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Abstract—There are currently several approaches to managing
longitudinal data in graphs and social networks. All of them in-
fluence the output of algorithms that analyse the data. We present
an overview of limitations, possible solutions and open questions
for different data schemas for temporal data in social networks,
based on a generic RDF-inspired approach that is equivalent to
existing approaches. While restricting the algorithms to a specific
time point or layer does not affect the results, applying these
approaches to a network with multiple time points requires either
adapted algorithms or reinterpretation. Thus, with a generic
definition of temporal networks as one graph, we will answer
the question of how we can analyse longitudinal social networks
with centrality measures. In addition, we present two approaches
to approximate the change in degree and betweenness centrality
measures over time.

I. INTRODUCTION

S
OCIAL network analysis (SNA) is an important part of
the social sciences and has been used in both theory and

practice for several decades. It is important to understand
social interactions and networks and how they affect society.
In the last few years, there has been a growing interest
in the use of social networks in the historical sciences. In
religious studies, especially narrative studies and theology,
social networks have recently received considerable attention.

Scholars have always seen SNA as part of the humanities,
and in recent years there has been a rapid increase in the use
of methods from the digital humanities, which includes the
humanities and computer science.

Most works indicate that the described data and source
problems are one of the greatest hurdles [1]. Although some
preliminary work on how missing data influences a network
has been carried out [2], there are still several open questions
regarding the stability of social networks with respect to
missing and additional data. The main question is: Can we
still use the same algorithms, if we know that the data are
incomplete? The need to work with temporal data makes an
answer to this question even more urgent.

The three main research questions of this paper are thus:

• How can we model longitudinal social networks in one
graph in the most generic way possible? (RQ1)

• How can we analyse longitudinal social networks with
centrality measures? (RQ2)

• Can we approximate the change of centrality measures
over time? (RQ3)

These questions cannot be answered without discussing the
data schema for temporal data. Therefore, RQ1 is dedicated
to the efficient storage of temporal data in a social network.
While most entities such as actors and locations have a given
lifetime, organisations or functions may have predecessors and
successors. In other words: When an entity is detached, what
relationships exist, and how can we manage their lifetimes?
How can algorithms track and use these temporal data? RQ2
also contains several sub-questions: If a network G contains
data for different time points t1, ..., tn, can we still apply
analysis methods, e.g. centrality measures or community de-
tection, that were originally developed for a particular time
point? Or do we need to reinterpret the results or adapt the
algorithms? Answering these questions is key to understanding
the algorithmic challenges of temporal data in social network
analysis.

This paper is divided into five sections. After this introduc-
tion, we give an overview of related work and the background
of this research. We focus on historical network analysis
(HNA) because it helps to highlight the challenges and is the
natural habitat for longitudinal networks. Our methodological
approach is described in the third section, where we discuss the
modelling of longitudinal social networks, and their analysis.
The fourth section is dedicated to the experimental results. Our
conclusions are presented in the final section.

II. RELATED WORK

Modeling temporal or longitudinal data in SNA is a well-
known problem [3]. Temporal data lead to complex network
structures and Lemercier stated in 2015: “There is no one
best way for the analysis or even description of such multi-
dimensional data” [4]. There are several modeling challenges,
for example with synchronous and asynchronous events or
relations, see [5]. Several methods have been proposed, for
example, modeling with stream graphs [6], [7], Markov chains
[8], [9], with network snapshots [10], or with a discrete set
of time points that may contain snapshots. Most of these
approaches are equivalent [11]. However, no single graph-
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theoretic definition currently covers all these approaches. This
can be identified as the first gap in research.

Scientists are not only careful about how to model tem-
poral networks, but also how to analyze them: “Traditional
analyses of temporal networks have addressed mostly pairwise
interactions, where links describe dyadic connections among
individuals” [12]- Concetti et al. thus introduced “temporal
hypergraphs” to address this challenge. Other researchers pro-
posed visual analysis [13], pattern search [14], or probabilistic
discrete temporal models [15]. Centrality measures, widely
used in SNA, are also challenging in temporal networks. Some
researchers have proposed definitions of temporal closeness,
betweenness, and eigenvector centrality, see [16], [17], [18].
However, these definitions remain limited to the underlying
graph topology, e.g. Sizemore et al. [18] work with a contact
sequence where nodes remain static. In addition, the natural
extension of centrality to groups and classes [19], [20] is
usually omitted. Other authors propose MLI based on network
embedding and machine learning (ML) [21]. In general, ML
approaches are widely used in dynamic networks, not only
in temporal networks, see [22]. However, these approaches –
although providing significant insights on the networks – are
not comparable to the results of centrality measures, which
makes them difficult to reproduce. Thus, directly related to
the first research gap – the lack of a generic definition of
temporal networks – is the second gap: How can algorithms
track and use this temporal data, and how does this affect the
analysis of networks, e.g., with centrality measures?

These issues may be due to the fact that several aspects
of knowledge graphs and the semantic web are not widely
perceived in the SNA community. They have only recently
been brought together [23]. Barats et al. conclude in 2020:
FAIR data, a topic directly related to knowledge graphs,
“remains a theoretical discussion rather than a shared practice
in the field of humanities and social sciences.” [24] Thus,
our work will try to address the research questions using
knowledge graphs.

III. METHOD

We will use a definition of a knowledge graph that combines
the approaches of [14], [23]:

Definition 1 (Temporal Social Network). A Social Network
is a graph G = (V,E, T ) with vertices (nodes) v ∈ V , edges

(relations) e ∈ E and a time domain T = {t0, ..., tk} where

ti ∈ R and ti < ij ∀i < j. Every node and edge may exist at

one or multiple intervals of timepoints

[ts, te] = {x ∈ T : ts ≤ x ≤ te; ts, te ∈ T }

denoted by t(v) and t(e). Thus, t : V ∪ E → I ⊆ R. We

denote the graph G at time t by

Gt = (V t, Et), where

V t = {v ∈ G |t ∈ t(v)}, Et = {v ∈ E |t ∈ t(e)},

so that ⋃

t∈T

Gt = G.

Both edges and vertices are part of previously well-defined

categories, V ⊆ C1∪C2∪...∪Cn and E ⊆ R1∪R2∪...∪Rm.

Is is important to notice, that – in contrast to other defini-
tions, e.g. [25] – both edges and nodes are temporal. Unless
otherwise noted, we assume that G is an undirected graph. We
will now present examples of the notation introduced above.

Each vertex v ∈ V has a lifetime t(v). In general, any edge
connected to v may only exist for times t ∈ t(v). But this
rule is not strict. For example, we can define categories for
successors Ts and predecessors Tp, so that these edges can
indicate a predecessor of a certain position at any time. For
these edges we set t(e) = ∅, they are ‘timeless’. In addition,
v can be part of several categories, e.g. it can be an actor
v ∈ Ca and a politician v ∈ Cp. Thus, our approach can
combine static and temporal information.

We will now prove that this definition is equivalent to stream
graphs:

Theorem 1. The temporal social network defined in 1 is

equivalent to the concept of a stream graph introduced by

Latapy, Magnien and Viard in [6] for discrete time instants

T .

Proof. “⇒” Let G = (V ′, E, T ) be a temporal social network
as defined in Definition 1. We create a stream graph as follows:
First, we can set the discrete time instants T to the time domain
T , thus T = T . In addition, both node set are equal, thus
V = V ′.

The set of temporal nodes, W ⊆ T ×V , can be constructed
as

W = {(t(v), v)∀v ∈ V }.

The set of links E ⊆ T × V ⊗ V can be constructed by

E = {(t(e), e1, e2)∀e = (e1, e2) ∈ E}.

However, if t(e) = ∅, we define t(e) = [mint∈T ,maxt∈T ].
“⇐” Let S be a stream graph as defined by [6] with discrete

time instants T , the node set V , a temporal node set W ⊆
T × V and a temporal edge set E ⊆ T × V ⊗ V .

We create a temporal social network G = (V ′, E, T ) as
follows: Again, we the discrete time instants and nodes are
equal and we set T = T , V ′ = V . For each set of presence
time w = (t, (t, v)) ∈ W we define t(v) = [min t,max t] and
the same for edges e = (t, (t, e1, e2)) ∈ E.

As we can see, the only difficulties are those edges and
vertices that are ‘timeless’. However, extending their interval
to T models their behaviour in the intended way. It is quite
easy to see that both approaches are also equivalent to models
using snapshots of time points [21]. For a detailed overview
we refer to [11].

Thus, Definition 1 is well aligned with other approaches.
However, it is also compatible with semantic web approaches
and makes it easier to integrate analysis approaches. We will
now move on to modelling longitudinal social networks with
semantic web technologies.
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Fig. 1. Illustration of the graph in example 2 with a definition of lifetimes in the middle and a visualisation of the lifetime of edges and the sequence of
edges over time (right).

A. Modelling longitudinal social networks

The initial definition of a social network in [23] corresponds
to the definition of a knowledge graph. In particular, the
categories for nodes C1, ..., Cn and edges R1, ..., Rm can be
modelled using RDF classes. So we need to add time intervals
to nodes and edges. To do this, Hobbs and Pan introduced
the time ontology, see [26], [27]. Here they use a function
duration: Intervals × TemporalUnits to express intervals. We
can set duration(v) = t(v) and duration(e) = t(e) for any
node v ∈ V and edge e ∈ E.

Thus, any social network according to the knowledge graph
definition in [23] can be easily transformed into a temporal
social network, where time is modelled as a property of nodes
and edges.

Example 2. Consider the graph G = (V,E, T ) in figure 1

with V = {v1, v2, v3} and E = {e1, e2} and a set of time

intervals t(v1) = [1, 6], t(v2) = [2, 4], t(v3) = [4, 6], t(e1) =
[3, 4] and t(e2) = [4, 4]. They also provide a visualisation

according to [18]: We visualise time by plotting a sequence of

edges on a time scale. However, we extend the latter approach

by adding information about the lifetime of nodes.

In this case, each lifetime can be mapped according to the

temporal duration.

It is worth noting that the general knowledge graph def-
inition of a social network is open to adding a variety of
additional data while maintaining the general graph structure.
Thus, it is useful for modelling not only temporal social net-
works, but also any other temporal data, e.g. disease models.

B. Temporal graph structures

Similar to the approaches of [28], [18] we can study time-
respecting structures in a graph. However, definition 1 of
temporal social networks makes it easier to generalise graph
structures as it keeps the generic definition of a graph.

A path p in a graph H = (V,E) is a set of vertices v1, ..., vt,
t ∈ N, for example written as

p = [v1, ..., vt],

where (vi, vi+1) ∈ E for i ∈ {1, . . . , t − 1}. However, to
track the meaning of time in a temporal social network G =

(V,E, T ), we define pt, which is a path p that exists at time
t. In turn, we define t(p) as the interval of time in which the
path p exists in G.

Unless otherwise noted, we use G for a temporal social
network G = (V,E, T ) and H for any undirected graph.

We can add this generic notation for other structures as well.
For example, we denote the time-respecting degree of a node
v by dt(v). In this way, we get a series of temporal degree

centrality measures (TDC) for a node v ∈ V denoted by

dct(v) =
dt(v)

n− 1
.

In addition, we can analyse the temporal degree distribution

which tells us about the network structure since we can
distinguish between sparsely and densely connected networks.

Betweenness centrality (BC) was first introduced by [29]
and considers other indirect links, see [30]. Given a node v,
bc(v) is defined as

bc(v) =
∑

k ̸=j,v ̸=k,v ̸=j

Pv(k, j)

P (k, j)
·

2

(n− 1)(n− 2)
,

that is, we compute the number of all shortest paths Pv(k, j)
in a network for all starting and ending nodes k, j ∈ V that
pass through v. Let P (k, j) denote the total number of shortest
paths between k and j. Then the importance of v is given by
the ratio of the two values of Pv and P . Again, for any time
t ∈ T we may set P t

v(k, j) and P t(k, j) accordingly, such
that

bct(v) =
∑

k ̸=j,v ̸=k,v ̸=j

P t
v(k, j)

P t(k, j)
·

2

(n− 1)(n− 2)

defines the series of temporal betweenness centrality (TBC).
This definition is similar to that of [18], who, however, used
the concept of fastest paths.

We will proceed similarly with closeness centrality (CC).
Given a node i ∈ V we can compute the average distance
between the first and other nodes j ∈ V with

∑
j ̸=i d(i, j),

where d(i, j) denotes the length of a shortest path between
i and j. Then, according to [31], we can compute closeness-
centrality as follows:

cl(v) =
n− 1∑

u∈V d(u, v)
.
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Again, with a definition of dt(i, j) for the length of a shortest
path at time t ∈ T at hand, we can define temporal closeness

centrality (TCC) as

clt(v) =
n− 1∑

u∈V dt(u, v)
.

However, these definitions are currently not more than a con-
tainment of well-known centrality measures on time snapshots
of the temporal social network. They allow an interpretation of
these snapshots, comparable to static social networks, and they
provide a series of centrality measures that can be interpreted
as the progression of these measures over time.

For social networks, perceiving the world with as few
snapshots as possible is most feasible. Other approaches, e.g.
defining paths closely so that they could split up from one
time to another, if the interval is so small that an event
lasts less, is often necessary to model traffic [16]. Social
interaction, on the other hand, does usually change on the
basis of longer lasting events. This is a crucial observation,
because computing temporal paths with increasing timestamps
from one node to the next is computationally hard, see [25].

While interdisciplinary approaches are available, applica-
tions from humanities and in particular historical networks
research lead to a different perspective on data. For example,
a closed organization may still have an influence on parts of the
network or may be referred to later. However, with our novel
approach, we will evaluate the behavior of analysis methods
like centrality measures and community detection and discuss
limitations and challenges for further research.

C. Random graphs

For further analysis, we rely on random graphs. The degree

distribution provides us with information about the network
structure since we can distinguish between sparsely and
densely connected networks. In social network analysis (SNA),
the following two graphs are widely considered:

Definition 2 (Scale-Free Network). A network is scale-free if

the fraction of nodes with degree s follows a power law s−α,

where α > 1.

Definition 3 (Small World Network [32]). Let G = (V,E) be

a connected graph with n nodes and average node degree k.

Then G is a small-world network if k ≪ n and k ≫ 1.

[33] introduced a widely used graph model with three
random parameters α+ β + γ = 1. These values define prob-
abilities and thus define attachment rules to add new vertices
between either existing or new nodes. This model allows loops
and multiple edges, where a loop denotes one edge where the
endvertices are identical, and multiple edges denote a finite
number of edges that share the same endvertices. Thus, we
convert the random graphs to undirected graphs. For testing
putposes, we scale the number of nodes n and use α = 0.41,
β = 0.54, and γ = 0.05. This random graph model is
generic and feasible for computer simulations for measuring
and evaluation purposes, see [34], [35].

One of the core concepts important in social network
research is the graph diameter D(G). From the 1960s on, it
was widely discusses whether the average path length of social
networks is near six, see [36]. However, there is an ongoing
discussion on this issue, see for example [37], [38]. However, it
was shown that in a scale-free network the diameter is always
lower than log(n), and if the fixed number m of earlier vertices
is larger than 1, in general the diameter is lower than log(n)

log log(n) ,
see [39]. Here, n describes not only the number of steps to
create the random graph, but also the number of nodes in the
graph. While the connection between a particular graph and
a particular diameter is quite complex, see [40], we can rely
on these bounds. For small-world random graphs we find [41]
the almost surely upper bound D(G) ≤ 72

p
log2 n while [42]

proved the diameter is usually bound by log(n).
The diameter of a scale-free graph is in general quite

low, while in small-world graphs it is bound by log(n).
However, we may expect random graphs to have a different
behavior from real-world social networks. Thus, for some of
the following proofs we will assume that D(G) ≤ 5.

D. Analysing networks

For a detailed overview of centrality measures, we can
consider the series of a particular measure, e.g. a generic c
(centrality, e.g. which could refer to closeness or betweenness
centrality), which is basically a vector in R

|T |:

c̃(v) =
(
ct1(v), ..., ct|T |(v)

)
.

Note that cti(v) = ∅ if ti ̸∈ t(v). We define

|c̃(v)| =
∑

i∈{1,...,|T |, cti (v) ̸=∅}

l(ti−1, ti)|,

where l(ti−1, ti) defines the length of time elapsed between
two times ti−1 and ti. For x ∈ V or x ∈ E we set

l(x) =
∑

i∈{1,...,|T |, cti (x) ̸=∅}

l(ti−1, ti)

as the lifespan of x. However, if all times are equally dis-
tributed, this simplifies to

|c̃(v)| = |T | − |{x ∈ c̃(v) |x = ∅}|.

This allows us to calculate the average temporal centrality of
a node v over its lifetime as

c(v) =
1

|c̃(v)|

∑

t∈T ,ct(v) ̸=∅

ct(v).

However, for a proper analysis of centrality measures over
time, we should also consider the temporal centrality of a
node v:

A (c (v)) =
∑

i∈{1,...,|T |, cti (v) ̸=∅}

cti(v)l(ti−1, ti).

Again, for evenly distributed time, l(ti−1, ti) = 1 and

A (c (v)) =
∑

t∈T ,ct(v) ̸=∅

ct(v).
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We can also normalise this measure by life span as normalised

temporal centrality to compare the centrality measure over
time within a life span:

A′ (c (v)) =
1

l(v)

∑

i∈{1,...,|T |, cti (v) ̸=∅}

cti(v)l(ti−1, ti).

In section IV we will discuss several working examples and
offer an interpretation of these values in light of the current
state of research on degree and betweenness centrality.

First, we consider how a centrality measure evolves over
time. Since we need to plot this for n nodes, we consider a
heatmap visualisation that bins the number of nodes in a given
interval. Next, we can plot the average centrality measure at a
particular time and the average centrality over all time points,
as we show in Figure 2.
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Fig. 2. Illustration of the distribution of a centrality measure over time,
grouped into 20 bins between 0 and 1, as a heatmap. The blue horizontal
line refers to the overall average centrality, while the blue dots refer to
the average degree at a given time. This illustrates the degree centrality for
Gs(100, 15, 0.1).

This figure gives us a good overview of how many nodes
are below and above the average centrality at a given time,
and whether the network at a given time is special for the
scenario. To analyse and compare a particular node with this
overall picture, we can plot c̃(v) and c(v), as we show in
Figure 3

Some [17] considered calculating and plotting c̃(v), [16]
added probabilities. Thus, in addition to the classical approach
(e.g. [18]), c̃(v) and c(v) allow the study of static centrality
measures at a time t ∈ T , comparing the individual centrality
value of a particular node with the average node degree and
the distribution of node degrees. In addition, by plotting the
series of centrality over time, we can compare the temporal
centrality measures within a given interval or across the
entire timeline. While some general measures, such as average
temporal centrality, have been studied previously [3], their
interpretation remains vague. If networks change significantly
over time, this value is not comparable.

E. Approximating the changes over time

Let Gp = {G1, ...Gι} be a series of graphs and p ∈ R with
0 ≤ p ≤ 1 and

| (V (Gi) ∪ V (Gi + 1)) \ (V (Gi) ∩ V (Gi + 1)) | ≤ p|V (Gi)|,

| (E(Gi) ∪ E(Gi + 1)) \ (E(Gi) ∩ E(Gi + 1)) | ≤ p|E(Gi)|,

for i ∈ {1, ..., ι − 1}. Thus, Gp is a series of graphs with a
fixed set of differences and changes from one to the other.

Now we can approximate the changes over time, or the error
in the centrality measures that can occur due to these changes.
Unless otherwise noted, we will consider Gp = {G1, ...Gι}.

Theorem 3. Let i ∈ {1, ...ι − 1} so that v ∈ V (Gi) and

v ∈ V (Gi+1). Then it holds that

dci+1(v) ≥
di(v)− p|V (Gi)|

|V (Gi)| − 1 + p|V (Gi)|
,

dci+1(v) ≤
di(v) + p|V (Gi)|

|V (Gi)| − 1− p|V (Gi)|
.

Proof. We know that

dci(v) =
di(v)

|V (Gi)| − 1
.

However, due to the definition of G
p, we know that at most

p|V (Gi)| new connections from v to other nodes can exist in
Gi+1 or may be lost. Thus, in Gi+1 it holds that

di(v)− p|V (Gi)| ≤ di+1(v) ≤ di(v) + p|V (Gi)|.

In addition, we know that for Gi+1

|V (Gi)| − p|V (Gi)| ≤ |V (Gi+1)| ≤ |V (Gi)|+ p|V (Gi)|

holds. Hence the claim follows.

For betwenness centrality, we define

σ = |N(Gi)|p,

ϵ = min{D(Gi)
2, 2|V (Gi)|p},

where D(G) is the diameter of G. We will prove two lemmata
to obtain a bound for bci+1(v) for v ∈ V .

Lemma 4. Let i ∈ {1, ...ι − 1} so that v ∈ V (Gi) and v ∈
V (Gi+1). Then,

Pv(k, j)
1

σ
≤ P i+1

v (k, j)

holds.

Proof. All shortest paths between k, j ∈ V (Gi) have the
same length l ≤ D(Gi). For D(Gi) ≤ 5, l = δ(v) holds:
If D(Gi) = 3, k, j must both be adjacent to v. If D(Gi) = 4,
we say k must be adjacent to v and ν ∈ N

+ nodes exist
which are adjacent to j and v, which implies δ(v) paths. If
D(Gi) = 5, ν ∈ N

+ nodes exist which are adjacent to j and
v, and µ ∈ N

+ nodes exist which are adjacent to k and v,
which implies δ(v) paths.
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Fig. 3. Illustration of the distribution of a centrality measure over time, grouped into 20 bins between 0 and 1, as a heatmap. The blue horizontal line refers to
the overall average centrality, while the blue dots refer to the average degree at one point in time. Both figures show c̃(v) and c(v) (green dots and horizontal
line, respectively) for two different nodes. Left: This node exists over all 15 time points and usually shows that the betweenness centrality varies a lot. Right:
This node exists from time 1 to 7 and has an increasing degree centrality value. The network is based on Gs(100, 15, 0.1).

Let us assume that a maximum of edges and nodes will be
removed from Gi towards Gi+1 and a maximum number of
them is adjacent to v. Then, at most |N(Gi)|p edges and neigh-
bours of v can be removed in Gi+1 which, in turn, removes one
possible shortest path between k, j over v. Thus, P i+1

v (k, j)
cannot have more than Pv(k, j)

1
|N(Gi)|p

= Pv(k, j)
1
σ

of the
initial paths through v.

Lemma 5. Let i ∈ {1, ...ι − 1} so that v ∈ V (Gi) and v ∈
V (Gi+1). Then,

P i+1
v (k, j) ≤

{
Pv(k, j)ϵ Pv(k, j) > 0

D(Gi)
2ϵ Pv(k, j) = 0

holds.

Proof. As shown in the proof of Lemma 4, all shortest paths
between k, j ∈ V (Gi) have the same length l ≤ D(Gi) and
for D(Gi) ≤ 5, l = δ(v) holds.

Let us assume that a maximum number of edges and nodes
will be added to Gi+1. This is at maximum 2|V (Gi)|p.
However, no more than D(Gi) · D(Gi) = D(Gi)

2 paths
between k and j may exist if Pv(k, j) > 0. Thus,

P i+1
v (k, j) ≤ Pv(k, j)min{D(Gi), |V (Gi)|p} = Pv(k, j)ϵ

holds.
If Pv(k, j) = 0, we know that no more than D(Gi)

2 paths
may exist at all. Thus,

P i+1
v (k, j) ≤ Pv(k, j)min{D(Gi), |V (Gi)|p} = Pv(k, j)ϵ

holds.

Theorem 6. Let i ∈ {1, ...ι − 1} so that v ∈ V (Gi) and

v ∈ V (Gi+1). Then,

bci(v)ϵ ≤ bci+1(v) ≤ bci(v)
1

σ

holds.

Proof. Recall that

bc(v) =
∑

k ̸=j,v ̸=k,v ̸=j

Pv(k, j)

P (k, j)
·

2

(n− 1)(n− 2)
.

We have already shown the following two inequalities with
lemmata 4 and 5:

Pv(k, j)
1

σ
≤ P i+1

v (k, j) ≤ Pv(k, j)ϵ

Thus, with Lemma 4 we can show:

bci+1(v) =
∑

k ̸=j,v ̸=k,v ̸=j

P i+1
v (k, j)

P i+1(k, j)
·

2

(n− 1)(n− 2)

≤
∑

k ̸=j,v ̸=k,v ̸=j

Pv(k, j)
1
σ

P i+1(k, j)
·

2

(n− 1)(n− 2)

=
1

σ

∑

k ̸=j,v ̸=k,v ̸=j

P i+1
v (k, j)

P i+1(k, j)
·

2

(n− 1)(n− 2)

= bci(v)
1

σ

Similarly, with Lemma 5 we can show:

bci+1(v) =
∑

k ̸=j,v ̸=k,v ̸=j

P i+1
v (k, j)

P i+1(k, j)
·

2

(n− 1)(n− 2)

≥
∑

k ̸=j,v ̸=k,v ̸=j

Pv(k, j)ϵ

P i+1(k, j)
·

2

(n− 1)(n− 2)

= ϵ
∑

k ̸=j,v ̸=k,v ̸=j

P i+1
v (k, j)

P i+1(k, j)
·

2

(n− 1)(n− 2)

= bci(v)ϵ
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We will now continue with an experimental setting showing
the results of these bounds.

IV. EXPERIMENTAL RESULTS

We evaluate the degree centrality and betweenness centrality
on random graphs, see Section III-C. First, we consider scale-
free networks with n nodes, see [31]. With this, we create a
series of random Graphs Gs(n, i, p) which creates one initial
scale-free network with n nodes and i−1 more random graphs
with a probability of p/2 for each node and edge to be deleted
and p/2 for each node and edge to be deleted and a new
one created. In addition, we consider scale-free networks and
create a series of random Graphs Gw(n, i, p) which starts with
one initial small world network with n nodes and i− 1 more
random graphs with a probability of p/2 for each node and
edge to be deleted and p/2 for each node and edge to be
deleted and a new one created.

We will evaluate both degree centrality and betwenness
centrality on the following four random graph series:

• Gs(50, 15, p), p ∈ {0.15, 0.05}
• Gw(50, 15, p), p ∈ {0.15, 0.05}
• Gs(150, 15, p), p ∈ {0.15, 0.05}
• Gw(150, 15, p), p ∈ {0.15, 0.05}

For evaluation purposes, we select several nodes and display
the distribution of the centrality measure over time and the
approximation of the changes over time.

A. Degree centrality

We present an evaluation of sample nodes in Figures 4-7.
We show the upper and lower bounds for degree centrality
introduced in Theorem 3.

First, small world random graphs are shown in Figures 4
and 5. Here the bounds on degree centrality are quite tight,
but get worse for larger p. We can make a similar observations
for scale-free networks in Figures 6 and 7.

Thus, the bounds introduced in Theorem 3 work well for
small p and provide overall good results for estimating the
evolution of degree centrality for the next time step when p is
known.

B. Betwenness centrality

We will now consider the upper and lower bounds for
betwenness centrality introduced in Theorem 6. We present
a selected evaluation of small-world graphs in Figures 8 and
9. For the small-world graph in Figure 8 (left), the node has
a lifetime between 0 and 5, but a centrality measure of zero.
This figure shows how the upper bound approximates D(Gi)

2.
For larger p in Figure 9, the node for n = 50 has a lifetime
between 3 and 10. Compared to Figure 8, a higher value
of p results in even less sharp bounds. For the larger small-
world network, neither the upper nor lower bounds are sharp,
although the upper bound tends to be even worse.

For the scale-free random networks in Figures 10 and 11
the situation is similar. However, the heatmap shows that most
nodes have small betweenness centrality values, while there
are many outliers. In Figure 10 we see that again the lower
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Fig. 4. Gw(n, 15, p), p = 0.05 with n = 50 (left) and n = 150 (right).
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Fig. 5. Gw(n, 15, p), p = 0.15 with n = 50 (left) and n = 150 (right).
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Fig. 6. Gs(n, 15, p), p = 0.05 with n = 50 (left) and n = 150 (right).
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Fig. 7. Gs(n, 15, p), p = 0.15 with n = 50 (left) and n = 150 (right).

bound is sharper than the upper bound. However, for n = 50
we see an example that shows that in some cases the upper
bound is suitable to estimate the change over time. Comparing
these results to the results shown in Figure 11 again highlights
that these bounds get less precise for larger p.

Thus, the upper and lower bounds for betwenness centrality
introduced in theorem 6 are not suitable for estimating change
over time in any situation. However, the lower bound tends
to be sharper than the upper bound, where the behaviour is
sometimes unpredictable.
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V. DISCUSSION AND OUTLOOK

Several approaches exist to manage longitudinal data in
networks. All of them bias the output of algorithms analyzing
the data. We presented an overview on limitations, possible
solutions and open questions to different data schemas for
temporal data in social networks based on a generic RDF-
inspired approach. In this way, we answered out first research
question: How can we model longitudinal social networks in
one graph as generic as possible? While not the primary focus
of our work, this approach allows the integration of further
data from the semantic web making results and approaches
directly available for social networks.

We also discussed a second research question. How can we
analyse longitudinal social networks with centrality measures?
While limiting algorithms to one particular time point or layer
does not influence the output, applying them to a network
comprising multiple time points does either need adjusted
algorithms or reinterpretation. We presented a solution for
adjusted approaches and could show that if a network G
contains data for different time points t1, ..., tn, we can still
apply centrality measures that were originally developed for
a particular time point. We proposed the concepts of average
temporal centrality and temporal centrality as core concepts
to analyse the temporal development of centrality over the
given time, together with a novel representation to compare
an individual node against the whole graph. Indeed, we need
to reinterpret these results and adapt algorithms. However,
while our approach works for all centrality measures, we only
considered betwenness centrality and degree centrality and
more research needs to consider other centrality measures and
methods like community detection. Answering these questions
is key to understanding the algorithmic challenges of temporal
data in social network analysis.

Our third question was concerned whether we can ap-
proximate the change of centrality measures over time. We
presented upper and lower bounds for betwenness and degree
centrality. However, these bounds need a prior knowledge
of the change ratio p between different time points. With
an increasing value of p, these bounds become less sharp.
More research needs to focus on different types of bounds, in
particular for other centrality measures. In addition, a detailed
analysis of graph substructures having an influence on the
temporal behavior of centrality measures might be fruitful, in
particular if p is unknown.

However, rewriting algorithms to analyse longitudinal social
networks and the re-interpretation of existing measures and
algorithms demands discussion between different scientific
domains. Therefore, our paper is also a plea for more in-
terdisciplinary exchange, in particular between mathematics,
computer science, social sciences and the humanities.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time

0

100

200

300

400

500

600

700

800

Ce
nt

ra
lit

y

0

10

20

30

40

50

60

70

Nu
m

be
r o

f n
od

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time

0

1000

2000

3000

4000

5000

6000

Ce
nt

ra
lit

y

0

50

100

150

200

250

300

Nu
m

be
r o

f n
od

es

Fig. 11. Gs(n, 15, p), p = 0.15 with n = 50 (left) and n = 150 (right).

88 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



[9] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and
F. Schweitzer, “Causality-driven slow-down and speed-up of diffusion
in non-markovian temporal networks,” Nature communications, vol. 5,
no. 1, p. 5024, 2014.

[10] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels: Statistical
models for time-evolving networks,” in Social Computing, Behavioral-

Cultural Modeling and Prediction: 6th International Conference, SBP

2013, Washington, DC, USA, April 2-5, 2013. Proceedings 6. Springer,
2013, pp. 201–210.
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