
Defect Backlog Size Prediction for Open-Source

Projects with the Autoregressive Moving Average

and Exponential Smoothing Models

Paulina Anioła (Sielicka)

Email: paulina.aniola23@gmail.com

Sushant Kumar Pandey, Miroslaw Staron

0000-0003-1882-2435

0000-0002-9052-0864

Dept. of CSE Chalmers |
University of Gothenburg, Sweden

Mirosław Ochodek

0000-0002-9103-717X

Poznan University of Technology,

ul. Piotrowo 2, 60-695 Poznan, Poland

Email: miroslaw.ochodek@put.poznan.pl

Abstract—Context: predicting the number of defects in a
defect backlog in a given time horizon can help allocate project
resources and organize software development. Goal: to compare
the accuracy of three defect backlog prediction methods in
the context of large open-source (OSS) projects, i.e., ARIMA,
Exponential Smoothing (ETS), and the state-of-the-art method
developed at Ericsson AB (MS). Method: we perform a simulation
study on a sample of 20 open-source projects to compare the
prediction accuracy of the methods. Also, we use the Naïve
prediction method as a baseline for sanity check. We use
statistical inference tests and effect size coefficients to compare
the prediction errors. Results: ARIMA, ETS, and MS were more
accurate than the Naïve method. Also, the prediction errors were
statistically lower for ETS than for MS (however, the effect size
was negligible). Conclusions: ETS seems slightly more accurate
than MS when predicting defect backlog size of OSS projects.

I. INTRODUCTION

D
EFECT backlog is the collection of all project defect

reports that need to be handled. The size of this collection

changes over time. The problem of monitoring defect backlogs

is important in all modern software development organizations.

In agile software development, it is important to correctly

prioritize defects to continuously deliver business value. Also,

especially in large organizations, the assignment of developers

and testers to projects is often done dynamically, on demand.

When a situation in a project demands more human resources

for quality improvements, developers shift their focus from

feature implementations to defect removal [2]. Because of

these dynamic changes, knowing in advance that a project

may require more human resources in the following week is

valuable information for the managers, developers, testers, and

other project stakeholders.

In particular, the managers need to know defect backlogs

for the coming weeks. Therefore defect prediction models that

forecast the number of defects that will need to be handled in

a given time horizon are needed. There have been multiple

studies on designing such models in industrial contexts [3],

This work was supported by the Poznan University of Technology within
the project 0311/SBAD/0738. Some of the paper’s contents come from the
corresponding author’s master thesis [1].

[4], [5], [6]. One of the successful studies on defect backlog

prediction was conducted at Ericsson by Staron and Meding

[3]. They proposed an autoregressive model (MS) that is based

on the moving average and predicts defect backlog size within

a weekly horizon. Although the MS model turned out to

be very accurate at Ericsson, there are several other state-

of-the-art autoregressive models for time series forecasting

that have not been tried out for defect-backlog predictions.

Two of them are Autoregressive integrated moving average

(ARIMA) [7] and Exponential Smoothing (ETS) [8], [9],

which are the two most widely used approaches to time series

forecasting [10].

Although most of the previous studies on defect prediction

were based on open-source software (OSS) datasets, the stud-

ies on defect backlog predictions in Ericsson have not been

replicated in the OSS context. The flow of OSS projects differs

from the flow of their industrial counterparts, however, they are

often larger in terms of the number of involved contributors.

Predicting the number of defects in a backlog is not easy due to

uncertainties in identifying all the defects. The dynamic nature

of software development, with its changing requirements and

iterative cycles, adds to the complexity. Moreover, the accuracy

of predictions can be affected by the quality and relevance of

historical data used for analysis. Most existing methods rely

on data from classical repositories like NASA and PROMISE,

which may have limitations. Lastly, current predictive models

may not consider all the contextual factors and unique project

characteristics that impact defect discovery.

The goal of this study is to design defect-backlog prediction

models based on the ARIMA and ETS methods and validate

their accuracy in the context of large OSS projects. We

use the state-of-the-art MS model developed at Ericsson [3]

as a baseline for comparison since it has been reported as

an accurate defect backlog prediction model validated in an

industrial setting.

The structure of this paper is as follows. Section II provides

a brief overview of the ARIMA and ETS methods, while

Section III discusses the related work. Section IV describes the

research methodology of our study. The results are presented

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 83–92

DOI: 10.15439/2023F5474

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 83 Topical area: Software, System and Service Engineering

and discussed in Section V. Finally, Section VI summarizes

the main findings of our study.

II. BACKGROUND

A. Defect Backlog

In many software projects, defects that need to be resolved

are collected in defect backlogs. There are many defect-

tracking tools on the market (e.g., Bugzilla, Jira, ReQtest).

This kind of software helps the entire team and managers to

get a view of how many defects remain in the software and

what they are. To help developers work on the project, the

defects in the backlog can be ordered according to priority.

Often each issue includes additional information which differs

between projects. If the software is regularly tested the size of

the defect backlog changes over time. The number of defects

that have been reported in a specific period of time is called

defect inflow. Similarly, the number of defects that have been

resolved in that period is referred to as defect outflow. The

defect backlog size change within a given period of time (for

the sake of this study, a week) is the difference between its

inflow and outflow.

B. Autoregressive Integrated Moving Average

ARIMA stands for Autoregressive Integrated Moving Av-

erage. As the name suggests, it combines two time-series

techniques, namely, the Autoregressive model and Moving

Average.

ARIMA requires the time series to be stationary. The values

of stationary time series do not depend on time. Thus, if we

can see a trend or seasonality in time series, it means that it is

non-stationary—its value depends on the time. Non-stationary

time series have to be first transformed into stationary time

series by using the differencing operation. The differenced

time series is calculated as changes between subsequent ob-

servations [10]—see Equation 1. The differencing operation

can be repeated multiple times if the obtained time series is

still non-stationary.

y
′

t = yt − yt−1 (1)

where:

y
′

t - value of the differenced series at time t,
yt - value of the original series at time t,
yt−1 - value of the original series at time t− 1.

The Autoregressive model is based on multiple linear re-

gression. What distinguished it from other linear regression

models is that it predicts the outcome variable (y) using past

values as predictor variables (x). This approach assumes that

there is some correlation between subsequent values in a time

series (autocorrelation). The Autoregressive model is defined

by Equation 2 [10].

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt (2)

where:

c - constant value,

ϕ - model parameter,

ϵt - error,

p - order of the model.

The p value in Equation 2 is called the order of the

Autoregressive model. It determines how many past values

will be considered to calculate the outcome. The autoregressive

model of order p can be referred to as AR(p).

The Moving Average model calculates the outcome variable

as a linear combination of past forecast errors. The formula

of the model is presented in Equation 3 [10].

yt = c+ ϵt + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q (3)

where:

c - constant value,

θ - model parameter,

ϵ - forecast error,

q - order of the model.

It shows that the value of yt can be considered as a

weighted moving average of the past forecast errors. The

model order value q determines how many past forecast errors

will influence the outcome. The moving average model of

order q can be referenced as MA(q).

The equation of a non-seasonal ARIMA model presented

in Equation 4 shows that it combines components of autore-

gressive and moving average models, which are lagged values

and lagged errors.

y
′

t = c+ϕ1y
′

t−1+ ...+ϕpy
′

t−p+θ1ϵt−1+ ...+θqϵt−q+ϵt (4)

where:

y
′

t - differenced series.

The outcome of the model is a differenced series. To get

the actual predicted values time series need to be integrated.

Integrating is the reverse of differencing. The transformation

aims to add the trend or seasonality which were previously

removed.

The non-seasonal ARIMA model is characterized by 3

parameters:

• p - order of autoregression part,

• d - degree of involved differencing,

• q - order of moving average part.

The model of some specific parameters can be referenced as

ARIMA(p, d, q).

We use the ARIMA implementation provided by the R fore-

cast package [11]. The function auto.arima() estimates

the model parameters by analyzing the training data.

C. Exponential Smoothing

The general idea behind Exponential Smoothing (ETS)

forecasting methods is that predicted values are weighted

averages of past observations. The weight which is associated

with the observation depends on how old the observation is.

Thus, the oldest observations will have a smaller impact on

the outcome than the recent ones.

The simplest version of the exponential smoothing method,

called Simple Exponential Smoothing, is expressed by Equa-

84 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

tion 5 [10]. The application of this version of the method is

limited to the data with no clear trend or seasonality.

ŷT+1 = αyT + α(1− α)yT−1 + α(1− α)
2
yT−2 + ... (5)

where:

• 0 ≥ α ≤ 1 is smoothing parameter.

The smoothing parameter regulates how the weights change

with the change in the distance of observation. If α is small,

more weight is given to the observations from the past. If it is

large, more weight is associated with the recent observations.

Equation 5 [10] can be described in the component form as

presented in Equation 6.

Forecast Equation ŷt+h = lt (6)

Smoothing Equation lt = αyt + (1− α)lt−1

where:

• h - number of steps to forecast,

• l - level component.

A single component is called level (smoothed value) lt of

the series at time t. From the forecast equation, we can see that

the predicted value at time t+1 is the level of the time series

at time t. Replacing the level component in the smoothing

equation according to the relation ŷt+h = lt leads to the

exponential smoothing form presented in Equation 5 [10].

To extend the application of the simple exponential smooth-

ing method for data with trend, an additional component has

been added to the equations. The extended method’s name is

Holt’s linear trend method and is expressed by 3 equations

presented in Equation 7 [10].

Forecast Equation ŷt+h = lt + hbt (7)

Level Equation lt = αyt + (1− α)(lt−1 + bt−1)

Trend Equation bt = β∗(lt − lt−1) + (1− β∗)bt−1

where:

• b - the estimate of the trend,

• β∗ - smoothing parameter for the trend, 0 ≥ β∗ ≤ 1.

The trend (slope) forecast function is no longer flat as it was

in the case of Simple Exponential Smoothing. However, this

method is still not especially useful because of the fact that

the trend is constant. The method assumes that the outcome

values always increase or decrease in the same way. Thus,

an additional parameter called damping parameter has been

introduced to deal with that. Because of this modification,

the trend can be flattened in the future. The form of the

method which includes the damping parameter is expressed

by Equation 8. As we can see with damping parameter ϕ = 1,

the method is the same as Holt’s linear method presented in

Formula 7.

Forecast Equation ŷt+h = lt + (ϕ+ ϕ2 + ...+ ϕh)bt (8)

Level Equation lt = αyt + (1− α)(lt−1 + ϕbt−1)

Trend Equation bt = β∗(lt − lt−1) + (1− β∗)ϕbt−1

where:

• ϕ - damping parameter, 0 ≥ ϕ ≤ 1.

Holt’s method can be extended with the seasonal compo-

nent. This version is called Holt-Winters’ seasonal method.

There are two versions of the method: additive and mul-

tiplicative. The additive method is suitable for the series

with constant seasonal variations. On the other hand, the

multiplicative method is preferred when the variations change

in proportion to the series. The component form of Holt-

Winters’ additive method is expressed by Formula 9 [10].

Forecast Equation ŷt+h = lt + hbt + st+h−m(k+1) (9)

Level Equation lt = α(yt − st−m)

+ (1− α)(lt−1 + bt−1)

Trend Equation bt = β∗(lt − lt−1) + (1− β∗)bt−1

Seasonal Equation st = γ(yt − lt−1 − bt−1)

+ (1− γ)st−m

where:

• m - number of seasons in a year,

• k - integer part of (h− 1)/m,

• γ - smoothing parameter for the seasonality, 0 ≥ γ ≤
1− α.

The component form of Holt’s-Winters’ multiplicative

method is expressed by formulas 10.

Forecast Equation ŷt+h = lt + hbt + st+h−m(k+1) (10)

Level Equation lt = α
yt

st−m

+ (1− α)(lt−1 + bt−1)

Trend Equation bt = β∗(lt − lt−1) + (1− β∗)bt−1

Seasonal Equation st = γ
yt

lt−1 − bt−1
+ (1− γ)st−m

The difference between those two versions of Holt-Winters’

method is how they express the seasonal component and then

take it into account. In the additive method, it is expressed

in absolute terms and then is seasonally subtracted from the

series. In contrast to this in the multiplicative method, the

seasonal component is expressed in relative terms and then

the series is seasonally divided by it.

There are 9 different exponential smoothing methods. Those

presented so far are examples of different combinations of

components. Each method is defined by the type of trend and

seasonal components.

The types of trend components are:

• None (N),
• Additive (A),
• Additive damped (Ad) .

The types of seasonal components are:

• None (N),
• Additive (Ad),
• Multiplicative (M).

Each exponential smoothing method can be labeled with

two letters which refer to the type of trend and seasonal

components. Table I presents the classification of exponential

smoothing methods.

PAULINA ANIOŁA ET AL.: DEFECT BACKLOG SIZE PREDICTION FOR OPEN-SOURCE PROJECTS 85

TABLE I: Classification of exponential smoothing methods.

Trend component Seasonal Component

None (N) Additive (A) Multiplicative (M)

None (N) (N, N) (N, A) (N, M)

Additive (A) (A, N) (A, A) (A, M)

Additive damped (Ad) (Ad, N) (Ad, A) (Ad, M)

For each of the 9 presented methods, there are two models

differing in the way of expressing the errors. The first model

with additive errors and the second one with multiplicative

errors. For each method, the forecast points of two differ-

ent models are the same. However, they generate different

prediction intervals. To make the distinction the classification

in Table I is extended by the third letter. Every exponential

smoothing model is labeled with three letters as ETS(Error,

Trend, Seasonal). Thus, the model that includes additive error,

none trend component, and multiplicative seasonal component

would be denoted as ETS(A, N, M).

We use the ETS implementation provided by the R fore-

cast package [11]. The function ets() estimates the model

parameters by analyzing the training data.

III. RELATED WORK

A. Software Reliability Growth Models

Software Reliability Growth Models are equations used to

model the growth of software reliability using defect inflow

data gathered during the development process. Researchers use

SRGMs to make defects forecasting. The side effect of predict-

ing defects themselves is the knowledge about the number of

defects in defect backlog. Using this relationship and applying

SRGMs to predict the size of the defect backlog is a popular

technique [12]. There is no standard way of selecting the most

appropriate SRGMs for given defect data. There are studies

that reveal the best-fitted models for reliability in some types

of projects. In [6] researchers investigated the distribution of

defect inflow in automotive domain projects which could aid

in finding the best-fitting SRGMs. This work presents that

selecting the appropriate model is the most challenging part

of the forecast. There are more than 100 SRGMs.

B. Linear Regression

Linear regression modeling was also applied to the problem

of defect backlog prediction. The examples of independent

variables which are used in the regression models are [13]:

• program metrics (such as program size, number of vari-

ables),

• number of defects found in the earlier phase,

• testing time,

• design methodology.

Yu, Shen, and Dunsmore [13] investigated the correlation

between those variables and the number of defects that remain

in the software. They discovered the strongest relationship

between a number of defects identified during earlier phases

of development and those discovered later.

C. Defect Backlog Prediction at Ericsson AB

A research program executed at Ericsson AB company

resulted in a few studies on defect backlog predictions. In

the first study [4], Software Reliability Growth Models were

designed to defect inflow prediction after release. The results

were not satisfying. Defects profile described by the model

significantly deviated from the profile of defects in the studied

project.

In the follow-up study on defect inflow predictions in

a large-size software project [5], the prediction accuracy

of different methods (e.g., multivariate linear regression or

method which used the moving average of defect inflow)

was compared. Table II presents average prediction errors

depending on number of predictor variables and the used

method. To evaluate the accuracy of methods they used the

Mean Magnitude of Relative Error (MMRE). The error of

none of the evaluated methods was good enough to reach the

required accuracy level by the organization.

TABLE II: Extract of prediction accuracy in a large-size

project for 1-week interval [5].

Model Type of model
MMRE

(%)

Project milestone progress
Multivariate linear regression

+ PCA over milestone progress
52

2 weeks
moving average

Moving average 34

3 weeks
moving average

Moving average 38

Test progress – best
statistical models

Multivariate linear regression +
PCA over test progress

58

Test progress –
statistics and expert

combined

Multivariate linear regression
over test progress

(variables chosen by experts)
28

Expert estimations
Expert estimates

based on historical data
375

To improve prediction accuracy researchers from Ericsson

decided to conduct a more detailed study on medium-size

project [3]. This time they evaluated the prediction accuracy

of three methods:

• Multivariate linear regression,

• Analogy-based prediction,

• Expert estimations.

Seven variables identified as most influential on defect

inflow were chosen from a set of over 50 and used to

construct a multivariate linear regression model. For analogy-

based prediction, researchers collected an analogy database

(projects that they found the most similar to the one that they

were working on). The variables used for calculating similarity

were [3]:

• the number of test cases planned in integration testing 4

weeks before the predicted week,

• the number of test cases executed in integration testing 4

weeks before the predicted week.

Also, they decided to enrich analogy-based predictions by

involving experts and asking them to choose variables that

86 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

they found the most influential on defect inflow and assign

them weights.

In the following study at Ericsson AB [3], the problem was

reframed to predict defect backlog size instead of predicting

defect inflow. A new method was proposed by Meding and

Staron (MS) that relied on the moving average of defect inflow

and defect outflow and the previous backlog size (see Equation

11). The proposed model allowed for predicting defect backlog

size with the highest accuracy (MMRE of 16%) compared to

the previous studies.

db(i) = db(i− 1)di(i−1)+di(i−2)+di(i−3)
3

−do(i−1)+do(i−2)+do(i−3)
3

(11)

where:

• db(x) - defect backlog in week x,

• di(x) - predicted defect inflow in week x,

• do(x) - predicted defect outflow in week x.

IV. RESEARCH METHODOLOGY

A. Research Goal and Questions

We perform a Simulation-Based-Study (SBS) [14] using the

data from OSS projects to compare the accuracy of two new

defect-backlog prediction models based on Autoregressive In-

tegrated Moving Average (ARIMA) and Exponential Smooth-

ing (ETS) with the state-of-the-art Meding-Staron model (MS).

We formulate the following research questions:

• RQ1: Are the MS, ARIMA, and ETS models more accu-

rate than the Naïve prediction method?

• RQ2: Are ARIMA and/or ETS more accurate than the MS

model when predicting the number of defects in defects

backlogs of OSS projects?

The question RQ1 could be considered a sanity test for the

models. Shepperd and MacDonell [15] recommend performing

such a test against “random guessing,” however, we decided

to use the so-called Naïve method instead of guessing. This

method uses the actual observed values from the last week

as the forecast for the next week. Although very simple, the

Naïve method is reported to “work remarkably well for many

economic and financial time series” [10]. Therefore, our sanity

test is more demanding than the one proposed by Shepperd

and MacDonell. However, for practical reasons, if a given

model does not outperform the Naïve method, there is no

point in considering it for real-life applications. The latter

question (RQ2) is the central research question of this study.

We compare the accuracy of the MS model, which according

to the literature is the most accurate model for defect-backlog

predictions with two models which are state-of-the-art in time-

series predictions.

The replication package for this study is available on

GitHub.1

1https://github.com/paulinaaniola/DefectBacklogPrediction.

B. Dataset

We collected defect backlogs from 20 Bugzilla instances

of OSS projects managed by Apache Foundation, Eclipse,

Mozilla Foundation, Linux, Open Office, and Libre Office. We

selected only the projects that had a sufficiently long defect

reporting period. The shortest defect-tracking period was 8

years (Libre Office Draw), while the longest was 22 years

(Mozilla Core).

In the first step, we fetched defect reports from the Bugzilla

service instances of OSS projects. The reports were grouped

based on the dates when they were submitted or resolved

and their severity level. By counting the number of defects

submitted, resolved, or remaining in the backlog, we calculated

defect backlog level (number of defect reports still opened

at the end of the week), defect inflow (number of defects

reported in a given week), and defect outflow (number of

defects resolved in a given week) for every week.

The resulting dataset consisted of 20 defect backlogs pre-

sented in Table III. The beginning of each defect backlog

is determined by the date of the first reports submitted to

Bugzilla. The end of the bug tracking period is the same

for all projects (01-01-2019). The average defect backlog size

presented in Table IV ranges from 112 defects/week for Kernel

Networking to 29,050 defects/week for Mozilla Core.

TABLE III: Dataset of OSS projects under study.

Project Defect-tracking period

Eclipse Platform 10-10-2001 - 01-01-2019

Eclipse Birt 15-03-2005 - 01-01-2019

Eclipse Jdt 03-03-2005 - 01-01-2019

Eclipse Data tools 03-03-2005 - 01-01-2019

Eclipse PDE 20-11-2001 - 01-01-2019

Mozilla Firefox 30-07-1999 - 01-01-2019

Mozilla Core 28-03-1997 - 01-01-2019

Mozilla Thunderbird 02-01-2000 - 01-01-2019

Mozilla Calendar 09-11-2000 - 01-01-2019

Kernel File System 18-11-2002 - 01-01-2019

Kernel Networking 15-11-2005 - 01-01-2019

Kernel IO Storage 14-11-2002 - 01-01-2019

Open Office Writer 30-10-2000 - 01-01-2019

Open Office Calc 23-10-2000 - 01-01-2019

Open Office Draw 30-10-2000 - 01-01-2019

Apache Ant 11-09-2000 - 01-01-2019

Apache Apache2 15-01-2001 - 01-01-2019

Libre Office Writer 15-01-2001 - 01-01-2019

Libre Office Calc 08-10-2010 - 01-01-2019

Libre Office Draw 15-01-2011 - 01-01-2019

While visualizing the change in defect backlogs over time,

we observed a suspicious phenomenon of rapid, significant

drops in the number of defects in the backlog. We perceive

them as anomalies that could result from “cleaning” processes

of Bugzilla instances from irrelevant defect reports. Figure 1

presents an example of defect backlog level change over time

in the Open Office Draw project with at least two sudden

major drops in the number of defects around weeks 650

and 860, which are unlikely to be caused by the real defect

fixing activities. Unfortunately, such drops are unexpected and

poorly predicted by the considered prediction methods. On

PAULINA ANIOŁA ET AL.: DEFECT BACKLOG SIZE PREDICTION FOR OPEN-SOURCE PROJECTS 87

TABLE IV: Average defect backlog sizes in OSS projects

(defects/week).

Product Mean backlog size

Kernel Networking 112.38

Eclipse Platform 7,240.95

Eclipse Data Tools 159.05

Eclipse Birt 1,000.21

Eclipse JDT 3,329.15

Eclipse PDE 850.86

Mozilla Calendar 1,219.78

Mozilla Firefox 11,354.33

Mozilla Core 29,050.79

Mozilla Thunderbird 3,708.5

Kernel IO Storage 161.42

Kernel File System 190.59

Open Office Writer 8,123.17

Open Office Calc 3,245.73

Open Office Draw 810.53

Apache Ant 1,213.95

Apache Apache 2 976.48

Libre Office Writer 3,245.32

Libre Office Calc 1,816.79

Libre Office Draw 370.36

the contrary, they have a less visible impact on the prediction

errors made by the Naïve method since the error is present

only for a single week following such a drop.

To mitigate the effect of sudden drops in the level of the

backlog, we decided to split the defect backlogs based on the

presence of unexpected drops in the number of defects. The

process of dividing backlogs into fragments was the same for

all projects and started with differencing the defect backlog

level which result is presented in Figure 2. The peaks in the

differenced time-series plot correspond to the sudden falls in

backlog level from Figure 1. To consistently determine the

weeks for which there are sudden decreases in the backlog

level and to set the boundaries between fragments in those

weeks, the 99.5 percentile of the difference in the backlog

between successive weeks was calculated. For instance, Open

Office Draw backlog was divided into 5 fragments presented

in Figure 3. The final prediction error of a given method

for a divided backlog is counted as the average of errors for

individual fragments.

C. Predictions And Accuracy Evaluation

We performed training and accuracy evaluation for each

individual defect backlog. We used data from all the previous

weeks to train the ARIMA and ETS models and predict the

number of defects in the backlog for the following week. We

based the accuracy evaluation on Absolute Error calculated

according to Equation 12 and calculated Mean Absolute Error

(MAE) for each backlog.

AE = |actual value− predicted value| (12)

We also calculated a variant of standardized accuracy

measure (SAm) [15] that shows a relative improvement in

accuracy in comparison to the Naïve method, which was

calculated according to Equation 13.

SAm = (1−
MAEm

MAEn

) ∗ 100% (13)

where:

– MAEm - Mean Absolute Error for the method m,

– MAEn - Mean Absolute Error for Naïve method.

We used a non-parametric Wilcoxon signed-rank test to

compare AE between prediction models with significance level

α = 0.05 and Cliff’s δ effect-size coefficient to quantify the

strength of the observed difference. Cliff’s δ evaluates how

often the values of one set are larger than the ones from

the second set. The thresholds used for Cliff’s δ coefficient

interpretation proposed by Kitchenham et al. [16] are as

follows: δ < 0.112 – negligible, 0.112 ≥ δ < 0.276 – small,

0.276 ≥ δ < 0.428 – medium, and δ ≥ 0.428 – large.

We also calculate the number needed to treat (NNT = δ−1)

measure, which is commonly used in the field of medical

science. NNT indicates how many patients need to be treated

with a drug to heal one patient and is the measure of the

medicine’s effectiveness. The lowest the NNT value the fastest

we achieve the improvement. In the context of this study, NNT

could be interpreted as the number of weeks one would have

to use a given prediction method A instead of method B to

observe improvement in the accuracy for at least one week.

We also calculated the average NNT to aggregate information

from all the projects.

V. RESULTS AND DISCUSSION

Mean prediction errors for the three considered methods and

the Naïve method are presented in Table V, while the mean

errors transformed to standardized accuracy measures (SAm)

are presented in Table VI.

ARIMA, ETS, and MS predicted backlog sizes with mean

errors lower than the Naïve method for most of the projects

(mean SA equal to ca. 17.1%, 17.7%, and 10.3%, respec-

tively). However, there were three projects for which the Naïve

method performed better than all three other methods. The

effect size and the results of Wilcoxon signed-rank tests for

comparison between AE (intra-project level) for the considered

models and the naive one are presented in Table VII. For

every of the considered models that were at least 10 projects

for which a statistically significant difference in the central

tendency of AE was detected. The effect size was at least

“small” for nearly half of the projects, i.e., 10/20 (ARIMA

vs. Naïve), 9/20 (ETS vs. Naïve), and 11/20 (MS vs. Naïve).

That translates to NNT at the levels of 8 weeks for ARIMA, 14

weeks for ETS, and 36 weeks for MS. Finally, we performed

Wilcoxon signed-rank test at the level of MAE (dataset level).

In all three cases, the difference in the central tendency

for MAE between considered models and the Naïve method

turned out to be statically significant. Therefore, we conclude

that all of the considered methods outperform the Naïve

method (RQ1).

88 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 1: Defect backlog level changes in Open Office Draw.

Fig. 2: The differenced time series of defect backlog level in the Open Office Draw project.

Fig. 3: Open Office Draw defect backlog divided into 5 fragments.

PAULINA ANIOŁA ET AL.: DEFECT BACKLOG SIZE PREDICTION FOR OPEN-SOURCE PROJECTS 89

TABLE V: Defect backlog size prediction errors.

Product MAEARIMA MAEETS MAEMS MAENaive

Kernel Networking 1.97 2.02 2.3 1.81

Eclipse Platform 44.99 42.5 43.39 47.6

Eclipse Data Tools 3.43 3.63 3.23 3.63

Eclipse Birt 15.17 14.82 17.74 16.36

Eclipse Jdt 21.07 20.36 25.19 22.62

Eclipse Pde 7.61 7.6 8.63 7.88

Mozilla Calendar 7.92 7.46 7.78 9.85

Mozilla Firefox 56.81 56.45 57.44 70.11

Mozilla Core 87.04 84.59 85.89 110.63

Mozilla Thunderbird 17.4 18 17.62 21.05

Kernel IO Storage 2.61 2.58 2.88 2.55

Kernel File System 2.95 2.88 2.86 2.79

Open Office Writer 11.73 10.54 14.65 23.6

Open Office Calc 5.74 5.67 7.77 10.69

Open Office Draw 2.23 2.16 2.89 2.71

Apache Ant 3.35 3.01 3.42 6.27

Apache Apache 2 4.53 4.59 5.82 6.23

Libre Office Writer 20.88 21.73 20.76 27.97

Libre Office Calc 13.31 12.94 12.1 17.57

Libre Office Draw 3.24 3.63 3.32 3.81

mean MAE 16.70 16.36 17.28 20.79

standard deviation MAE 22.02 21.44 21.68 27.20

TABLE VI: Defect backlog prediction improvement (SA)

compared to the Naïve method predictions.

Product
SAARIMA

[%]
SAETS

[%]
SAMS

[%]
Kernel Networking -8.84 -11.6 -27.07

Eclipse Platform 5.48 10.71 8.84

Eclipse Data Tools 5.51 0 11.02

Eclipse Birt 7.27 9.41 -8.44

Eclipse Jdt 6.85 9.99 -11.36

Eclipse Pde 3.43 3.55 -9.52

Mozilla Calendar 19.59 24.26 21.02

Mozilla Firefox 18.97 19.48 18.07

Mozilla Core 21.32 23.54 22.36

Mozilla Thunderbird 17.34 14.49 16.29

Kernel IO Storage -2.35 -1.18 -12.94

Kernel File System -5.73 -3.23 -2.51

Open Office Writer 50.3 55.34 37.92

Open Office Calc 46.3 46.96 27.32

Open Office Draw 17.71 20.3 -6.64

Apache Ant 46.57 51.99 45.45

Apache Apache 2 27.29 26.32 6.58

Libre Office Writer 25.35 22.31 25.78

Libre Office Calc 24.25 26.35 31.13

Libre Office Draw 14.96 4.72 12.86
mean SA 17.08 17.69 10.31

standard deviation 16.72 18.11 19.11

In the next step, we compared the accuracy of the state-of-

the-art MS method and two methods proposed in this paper

that are based on ARIMA and ETS. As it follows from

Table V the lowest mean MAE was observed for ETS (16.36)

and ARIMA (16.70), however, the mean MAE for MS was

only ca. 5% higher (17.28) than the one observed for ETS.

It is also visible that the methods perform consistently for

all projects, i.e., there are no methods that would visibly

outperform other methods on a single project. Also, as it

follows from Table VIII, only for 3-4 projects the observed

TABLE VII: Effect size (n-negligible, s-small, m-medium)

and Wilcoxon singed-rank tests result for comparison between

ARIMA, ETS, MS, and the Naïve method (T – null hypothesis

rejected with α = 0.05).

AEARIMA AEETS AEMS

AENaive AENaive AENaive

diff. diff. diff.

Product δ test δ test δ test

Kernel Networking n F n F n T

Eclipse Platform n F n T n F

Eclipse Data Tools n F n F n F

Eclipse Birt n F n T n F

Eclipse Jdt n F n T n F

Eclipse Pde n F n F n T

Mozilla Calendar s T s T s T

Mozilla Firefox s T s T s T

Mozilla Core s T s T s T

Mozilla Thunderbird s T n T s T

Kernel IO Storage n F n F n F

Kernel File System n F n F n F

Open Office Writer m T m T s T

Open Office Calc m T m T m T

Open Office Draw n T n T n F

Apache Ant s T s T s T

Apache Apache 2 s T n T n F

Libre Office Writer m T m T m T

Libre Office Calc m T m T m T

Libre Office Draw n T n F s F

difference in the central tendency for AE (intra-project level)

could be considered statistically significant. Also, the effect

size could be interpreted as “negligible” for comparing AE

for all the projects that translated to NNT at the level of 68

for ARIMA vs. MS and 32 ETS vs. MS. However, statistical

inference at the dataset level regarding central tendency in

MAE resulted in rejecting the null hypothesis for comparison

between ETS and MS methods. Therefore, we conclude that

90 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

all the considered methods are good candidates to be

used for predicting defect backlog size for OSS projects—

with a slight preference towards ETS (RQ2). Taking into

account NNT, statistically, one shall see improvement in defect

prediction for at least one week after applying ETS for 32

weeks instead of MS.

TABLE VIII: Effect size (n-negligible, s-small, m-medium)

and Wilcoxon singed-rank tests result for comparison between

ARIMA, ETS and MS (T – null hypothesis rejected with α =
0.05).

AEARIMA AEETS

AEMS AEMS

Product δ diff. test δ diff. test

Kernel Networking n T n F

Eclipse Platform n F n F

Eclipse Data Tools n F n F

Eclipse Birt n F n F

Eclipse Jdt n T n T

Eclipse Pde n T n T

Mozilla Calendar n F n F

Mozilla Firefox n F n F

Mozilla Core n F n F

Mozilla Thunderbird n F n F

Kernel IO Storage n F n F

Kernel File System n F n F

Open Office Writer n F n F

Open Office Calc n F n F

Open Office Draw n F n F

Apache Ant n F n F

Apache Apache 2 n T n T

Libre Office Writer n F n F

Libre Office Calc n F n F

Libre Office Draw n F n F

A. Threats to Validity

We address the threats to validity in the manner as described

by Wohlin et al. [17] and de França et al. [14].

a) Construct validity: The main construct validity threat

concerns the process of cleaning the data. Each backlog was

divided into fragments in places of sudden falls in the number

of defects. The rule of determining the sudden falls was the

same for all backlogs. It assumes a division point between

weeks for which the difference in the number of defects in

the backlog was more than 99.5 percentile of the differences

between successive weeks from the backlog. It resulted that

all backlogs being divided, even those in which the aggressive

declines have not really taken place.

b) Internal validity: There exists a threat to the internal

validity of this study regarding the validity of reported defects.

For OSS projects, all users can report defects to Bugzilla.

The new reports may be duplicates or not be real defects. We

cannot control who makes reports and what they are. Because

of that, the size of some defect backlogs is extremely large.

c) External validity: The main threat to the external

validity of our results is the fact that we applied the defect

backlog prediction methods only to a selected sample of

well-established OSS projects that maintain public Bugzilla

instances. We do not know whether our results would also

apply to smaller OSS projects, however, there is a question

of whether such projects would benefit from defect backlog

predictions. Also, we limited our study to OSS projects only,

therefore, we would be careful in generalizing the findings

to industrial projects since the ways of working differ visibly

between the OSS and industrial settings. Even when it comes

to OSS projects themselves, we have to be aware that the

process could be less stable in time than it is for the industry

(e.g., the number of contributors involved, the number of

commits they produce, or the number of defects they fix can

vary in time). Also, we used the 1-week prediction horizon

after the previous studies in Ericsson AB, however, we cannot

claim based on our results that the methods will behave the

same way if a longer prediction horizon is needed by a given

OSS community.

d) Conclusion validity: The main threat to conclusion

validity regards performing multiple statistical inference tests

while drawing some of the conclusions (statistical inference

tests at intra-project and dataset levels). We set the local

significance level α to 0.05, however, the true, global signifi-

cance level would be much higher. Still, the outcomes of the

statistical inference tests were only one of a few sources of

information that we used to draw the conclusions, therefore,

the impact of rejecting a true null hypothesis would have a

minor impact on the final conclusions.

VI. CONCLUSIONS AND FUTURE DIRECTION

In this paper, we evaluated three defect backlog prediction

methods in the context of open-source projects, i.e., the state-

of-the-art Meding-Staron model (MS) and two new models

based on Autoregressive Integrated Moving Average (ARIMA)

and Exponential Smoothing (ETS) time-series forecasting

methods.

We compared the accuracy of these methods on the dataset

consisting of defect backlog histories of 20 large open-source

projects (ranging from 8 to 22 years). In the first step, we

performed a sanity check by comparing the accuracy of these

methods with the accuracy of the so-called Naïve method,

which predicts a defect backlog size in the following week

to be the same as the one observed in the current week. All

three methods outperformed the Naïve method by ca. 10%

to 17.7% (the largest improvement was observed for the ETS

method). The observed differences in mean absolute errors

(MAE) were statistically significant for all the methods. With

respect to effect size, one would have to use these methods

instead the Naïve one for 8 to 36 weeks to, statistically, notice

improvement in defect backlog predictions for at least one

week.

Exponential Smoothing (ETS) provided slightly more ac-

curate defect backlog size predictions than the state-of-the-art

MS method (by ca. 5%) and the prediction method based on

ARIMA (by ca. 2%). If one decides to use the ETS-based

defect backlog prediction method instead of the MS method

should statistically, notice an improvement in defect backlog

predictions for at least one week after using it for 32 weeks.

PAULINA ANIOŁA ET AL.: DEFECT BACKLOG SIZE PREDICTION FOR OPEN-SOURCE PROJECTS 91

Therefore, the main contributions of our study to the body

of knowledge are as follows:

• we provided some new observations regarding the state-

of-the-art Meding-Staron model (MS) by evaluating its

accuracy in the open source context (in addition to the

previous studies in Ericsson). Based on the results of this

and the previous studies on that method, we can conclude

that it is suitable for defect backlog size prediction in both

industrial and open-source settings.

• we proposed two new defect backlog size prediction

methods based on the state-of-the-art time series forecast-

ing methods ARIMA and ETS, which perform slightly

better (especially ETS) than the MS method in the open

source context.

• all the considered defect backlog prediction models based

on autoregression (ARIMA, ETS, and MS) are very

accurate when estimating defect backlog levels in OSS.

Taking into account that the mean size of the defect

backlogs for the considered OSS project ranged from ca.

112 to 29,000 defect reports and the mean absolute error

for the ETS model ranged from ca. 2 to 85 defects, the

relative error for that model was at the level of 0.13%

to 2.28% (with respect to the average backlog size of a

project).

As future research directions, we plan to investigate the ac-

curacy of artificial neural network-based time-series prediction

models (e.g., LSTMs, GRU) for defect backlog predictions.

We would also like to validate the proposed models based

on ARIMA and ETS based on historical data from industrial

projects.

REFERENCES

[1] P. Sielicka, “Defect backlog size prediction with the autoregressive
moving average and exponential smoothing models,” Master’s thesis,
Poznan University of Technology, Poland, 2019.

[2] W. Meding, “Effective monitoring of progress of agile software de-
velopment teams in modern software companies: an industrial case
study,” in Proceedings of the 27th International Workshop on Software

Measurement and 12th International Conference on Software Process

and Product Measurement, 2017, pp. 23–32.
[3] M. Staron and W. Meding, “A method for forecasting defect backlog

in large streamline software development projects and its industrial
evaluation,” Information and Software Technology, vol. 52, no. 10, pp.
1069–1079, 2010.

[4] ——, “Defect inflow prediction in large software project,” e-Informatica

Software Engineering Journal, vol. 4, no. 1, pp. 89–107, 2010.
[5] ——, “Predicting weekly defect inflow in large software projects based

on project planning and test status,” Information and Software Technol-

ogy, vol. 50, no. 7, pp. 782–796, 2008.
[6] R. Rana, M. Staron, C. Berger, and J. Hansson, “Analysing defect inflow

distribution of automotive software projects.” PROMISE ’14’ - 10th
International Conference on Predictive Models in Software Engineering,
2013.

[7] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series

analysis: forecasting and control. John Wiley & Sons, 2015.
[8] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted

moving averages,” International journal of forecasting, vol. 20, no. 1,
pp. 5–10, 2004.

[9] P. R. Winters, “Forecasting sales by exponentially weighted moving
averages,” Management science, vol. 6, no. 3, pp. 324–342, 1960.

[10] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles

and practice, 2nd edition. OTexts: Melbourne, Australia, 2013,
oTexts.com/fpp2. Accessed on 03.06.2019.

[11] R. J. Hyndman and Y. Khandakar, “Automatic time series forecasting:
the forecast package for R,” Journal of Statistical Software, vol. 26,
no. 3, pp. 1–22, 2008.

[12] R. Rana, “Software defect prediction techniques in automotive domain:
Evaluation, selection and adoption,” Ph.D. dissertation, University of
Gothenburg, 2015.

[13] H. D. T.J. Yu, V.Y. Shen, “An analysis of several software defect
models,” IEEE Transactions on Software Engineering, vol. 14, no. 9,
pp. 1261 – 1270, 1998.

[14] B. Bernard Nicolau de França and G. Horta Travassos, “Simulation
based studies in software engineering: A matter of validity,” CLEI

electronic journal, vol. 18, no. 1, pp. 5–5, 2015.
[15] M. Shepperd and S. MacDonell, “Evaluating prediction systems in

software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820–827, 2012.

[16] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical methods
for empirical software engineering,” Empirical Software Engineering,
vol. 22, no. 2, 2017.

[17] C. Wohlin and et al, Experimentation in Software Engineering: An

Introduction. Kluwer Academic Publisher, Boston, MA, 2000.

92 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

