which can apply various

manipulations to the speech features, such as denoising and

sharpening, depending on the specific attack. The descent

terminates if the cost does not improve within β iterations

or if the cost exceeds a threshold γ. In such cases, the best

candidate is returned as a result.

IV. EXPERIMENT RESULTS

In this section, we present an industrial use case and the

simulation setting. We evaluate the impact of the LDP-FL

method on SER accuracy, considering parameters like noise

scale, failure probability, and clipping threshold. We analyze

the effect of CSS on SER accuracy within the LDP-FL

framework and investigate the robustness of LDP-FL against
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model inversion attacks. Finally, we discuss the crucial task

of achieving the optimal balance between privacy levels and

accuracy.

A. Usecase Description and Simulation Setting

DAIS1 (Distributed Artificial Intelligent System) [24] is a

pan-European project that aims to provide trustworthy con-

nectivity and interoperability by combining the IoT with AI

into a distributed edge system for industrial applications. The

project includes industry-driven use cases in domains such as

digital life, digital industry, and smart mobility. One of the

important use cases in DAIS is SER which is deployed on TV

recommendation systems. The goal is to accurately capture

users’ emotions and provide personalized movie recommenda-

tions, leading to higher levels of user satisfaction. Achieving

this requires a distributed, efficient, private, and accurate

SER application. This was one of the main motivations for

exploring the potential of LDP-FL with CSS in SER.

As part of this study, we evaluated the proposed method on

one of the most widely used SER datasets, namely CREMA-

D [25]. CREMA-D is a data set of 7,442 original clips from

91 actors. These clips were from 48 male and 43 female

actors between the ages of 20 and 74 coming from various

races and ethnicities (African America, Asian, Caucasian,

Hispanic, and Unspecified). Actors spoke from a selection of

12 sentences. The sentences were presented using one of six

different emotions (Anger, Disgust, Fear, Happy, Neutral, and

Sad) and four different emotion levels (Low, Medium, High,

and Unspecified). To train the SER model, we chose the four

most commonly occurring emotion labels (neutral, sad, happy,

and angry) based on the possible emotions expressed in the

sentences.

For speech processing and feature extraction, we generate

the Emo-Base feature set using the OpenSMILE toolkit [26].

The Emo-Base feature set is a widely used set of features

for SER tasks. These features are extracted from the speech

signal and capture various acoustic characteristics of the signal

that are associated with different emotions. The features are

designed to be highly discriminative for emotion recognition

and have been shown to achieve state-of-the-art performance

in various SER tasks. After extracting the features, we utilized

a multilayer perceptron (MLP) architecture for the SER model

and trained it using the FedSGD algorithms. The model

consists of two dense layers with layer sizes of [256, 128]

and ReLU activation function, along with a 0.2 dropout rate.

We set a local training batch size of 20 and a learning rate of

0.1 to accelerate convergence in the FedSGD algorithm.

For the FL training on the CREMA-D dataset, each speaker

serves as a unique client since there are 91 distinct speakers

in the dataset. We employed 80% of the data for local training

at each client and reserved the remaining 20% for validation.

To ensure the robustness of our approach, we conducted five

experiments with different test folds, and we reported the aver-

age results of the five-fold experiments. The FL scenarios were

1https://dais-project.eu/

conducted over 200 global training epochs. Our experiments

were conducted on a Windows 10 Pro environment, featuring

an Intel(R) Core(TM) i7 CPU @1.80GHz 1.99 GHz processor

and 16.0 GB of RAM.

B. SER accuracy results across different parameters: noise

scale, failure probability and clipping threshold

We conducted an analysis to assess the accuracy of SER in

LDP-FL by examining the impact of various LDP parameters

on accuracy. Our evaluation involved 50 randomly selected

clients and 120 training epochs, as depicted in Figure 2.

Specifically, we investigated the influence of the noise scale

σ on accuracy (Figure 2(a)), the effect of varying failure

probability δ on accuracy (Figure 2(b)), and the impact of

the clipping threshold C on accuracy (Figure 2(c)).

The experimental results illustrated in Figure 2(a) indicate

that the accuracy of LDP-FL gradually stabilizes with an

increase in the number of training epochs, indicating con-

vergence of the method. However, higher noise scales, such

as σ = 10, can impede convergence due to the injection

of larger amounts of noise during training, resulting in an

unstable system. Figure 2(b) demonstrates that higher failure

probabilities δ lead to faster convergence and higher accuracy

but weaker privacy protection. Conversely, lower failure prob-

abilities provide stronger privacy guarantees at the expense

of reduced accuracy. For instance, a failure probability of

δ = 10−3 achieved the highest accuracy while sacrificing some

privacy for utility.

Our evaluation of LDP-FL’s accuracy with different clipping

thresholds showed that a threshold of 1.0 or 2.0 achieves

high accuracy with fast convergence, as shown in Fig. 2(c).

However, using a threshold beyond a certain point results in

decreased accuracy due to excessive information loss during

the clipping process. Hence, selecting the optimal clipping

threshold is crucial to balance privacy preservation and model

accuracy.

C. Effect of CSS on SER accuracy

To evaluate the effectiveness of LDP-FL with CSS for SER

application, we conducted a comparative study between CSS

and the commonly used random selection (RS) method in both

LDP and non-LDP FL systems. Using parameters σ = 1.0,

C = 2, δ = 10−5, and K = 50, we observed a significant

improvement in accuracy from 60% to 70% when using CSS

with LDP, as depicted in Figure 3 and meeting the accuracy

requirements outlined in Section III-A. CSS proved to be

an effective method for selecting clients, leading to more

representative and larger datasets for training, resulting in more

robust and accurate models. However, it is important to note

that selecting clients with larger local datasets increases their

exposure, potentially leading to data leakage. Therefore, a

balance must be struck when employing CSS.

Interestingly, we observed that the choice of client selection

method did not significantly impact the accuracy of non-LDP

FL systems. This suggests that the accuracy improvement

achieved by CSS is specific to the LDP-FL. Thus, adopting an
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Fig. 2: Evaluation of the accuracy of the SER model using LDP-FL across different parameters: (a) noise scale σ, (b) failure

probability δ, and (c) clipping threshold C.

TABLE I: MSE of reconstruction of speech features by model inversion attack in cases where FL has LDP or does not have

LDP

Target model Clipping Threshold (C)

Mean Squared Error (MSE)

LDP-FL Non-LDP-FL

σ = 1 σ = 3 σ = 5 σ = 7 σ = 10 -

Client SER model

C=1 0.971 1.189 19.830 45.132 157.640 1.02

C=2 1.028 9.189 78.910 1139.474 5807.308 1.02

C=4 1.886 344.000 8508.620 59164.757 572765.191 1.02

efficient client selection strategy like CSS can be a valuable

technique to enhance the performance of LDP-FL and mitigate

the potential negative impact of LDP on accuracy.

Fig. 3: Evaluation of different client selection methods based

on accuracy.

D. Analyze the robustness of LDP-FL against model inversion

attacks

We conducted a model inversion attack using the specified

algorithms with the following settings: T = 200, η = 0.1, β =
100, and γ = 0.99. The attack was applied to two different

settings in the system: LDP-FL with C = [1, 2, 4] and δ =
10−5, and non-LDP in FL with K = 7. To ensure accurate

results, we performed the attack on various client target models

and target labels and reported the average outcomes.
The objective of model inversion attacks is to reconstruct

the speech features of each client by exploiting the local SER

model and its associated labels. To evaluate the effectiveness

of these attacks on the FL system, we employed the Mean

Squared Error (MSE) metric. The MSE was calculated by

comparing the reconstructed speech features with the actual

speech features of each specific client.
Table I illustrates the results obtained from the attack.

When the noise scale σ was set to 1.0, the MSE values were

similar for both LDP and non-LDP settings. However, as we

increased the noise scale σ and the clipping threshold C, the

MSE values significantly increased, indicating a decline in the

attack effectiveness. These findings highlight the effectiveness

of incorporating LDP as a robust privacy measure against

model inversion attacks. Implementing LDP in the system

significantly mitigates the risk posed by threat models and

ensures compliance with the specified privacy requirements,

particularly the 1.b privacy requirement. By introducing noise

into the client models, the accuracy of predictions made by

adversaries using these models is reduced, thereby impeding

the reconstruction process of speech features associated with

specific client labels.

E. Balancing privacy and accuracy

Achieving an optimal balance between privacy and accu-

racy is paramount when utilizing LDP for SER applications

that require precise and accurate results. According to this

reference [23], epsilon (ϵ) acts as a parameter that measures

the level of privacy guarantee provided by the (ϵ, δ) − LDP
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Fig. 4: With constant noise scale σ, changes in privacy budget

(ϵ) with an increase in epochs

mechanism. It reflects the degree of privacy protection, with

smaller epsilon values indicating stronger privacy guarantees.

In our developed method, the value of ϵ is influenced by the

number of epochs (T). Consequently, as the number of epochs

increases, the value of ϵ changes, even when the noise scale

remains constant. This association is illustrated in Figure 4.

In our evaluation of the LDP-FL with CSS mechanism for

SER, we experimented with different noise scales σ, k = 50,

failure probability parameter of δ = 10−5, clipping threshold

C = 2 and a total of 50 epochs (T). The results, as illustrated

in Figure 5 and Figure 4, revealed the following privacy levels

and corresponding accuracy:

• For a noise scale of σ = 5, we achieved a privacy level of

(1.08, 10−5)−LDP , with an accuracy of approximately

54%.

• With a noise scale of σ = 4, we attained a privacy level

of (1.39, 10−5)−LDP , accompanied by an accuracy of

around 64%.

• Employing a noise scale of σ = 3, we achieved a

privacy level of (1.92, 10−5)− LDP , while maintaining

an accuracy of approximately 67%.

• A privacy level of (3.51, 10−5)−LDP was obtained by

utilizing a noise scale of σ = 2, resulting in an accuracy

of about 69%.

• Finally, with a noise scale of σ = 1, we achieved a

privacy level of (9.69, 10−5) − LDP , accompanied by

an accuracy of roughly 70%.

Striking the right balance between privacy and accuracy

is contingent upon specific system requirements. In the case

of the SER application in the FL setup, where the specified

acceptable accuracy range is 65-70% and privacy requirements

are outlined in Section III-A, it is feasible to attain an

acceptable level of privacy by utilizing a privacy parameter

of (1.92, 10−5)-LDP, along with a noise scale of σ = 3, while

maintaining the desired accuracy.

Fig. 5: An assessment of the accuracy of SER models based

on privacy budgets and noise levels.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced LDP-FL with CSS, a novel

approach for privacy-sensitive SER applications. Our objective

is to ensure the privacy of clients’ speech data while main-

taining system accuracy. By combining LDP-FL and CSS, we

mitigate the impact of noise scale on accuracy and improve it

by selectively choosing clients based on their data size during

each training round of FL. We evaluated our approach using

the CREMA-D dataset. The evaluation results demonstrate

that LDP-FL with CSS achieved an accuracy range of 65-

70%, slightly lower than the initial SER model accuracy

while maintaining a privacy level of (1.92, 10−5)-LDP. Our

analysis highlights the importance of achieving a balance

between privacy and accuracy, which aligns with the specific

requirements of SER applications.

In the future, we plan to discuss personalized privacy with

an adaptive noise scale of LDP mechanisms that are tailored

to each client’s privacy preference.
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