
Proof-of-Work CAPTCHA with password cracking
functionality

Szymon Chadam∗, Paweł Topa†

Faculty of Computer Science, Electronics and Telecommunications,

AGH University of Kraków

Kraków, Poland

Email: ∗szymon@chadam.pl,
†topa@agh.edu.pl

Abstract—This document proposes an alternative CAPTCHA
system that implements a proof-of-work mechanism to protect
resources (usually web services) from being accessed by automatic
entities called bots. Normally, CAPTCHA forces the user to do
some work in order to prove that he is not a machine. The
proposed system utilizes a novel alternative to Proof-of-Work
algorithm that utilizes the user’s computing power to crack
password hashes.

I. INTRODUCTION

T
HE PROBLEM of unwanted traffic and automated ap-

plications and scripts (commonly referred to as bots)

has plagued the Internet almost since its inception. Netacea

estimates that unwanted bot traffic costs companies up to 250

million annually [1]. Existing solutions such as reCAPTCHA

capture almost 97% of the market [2]. However, Google’s

solution raises privacy concerns [3] as it collects and stores

information about the user’s browser.

This paper presents an alternative CAPTCHA-like system.

This system uses a Proof-of-Work mechanism to impose a

computational cost on the user. The user’s computational

power is used to attempt to crack password hashes provided

by the system. Based on other metrics, the computing power

required to access an online service can be arbitrarily increased

to combat unwanted traffic.

A common method of storing passwords securely is to

convert the password phrase into a hash, which is generated

by a hash function or key derivation function, and store it in a

database. The properties of the hash function or KDF function

ensure that the input phrase cannot be reconstructed from the

hash. The only effective method of attacking such protected

passwords is dictionary cryptanalysis, i.e. calculating hashes

for a huge dictionary of potential passwords and comparing

the calculated hashes with the attacked password.

Normally, it is undesirable for users’ passwords to be

cracked. However, in the case of law enforcement, we often

need to obtain suspects’ passwords in order to access en-

crypted evidence. The obvious solution is to build powerful

(and expensive) dictionary cryptanalysis computers. A less

obvious approach is to use the distributed power of web

users’ computers, as has been done in the Seti@Home (https:

//setiathome.berkeley.edu/ — suspended project) or Fold-

ing@Home projects (https://foldingathome.org/). The pro-

posed approach can therefore support law enforcement ac-

tivities while providing the desired functionality to the web

community.

The paper is organized as follows. The next section shortly

reminds the history of CAPTCHA mechanisms. Section III

presents the general idea of the Proof-of-Work and its ap-

plications. Chapter IV cites examples of several solutions to

stop unwanted web traffic. The next section presents details

of the proposed solution. At the end, we add some concluding

remarks.

II. OVERVIEW OF THE CURRENT CAPTCHA SOLUTIONS

CAPTCHA ("Completely Automated Public Turing test

to tell Computers and Humans Apart") is a type of chal-

lenge–response test used in computing to determine whether

the user is human [4]. Since its inception, there have been

many implementations with varying characteristics and effec-

tiveness.

Released in 2007, the first iteration of reCAPTCHA (re-

Captcha v1) asked the user to re-type a blurry and distorted

set of words to gain access to the web resource. With the

increasing rise and accuracy of optical character recognition

software, a second version of reCAPTCHA has been intro-

duced, taking a different approach. This time, the user was

asked to select pictures containing a given object out of a

set of images. Finally, in 2017 Google released reCAPTCHA

v3 which allows verifying whether the user is a bot without

any additional user interaction. The mechanism tracks user’s

interaction with the website and returns a score determining

how likely it is that this user is a bot.

While all the solutions mentioned above work in stopping

unwanted traffic, they also significantly cause reduced User

Experience. Selecting images of traffic lights or fire hydrants

has become an inseparable and frustrating part of numerous

online forms. Additionally, even the most recent reCAPTCHA

solutions implementing artificial intelligence can be bypassed

with more than 90% success rate [5]. Moreover, there are

numerous Captcha Solving Services [6] that provide correct

solutions for given CAPTCHAs for a small fee making it

trivial for sufficiently motivated opponents to bypass all of

the most popular CAPTCHA implementations.

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 61–64

DOI: 10.15439/2023F5820

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 61 Thematic track: Cyber Security, Privacy and Trust

III. PROOF-OF-WORK MECHANISM

Proof-of-Work is a mechanism designed to provide the

verifying party a cryptographic proof that the user utilized a

specified amount of computing power to perform a task. While

there are many approaches to implementing a Proof–of–work

algorithm, the most popular approach is to perform a digest

(or hash) function of a given data alongside a nonce value

until certain criteria have been met. This approach is based on

the fact that a good digest function is preimage resistant which

means that it is computationally infeasible to find any input m

that has a given digest h = H(m). The only way of finding

such a message is brute-force. An example of such criteria

can be the number of zeroes in the binary representation of

the resulting hash. If the output of the hash function does not

satisfy it, the nonce value is incremented and the whole process

starts from the beginning. Upon finding the correct nonce value

that produces a hash output described by the verifying party

— the user sends the nonce value to be verified. The party

in charge of verifying the work performed by the user needs

to perform only one hash function with the nonce value sent

by him to determine whether the proof is correct or not. This

property makes it easy for the system to scale for a large

number of users while keeping only one party responsible for

the verification of the Proof–of–Work. Worth noting here is the

fact that current Proof-of-Work algorithms require the solver

to find an exact nonce value rather than a range of acceptable

solutions. Additionally, Proof–of–Work has been criticized for

the high energy consumption required to perform the task.

IV. RELATED WORK

There have been numerous attempts to stop unwanted web

traffic by utilizing users’ computing power. Some of them are

described below.

A. Hashcash

Proposed in 1997 by Adam Back, Hashcash[7] is a mecha-

nism originally proposed to combat email spam abuse. When

sending an email, the user performs a Proof-of-Work algorithm

on the whole body of the email message. Additional data is

appended such as timestamp and string of random characters.

Computation is performed until the sender reaches a desired

number of zero bits in the hash output and a resulting counter

value is obtained. Finally, a new header is appended to the

email containing information used to prove the work. Although

the proposed system did not achieve significant adoption, a

version similar to it has been implemented into Bitcoin’s [8]

mining mechanism.

B. CoinHive CAPTCHA

Around the year of 2018, a company called CoinHive

launched its Proof-of-Work captcha widget, a reCAPTCHA

alternative where a user visiting the website can commit a

portion of his device’s computing power to mine cryptocur-

rency for the website owner instead of selecting a set of images

containing a specified item. Unfortunately, CoinHive’s solution

became widely used for attackers to perform cryptojacking [9]

— an attack when a user’s computing power is used to mine

cryptocurrency for the attacker.

C. Cloudflare Turnstile

Cloudflare, a company specializing in DDoS attack mitiga-

tion has introduced its own CAPTCHA alternative with Proof-

of-Work mechanism. Turnstile [10] aims to replace frustrating

CAPTCHAs by utilizing a set of non-interactive JavaScript

challenges. Some of that challenges require the user’s device

to perform computations similar to how the Proof-of-work

mechanism works. Although Cloudflare’s solution is relatively

similar to the one proposed in this paper, the computing power

used for its challenges is not used in a way that can be used

for other purposes.

V. PROPOSED SOLUTION

As shown above, a sufficiently motivated opponent should

not have any difficulties bypassing the most popular

CAPTCHA implementations. Taking that into consideration,

an alternative approach has been taken. The proposed solution

borrows some of its features from Hashcash [7]–style Proof–

of–Work with additional mechanisms. Instead of requiring

from user to select a set of images, the proposed solution

utilizes a small portion of user’s computing power to solve

a cryptographic puzzle. Moreover, rather than utilizing CPU

power to compute meaningless hash functions that can be seen

as a waste of electricity, the system uses it to perform brute-

force attacks on password hashes stored within the system’s

database.

Instead of specifying a strict value for the target as is usual

in Proof-of-Work implementations, the system provides an

upper and lower bounds of target values of the resulting hash.

These bounds can be arbitrarily changed by the system to

reduce the puzzles complexity or make it more difficult for

suspicious traffic.

This approach can be visualized by plotting all possible

target values with the length of n bytes in a circle as shown

in Figure 1. The resulting image resembles a clock, where the

upper and lower bounds can be thought of as the hands of

that clock. The radius of the bounds is the range for which

the hash value must be found in order to complete the puzzle.

Additionally, to correctly test the entire set of characters, the

system provides the user with the starting_point value which

binary representation should be considered as starting point

for the puzzle and any value below it will be rejected by the

system as an incorrect solution.

A sample CAPTCHA puzzle request has been presented

below. The token value can be treated as a random ID used to

identify the puzzle within the system.

{

" h a s h _ t y p e " : "SHA256 " ,

" s t a r t i n g _ p o i n t " : "20AA" ,

" l o w e r _ t a r g e t " : "11 FF41 " ,

" u p p e r _ t a r g e t " : "3228AF" ,

" t o k e n " : " c41 . . . 4 e9 "

}

62 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

Figure 1. Visualistion of 3-byte space of values encoded in hex. Lower and
upper target bound values have been highlighted in yellow while the target
hash value has been represented by the red dot.

Next, the user attempts to solve the puzzle by incrementing

the value of starting_point decoded to its binary format. The

resulting binary data is then hashed using the digest algorithm

negotiated between server and client and a hash value is

obtained. Finally, the users compare the first n bits of resulting

hash where n is the length of the upper_target in its binary

form with the upper and lower target values. If the resulting

value fits within the boundary selected by the system, the

puzzle has been completed successfully.

Once the correct solution has been found, a preimage of

the resulting hash is sent to the server for verification. If the

verification process is completed, access is granted. A sample

response to the system has been presented below.

{

" t o k e n " : " c41 . . . 4 e9 " ,

" v a l u e " : "20AA221F"

}

In short, the system guides the solver to the hash it is

looking for, while implementing certain character requirements

that must be met to mark the CAPTCHA puzzle as complete.

The lower and upper bounds are used to adjust the difficulty

of the puzzle and guide the solver toward the system’s desired

hash, while the starting point value is used to ensure that all

possible values have been checked.

By carefully tweaking the bounds and starting point values

for every user or for a batch of users, the system can test the

entire range of values by utilizing users’ computing power.

A. Puzzle verification

By referencing the token value within the system’s internal

database, information about the digest function, start point, and

target bounds is obtained, along with a timestamp indicating

when the puzzle request was made. The system then hashes

the value provided by the user with the appropriate hash

function and checks that it fits within the target bounds. Next,

the system checks whether the value provided by the user

is greater than the given starting point. Finally, the server

checks the time difference between the generation of the

puzzle and the submission of the solution to enforce a time-

based expiration of the CAPTCHA. Only when all checks have

been successfully completed can the user be granted access.
Additionally, to detect potentially malicious behavior, the

system calculates an expected average amount of hash calcu-

lations that need to be performed in order to satisfy the puzzle

where n is the length of the hash function in bits.

x =
2(n−1)

upper_target− lower_target
(1)

Similarly, the amount of hashes calculated if the user was

honest is derived by subtracting the user-supplied solution by

the puzzle starting_point.

Hashes_Calculated = Solution− Starting_Point (2)

In a case where a user-supplied solution requires much more

hash functions to be calculated than what was expected by the

system, access still should be granted to the user to avoid false

positives, but his solution should not be taken into account

when generating new starting point value for the next batch

of users.
Worth noting here is the fact, that when the server is

verifying the puzzle, it also compares the resulting hash with

the hash the system is trying to crack. Additionally, even

when the user correctly finds the hash preimage, he can not

distinguish that his solution in fact cracks the hash — server

responds to the correct solution value in the same manner.

B. Adjusting starting point value

In a perfect world, where all users are honest, the starting

point of one user should be equal to the solution value

of the previous user incremented by 1. Unfortunately, that

assumption can not be made. Despite this, that approach is

still viable when a larger batch of users is taken into account.

The system should serve the same puzzle (although with a

different token value) to a small group of users. Only after a

sufficient number of solutions have been proposed, the server

can treat the solution as correct and correctly incremented if

at least 51% consensus in regards to submitted value has been

achieved amongst these users. After that, starting_point value

of the next batch of users should be the same as the solution of

the previous batch incremented by 1. Ideally, the system should

contain many hashes ready to be converted to CAPTCHA

puzzles to avoid the situation where one user lands in the

same batch and receives the same puzzle more than once.

C. Puzzle difficulty adjustment

Just like all the other CAPTCHA solutions, there is a need

for a mechanism to make the puzzle easier or harder for the

user to solve. In the case of the proposed solution, decreasing

the radius between the lower and upper bounds acts as a

tool for difficulty adjustment. By making the bounds closer

together, the system decreases the number of potential values

that can be used as a solution.

SZYMON CHADAM, PAWEŁ TOPA: PROOF-OF-WORK CAPTCHA WITH PASSWORD CRACKING FUNCTIONALITY 63

VI. BENEFITS OF THE PROPOSED SOLUTION

The proposed solution provides an interesting alternative to

the popular image-based CAPTCHA system. It requires no

user interaction making the user experience seamless and bet-

ter suited for users with accessibility issues. Additionally, the

system successfully prevents attack utilizing machine learning

as the best strategy for solving the cryptographic puzzle is by

a brute–force attack.

Compared to solutions that use essentially meaningless

computation tasks, proposed solutions manage to utilize users’

computing power to achieve an ultimately beneficial goal.

The ability to quickly and cheaply crack password hashes

of seized, but encrypted devices, would be of great help

for law enforcement bodies. By giving a purpose to the

computation task that would have to be performed nonetheless,

the overall energy consumption is reduced. Moreover, there is

a clear need for a Proof–of–Work style verification as shown

by the Cloudflare Turnstile solution (see Section IV-C). The

proposed solution can be thought of as an improvement to

aforementioned mechanism, adding a meaningful purpose to

the computational task..

VII. THREAT MODELING

In this section, we analyze how the proposed solution could

be attacked to gain an unfair advantage or bypass it completely.

A. Low electricity cost

The cost of electricity can be widely different across dif-

ferent regions of the world making it difficult to estimate

the amount of computing power that would be considered

sufficient to scare off the attacker. As a result, the server

responsible for generating and scheduling the puzzles should

dynamically adjust the difficulty based on a range of gathered

metrics. Aside from the IP address metrics could include data

gathered by the JavaScript code run on the solver’s machine

such as time zone, default language, or hardware information.

The cost of electricity used to solve a standard task has not

been measured and are a subject of further research.

B. Use of FPGA, ASIC or botnet network to solve crypto-

graphic puzzles

A dedicated attacker could use a botnet network to harvest

cheap and accessible computing power for solving crypto-

graphic puzzles and abusing the system. This case can be

compared to existing and commonly used services of inde-

pendent CAPTCHA solvers. Worth noting is the fact that

increased CPU usage and power consumption make the botnet

more susceptible to detection as the victim’s computers would

be negatively affected by the computation. Additionally, the

time needed to solve a cryptographic puzzle can be vastly

reduced by specialized hardware such as FPGA or ASIC.

While this attack would in fact be successful, it would require

a large upfront investment by the attacker on top of the already

increased electricity bill. We are not able to share performance

benchmarks of the proposed solutions as proposed solution is

still at the work–in–progress stage.

In general, we conclude with the estimate that the security

implications of the proposed solution are similar to that of the

modern CAPTCHA solutions used across the web today.

VIII. CONCLUSION

The system introduces a real-world cost on the attacker

requiring a greater electricity use to successfully pass the

puzzle. Combined with unobtrusive network traffic analysis

techniques such as originating IP address it can reduce the

complexity of the puzzle for users categorized as low-risk.

Computing power used to solve cryptographic puzzles is used

to crack password hashes stored within the system’s database

and can help law enforcement gain access to seized devices.

The system could potentially be adapted to utilize computing

power already used for Proof–of–Work style verification, thus

reducing overall electricity usage and introducing an additional

benefit to the computation.

ACKNOWLEDGMENT

The research presented in this paper was realized with funds

from the Polish Ministry of Science and Higher Education

assigned to AGH University of Krakow and it was supported in

part by Cybercrypt@gov project (no. DOB-BIO9/32/03/2018).

REFERENCES

[1] Netacea, “Businesses lose up to $250m every year

to unwanted bot attacks,” https://netacea.com/blog/

businesses-lose-up-to-250m-every-year-bots/, [Accessed

13-March-2023].

[2] Wappalyzer, “reCAPTCHA market share compared to an

alternative hCAPTCHA,” https://www.wappalyzer.com/

compare/recaptcha-vs-hcaptcha/, [Accessed 13-March-

2023].

[3] Fastcompany, “Google’s new recaptcha has a dark

side,” https://www.fastcompany.com/90369697/

googles-new-recaptcha-has-a-dark-side, [Accessed

13-March-2023].

[4] Wikipedia, “CAPTCHA — Wikipedia, the free encyclo-

pedia,” https://en.wikipedia.org/wiki/CAPTCHA, 2023,

[Accessed 04-February-2023].

[5] I. Akrout, A. Feriani, and M. Akrout, “Hacking google

recaptcha v3 using reinforcement learning,” 2019.

doi: 10.48550/ARXIV.1903.01003. [Online]. Available:

https://arxiv.org/abs/1903.01003

[6] 2Captcha, “a captcha solving solution,” https://2captcha.

com/, [Accessed 13-March-2023].

[7] A. Back, “Hashcash – a denial of service counter-

measure,” 2002, [Accessed 06-February-2023]. [Online].

Available: http://www.hashcash.org/papers/hashcash.pdf

[8] S. Nakamoto, “Bitcoin: A peer–to–peer electronic

cash system,” 2008, [Accessed 02-May-2023]. [Online].

Available: https://bitcoin.org/bitcoin.pdf

[9] Interpol, “Cryptojacking,” https://www.interpol.int/en/

Crimes/Cybercrime/Cryptojacking, [Accessed 02-March-

2023].

[10] Cloudflare, “Turnstile,” https://developers.cloudflare.

com/turnstile/, 2023, [Accessed 25-February-2023].

64 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023

