
A modular and verifiable software architecture for

interconnected medical systems in intensive care

Marc Wiartalla, Frederik Berg, Florian Ottersbach, Jan Kühn, Mateusz Buglowski,

Stefan Kowalewski, André Stollenwerk

Informatik 11 - Embedded Software, RWTH Aachen University

Ahornstraße 55, Aachen, Germany

Abstract—Medical device interoperability enables new therapy
methods and the automation of existing ones. Due to different
medical device manufacturers and protocols, we need auxiliary
hardware and software for the interconnection. In this paper
we propose a service-oriented software architecture built on a
real-time operating system in order to create a modular medical
cyber-physical system consisting of networked embedded nodes.
In particular we highlight the need for the application of formal
methods to ensure the functional safety of the system.

I. INTRODUCTION

I
N MEDICAL intensive care many different medical de-

vices from various manufacturers are used for therapies.

More and more future therapy methods are based on inter-

connected devices, called medical cyber-physical systems or

cyber-medical systems [1], [2]. One particular case is the

class of physiological closed loop control systems that aim to

control one or several physiological parameter based on sensor

measurements. These systems enable new therapies and the au-

tomation of existing ones and thus relieve the clinic personnel.

In such systems flexibility and modularity is essential. Firstly,

because clinics use different medical devices by manufacturers

with different interfaces and protocols. Secondly, because it is

always necessary to react to new insights or changes in the

patient’s condition, e.g. extend the therapy with more devices.

However due to the current legislation, a medical device

which consists of an interconnection of different medical

devices that are already authorized for the market, needs to

pass the complete authorization process again. Hence, today

many of these devices are interconnected manually by clinic

personnel, e.g. reading measurements from one device and

feeding these values into another device. Of course, for the

future this legislation issue is supposed to be solved. Once

this interconnection of authorized medical devices is integrated

in the legislation, we need a software architecture to allow

for the interconnection of these devices in a safe manner.

As it is necessary to react to new insights in an agile way

during therapy, the software architecture needs to be reliable

and modular.

Without a doubt, medical systems are safety-critical as

any fault can lead to a patient’s harm or even death. In

our opinion, it is therefore essential to apply existing state-

of-the-art formal methods for the verification and validation

of the medical software. Even though the use of formal

methods is recommended by authorities, the application is still

not enforced today [3]. Our thesis is that a future software

architecture must support verification as best as possible.

In the use-case of physiological closed loop control systems

the reaction time to external events like a change in physio-

logical parameters is crucial. It might also be necessary to

fulfill real-time constraints. This is why the vast majority of

these algorithms are executed on embedded devices. Instead

of using one centralized complex system, this allows us to

distribute the system among multiple smaller nodes. Thus,

resulting in significantly reduced software complexity on each

node without reducing the overall processing capabilities. In

this paper we present a modular extension of an existing real-

time operating system in order to create a medical cyber-

physical system consisting of networked embedded nodes.

A. Worked example

As a worked example for the next chapters we use the au-

tomation of extracorporeal membrane oxygenation (ECMO),

where a patient with severe lung failure is supported by blood-

based gas exchange outside the patient’s body [4]. Figure 1

shows a sketch of the setup.

µC

Pump

Ventilator

communication bus

µC

Ox y

µC

Patient

monitoring

(ECG,cardiac

output,

tissue

oxygenation,...)

ECMO

monitoring

(pressure,

blood gas… )

Gas

blender

Pump

control

Fig. 1. Worked example: Automated ECMO therapy setup [5]

In the setup, a blood pump creates a blood flow through

an oxygenator. Within the oxygenator, there is a blood and

gas flow separated by a special membrane. This membrane

allows for gas exchange, in particular the enrichment of blood

with oxygen and the elimination of carbone-dioxide out of

the blood. As a second actuator besides the blood pump, the

gas-blender is in charge of controlling the gas composition

and flow through the oxygenator. The sensors in the worked

example are an online blood gas monitoring system as well

Communication Papers of the 18
th Conference on Computer

Science and Intelligence Systems pp. 345–351

DOI: 10.15439/2023F6208

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 345 Thematic track: Software Engineering for

Cyber-Physical Systems



as different pressure and flow sensors. In this setup we

also implemented an interface for the patient’s ventilator to

efficiently cover the interaction between both therapy devices.

II. STATE OF THE ART

For the related work, we will analyze three aspects. First,

we will present existing real-time operating systems (RTOS),

on which our software architecture is built. Secondly, we will

give an overview over the existing messaging protocols for the

communication between nodes. Finally, we will present several

projects working in the field of medical device interoperability.

With these three aspects in mind we can highlight the key

differences to our proposed architecture. In addition, we will

present related work from non-medical domains.

The basis for our software architecture is the operating

system underneath. For safety-critical embedded systems, the

preferred option are real-time operating systems for microcon-

trollers due to the resulting determinism. The market-leading

real-time operating system is FreeRTOS [6], which includes

a kernel and Internet of Things (IoT) libraries. An alternative

operating system is ChibiOS [7], which includes an operating

system as well as a Hardware Abstraction Layer (HAL),

peripheral drivers and a complete development environment.

Furthermore, there exist several real-time variants of the Linux

operating system, which are designed for the use in safety-

critical software but are far more complex than the previously

listed operating systems for microcontrollers [8]. These Linux

operating systems might also contain pre-compiled libraries

without source-code access.

Next, we will discuss which messaging protocols exist

for the data exchange between nodes. Here we will focus

on Ethernet for the communication between nodes. Many

current research projects use the data distribution service

(DDS) standard for interconnectivity, standardized by the

object management group (OMG) [9]. DDS allows participants

to communicate by publishing and subscribing to topics. The

data can be shared with Quality of Service (QoS) specifications

to ensure certain properties like reliability or periodicity. While

DDS is an Application Programming Interface (API) spec-

ification, there exist several different DDS implementations,

for example the C++ implementation eprosima FastDDS [10]

and embeddedRTPS [11], a portable and open-source imple-

mentation of the Real-Time Publish-Subscribe Protocol for

embedded systems. There also exist several alternative mes-

saging transport protocols such as the MQTT protocol [12],

a lightweight publish/subscribe messaging protocol which is

often used in the IoT.

After discussing the state of the art of the underlying oper-

ating system and messaging protocol, we will present related

work in medical device interoperability. Together with the

Center for Integration of Medicine & Innovative Technology

(CIMIT), the Medical Device ‘Plug-and-Play’ Interoperability

Program (MD PnP) proposed the open standards for the

Patient-Centric Integrated Clinical Environment (ICE) [13].

The standard defines the conceptual model, general require-

ments and different clinical use cases. Additional standards

like the data logger are planned and in work. In the MD

PnP program, an open source implementation of an intercon-

nection environment called OpenICE was developed [14]. In

an OpenICE system distributed network nodes are connected

via Ethernet. OpenICE Device Adapters act as bridges to

connect medical devices with the network. In addition, a

central OpenICE supervisor unit runs clinical applications

and logs data. All nodes in an OpenICE system have to be

Java-capable devices like Linux computers. OpenICE uses

DDS as the messaging protocol, in the current version the

DDS implementation by Real-Time Innovations (RTI) [15].

For the OpenICE architecture several supervisor application

examples were implemented, e.g. the synchronization between

a ventilator and the shutter of an x-ray as a closed loop control

use-case.

In the project OR.NET [16] concepts for open medical

device interoperability in the operating room and clinic were

developed. The concept of a service-oriented medical device

architecture (SOMDA) including the technical specification

was standardized in the IEEE 11073 SDC family [17], [18],

[19]. In the OR.NET project, the service-oriented device

architecture (SODA) was refined to the SOMDA paradigm.

Besides standardized interface descriptions, a standardized

way to describe provided and exchanged data was developed.

As a base technology, the Devices Profile for Web Services

(DPWS) is used for communication. Several open source

frameworks implement the IEEE 11073 SDC standards in

different programming languages, e.g. openSDC (Java) and

SDCLib/C (C++).

Another research project called Smart Cyber Operating

Theater (SCOT) works on an integrated operating room [20].

The SCOT project is based on the ORiN network interface for

robot systems [21].

From the previously mentioned projects, the ICE project

proposes concepts for the complete clinical IT infrastructure

and follows a more centralized approach, with a central ICE

Supervisor unit, that runs all applications. This differs from

our approach, where the system is distributed among multiple

smaller nodes. The OR.NET and SCOT projects mostly focus

on an integrated operating room. The focus on the operating

room results in specific requirements, e.g. a centralized con-

sole for visualization, and many scenarios have no real-time

requirements [16]. In addition, a major part of the OR.NET

project is the standardization of interfaces, to specify which

data are exchanged between devices.

In contrast to the related work, our proposed software

architecture is aimed at medical systems in the intensive care

unit. In this paper we also exclude the direct communication

with the clinical network. Notably, physiological closed loop

control systems are a special use-case as these are highly

automated. The main difference is that the patient in an

operating room is under constant human monitoring. This is

not the case for the intensive care unit, where patients are in

critical state but not always under direct monitoring by the

staff. In the future, it is even conceivable that such closed

loop control systems are used outside of the hospital without

346 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



constant monitoring by medical professionals. In these use

cases, the safety of these systems is essential, as medical

professionals can not immediately react to faults in the system.

Our architecture therefore includes a dedicated safety layer for

various safety measures.

Additionally, we emphasize that it is necessary to use

formal methods in the development process and increase safety

through various design decisions. However, the presented

OR.NET SDC and OpenICE projects are built on conventional

Java-capable operating systems like Windows and Linux. Due

to the high complexity, the formal verification and testing of

the whole Linux operating system is still an open research

topic. With Windows the verification and testing are even

harder, as the operating system is not open-source. In addition,

the usage of the Java runtime environment further increases the

complexity and abstraction. There exists a real-time specifica-

tion for Java to be used in real-time software development,

which changes the semantics of the scheduling and memory

management [22].

In contrast, our proposed software architecture builds on

a real-time operating system for embedded systems with a

small code scope and open-source libraries. This operating

system can be verified through formal methods as it is far

less extensive and complex. In addition, we aid the usage of

formal methods through certain design decisions presented in

the later chapters.

The previously mentioned interoperability projects all focus

on the medical environment. However, the interconnection of

nodes and data exchange is also relevant in different non-

medical domains. The robot operating system 2 (ROS 2)

[23] is a middleware for building robot applications including

software libraries and tools. The second version improved

many limitations of ROS 1. Similar to our approach a ROS

system consists of a network of nodes which communicate

over DDS. However, the provided tools are specialized for

robot applications, while our proposed software is aimed

at medical applications. With ROS-Health an extension of

the Robot Operating System was developed for the use in

neurorobotics [24].

III. EMBEDDED SOFTWARE ARCHITECTURE

The software architecture proposed for interconnected inten-

sive care applications is based on a real-time operating system

(RTOS) for embedded systems. In our architecture, we use

different features of the operating system like multitasking,

timers and synchronization. In particular, the operating system

should include a hardware abstraction layer. This abstraction

allows us to freely change the used hardware platform. As

there exist several operating systems with these features, the

specific operating system can be abstracted. Figure 2 shows

the resulting software architecture.

The following chapter describes the proposed software

architecture from the top to the bottom. First, the application

layer is presented with different development methods for

data processing algorithms. Next, the data provisioning layer

with the used communication protocol is introduced. Finally,

Operating

System

Hardware

Hardware Abstraction Layer Low Level Driver

Timer Communication I/O

Data Provisioning Layer

Data Retention

Synchronization

Safety

Application Layer

Model-based

App4

Model-based

App3App2App1

Fig. 2. Reference software architecture for medical applications in intensive
care

we will discuss how our software architecture supports the

application of formal methods to ensure safety.

A. Application Layer

Topmost in the architecture is the application layer. The

applications are the actual data processing algorithms. In our

architecture one node can run multiple applications depending

on the requirements, e.g. the required computational power.

Applications can also be moved between nodes without the

need to adapt the application.

Applications can either be implemented directly or be

generated from specific models. For model-based development

we create models, e.g. diagram-based, using suitable software

tools and expertise by medical personnel. From these models

we can automatically generate code which is supported by

several modern modeling tools. The generated code has to be

connected with the data retention layer. Therefore we introduce

a wrapping layer. If suitable physiological models of the

patient or models of the physiological processes are available,

we can also simulate the system and test our applications

against these models.

As the software architecture is based on an embedded real-

time operating system, each application has to be registered as

a task by the developer with a declaration of the required stack

size for this application. In addition, we do not use dynamic

memory allocation or management offered by the operating

system, in order to prevent memory allocation failures during

runtime and aid the application of formal methods in such

safety-critical systems.

B. Data Provisioning Layer

The main task of the data provisioning layer (DPL) is to

store the data needed by the applications on the individual

node. In addition, the data generated by this node needs to be

communicated throughout the network. For this the concrete

communication medium can be abstracted as it depends on the

application requirements.

MARC WIARTALLA ET AL.: A MODULAR AND VERIFIABLE SOFTWARE ARCHITECTURE FOR INTERCONNECTED MEDICAL SYSTEMS 347



We implemented the data provisioning as a separate layer

to enable modularity. This allows us free movement of appli-

cations between the different nodes in the system without the

need to adapt the application. For this we create a global listing

of all possible measurement and internally generated values in

the system. This global listing is called communication matrix

as we adopted the name from the Controller Area Network

(CAN). The communication matrix contains unique identifiers

for each message as well as additional information like label,

description, scaling factor and unit. The wrapping layer and

the DPL are automatically generated from this matrix, so the

communication matrix will be referenced in the following

architectural parts. In our architecture each application has to

announce which data it uses, so that only the required data is

stored on each node. This is later referenced as the selective

part of the data provisioning layer.

Communication Bus

Data Provisioning

A1 A2 A3

D1 D2 D3 D6D4 D5

R
e

te
n

ti
o

n

Fig. 3. Realization of the Data Retention [25]

Figure 3 shows the resulting data retention in our archi-

tecture. In this example the communication matrix consists

of six different pieces of information (data) D1 to D6. Three

different applications A1 to A3 run on the depicted node and

read and write different data. As the data D4 is not used

by any application it is locally eliminated. This methodology

facilitates the movement of applications between nodes.

1) Time Synchronization: The simplest implementation for

the data retention would be to just store the last broadcasted

measurement value. However, in addition it is also neces-

sary to store the timestamps of measurements and generated

values. As an example, we describe two scenarios from the

ECMO. First, we might want to keep track of a patient’s

body temperature during the treatment. To put the temperature

measurements in a chronological order, we need timestamps

for each measurement. However, in this scenario an accuracy

of one second is sufficient. Second, it might be necessary

to compute the patient’s dynamic lung compliance during

mechanical ventilation, which can be calculated from the tidal

volume and pressure. For the calculation of the compliance we

therefore need to correlate pressure measurements and flow

measurements. Thus, we need precise measurement times-

tamps with an accuracy in the range of few milliseconds.

To support such scenarios, we need to keep track of time

locally on each specific node, but also globally for the whole

network of nodes. This global time allows us to check if a

value is outdated but also correlate values from different nodes.

The required accuracy of the time synchronization depends on

the specific application requirements and used synchronization

protocol.

For this we define a master-node and synchronize all

other nodes to this node. There are several existing network

synchronization protocols depending on the choice of the

communication medium, for example OCS-CAN [26] for

CAN and the Precision Time Protocol (PTP) [27] for Ethernet

communication.

Overall the synchronization has to be defined in a way, such

that the local clock-error on a specific node does not exceed

an upper bound. In the example of PTP the accuracy depends

on whether we use a hardware or software implementation. In

our worked example we use a software implementation and

can achieve an accuracy of 1 millisecond. Next, we present

the data retention layer.

2) Data Retention: In medical applications it is not only

necessary to work with single measurement values but also

time series. In the calculation of the lung compliance during

mechanical ventilation, we need to store series of flow and

pressure measurements to compute the change in volume and

pressure.

In order to support such medical scenarios, the data reten-

tion is able to store a time series of data. We can configure

the length of the series as well as the sample rate. This can

be configured for each individual app with reference to the

used measurements. Since it is not always necessary to work

with the complete series of data, we realized general and

specific operations on these time series. These resulting values

are constantly calculated in the background as new generated

data is received. As general operators we implemented the

minimum, maximum, median and mean operations. These

should already address many needs during the processing

of medical data. In addition, it is also possible to define

specialized data operations tailored for specific applications.

This is realized by allowing the user to register a callback

function, which is executed on the time series.

3) Safety: As mentioned before, medical applications in

particular are safety critical. Therefore, we include an addi-

tional safety layer in the software architecture [28]. In this

layer, the control values for actuators can be safeguarded but

also measurement values of sensors can be annotated with a

metric regarding aspects like plausibility, data quality or age.

The basic approach to safeguard transmitted values are gen-

eral boundaries defined in the communication matrix. Medical

devices often have maximum ratings for their operation. In

our worked example, the used oxygenator has a maximum

rating for the set-values of gas and blood flow. Moreover,

to maintain a basic patient support in the context of the

treatment we might want to define a minimum gas and blood

flow depending on the patient’s parameters. In addition to

this, even more intelligent safeguarding is possible. We can

348 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



derive mathematical equations from physical or physiological

models and integrate them in the safety layer. Also the usage

of artificial intelligence is possible. In a third step, it is also

important to consider the age of a measurement value. If a

measurement in our system is several minutes old, we have

to react accordingly and for example, use a fallback value.

Furthermore, we might need information about the quality of

measured data, which can be transmitted over the network with

additional messages if this information is available.

C. Formal Methods

Since software errors can lead to harm of the patient and

even death, medical software is highly safety-critical. We

therefore emphasize that the application of formal methods

in the software development process is essential.

In our embedded software architecture, we made several

design decisions, which aid the application of formal method.

These are mainly the fully static architecture and knowledge

of the underlying operating system. In the application layer we

have to declare the stack size for each registered task. With

this information we can then perform a stack size analysis to

prevent stack overflows. Many compilers already offer stack

size analysis capabilities [29] and from our point of view, this

is one of the most important measures to safeguard a medical

cyber-physical system.

Furthermore, static analysis enables us to prove the absence

of critical run-time errors without having to execute the code.

Common errors that can be found with static analysis tech-

niques are dead or unreachable code, uninitialized variables,

null pointer dereference and invalid arithmetic operations. It is

advisable to use static analysis early in the development pro-

cess as bugs are cheaper to fix compared to later development

stages. [30]

The adherence and documentation of compliance with a

suitable coding guideline, like MISRA C [31], MITRE Com-

mon Weakness Enumeration (CWE) [32] or the SEI CERT

C coding standard [33] is highly recommended when dealing

with safety-critical systems. The MISRA C coding guidelines

define a subset of the C language without parts with e.g.

undefined behavior. This is aimed at error prevention and is

supposed to increase code readability and explainability [34].

The MISRA C rules can be checked by algorithms, which will

be used in the worked example implementation.

IV. WORKED EXAMPLE IMPLEMENTATION

In our worked example, we implemented the automation

of an extracorporeal membrane oxygenation therapy for pa-

tients who suffer from Acute Respiratory Distress Syndrome

(ARDS) [35], [36]. In the setup, microcontroller nodes were

connected to medical devices and communicate over a net-

work or communication bus. Therefore, we implemented the

software architecture as presented in the previous chapter. The

implemented architecture with the used RTOS and hardware

is shown in figure 4.

The implementation of the software architecture with an

example project for an OxiMax N-560 pulse oximeter is

ChibiOS RT

STM32 Microcontroller

ChibiOS

Hardware Abstraction Layer Low Level Driver

Timer Communication I/O

Data Provisioning Layer

Data Retention

Synchronization

Safety

Application Layer

Model-based

Supervision

Control

Algorithms
Data Processing

Algorithms

Fig. 4. Implementation of software architecture

available in [37]. As the real-time operating system we use

ChibiOS as it offers a wide range of features including a

fully static architecture and hardware support for the used

STM32 microcontroller. Because of the existing hardware

abstraction layer within ChibiOS, we were able to switch

from our previous hardware platform with an Atmel AT91

microcontroller to a STM32 microcontroller with minimal

changes in the software. The communication matrix is defined

in multiple TOML (Tom’s Obvious Minimal Language) files.

Based on these TOML files we generate parts of the data

provisioning and safety layer. The selective part of the data

provisioning layer is based on the C compiler’s pre-processor.

Thus, we still only use static memory allocation.

In the first version of the architecture, the nodes were

connected via CAN. In the latest version, we added Ethernet

for the communication in order to allow better integration of

mobile devices for monitoring.

We use an existing end-to-end middleware, because we

have less code to maintain as the specification and different

implementations already exist. We decided to use DDS, as

it offers us great flexibility to control the communication

behavior through the quality of service policies and has an

integrated discovery system. With these QoS policies we can

enforce additional safety requirements like the periodicity

of measurements or the usage of redundant sensors. If the

periodicity of data is known, we can notify the user about

missing measurements. In addition, DDS is already established

in several safety-critical scenarios, like aviation or military

applications [38]. Another advantage is that DDS is suited for

the use in embedded systems and offers a wide language and

platform support, which eases the integration of other devices.

For the specific DDS implementation, we use embeddedRTPS

[11] as it is suited for embedded systems.

In our worked example implementation, it is possible to

prioritize certain messages like alarms, as these should be

treated with higher priorities. These alarm message have to

be prioritized in the software as well as in the network. Using

Ethernet, these messages are prioritized with the differenti-

MARC WIARTALLA ET AL.: A MODULAR AND VERIFIABLE SOFTWARE ARCHITECTURE FOR INTERCONNECTED MEDICAL SYSTEMS 349



ated services code point (DSCP) in the IP header. However,

we also need infrastructure, like switches, that support this

prioritization. For CAN communication the CAN message

identifier determines the priority with a low message identifier

representing a high priority.

The actual applications, e.g. control algorithms, are either

implemented directly in the language C or generated C-Code

from Matlab Simulink (The Mathworks, Natick, MA) [39]

models is used. We automatically generate Simulink blocks

from the TOML files to allow the developer to use any data

out of the communication matrix without the need to take care

of its retention.

In the described implementation, we solely use static

memory structures. Additionally, we apply different formal

methods. First of all, we carry out a stack size analysis and

compare the results with the declared stack size registered to

the operating system. In addition, we carried out static analysis

using Polyspace (The Mathworks, Natick, MA) [40] to prove

the absence of critical run-time errors. Furthermore, we used

Polyspace to check the compliance of our software with the

MISRA C rules.

Finally, we also carried out a worst-case execution time

analysis of the used algorithms to get an over-approximation

of the total CPU consumption on a specific node in the medical

cyber-physical system. The analysis was conducted using aiT

from AbsInt [41]. One analyzed algorithm is the model-based

blood pump supervision, which can detect and predict events

like the suction of the withdrawing cannula to the wall of

the surrounding vessel or the presence of gas bubbles in the

blood tubing. This analysis leads to a worst-case CPU time

of 0.138 milliseconds on the Atmel AT91SAM7 hardware,

which makes the algorithm suited for the use in an embedded

environment. [36]

V. RESULTS

In section III, we presented a software architecture for in-

terconnected medical systems. The architecture enables mod-

ularity, as we can move applications between nodes depending

on the required memory and CPU time. However, the network

delay has to be considered. We might prefer to process sensor

data on the same node as the control algorithm, which uses

this data as it’s input. Through a loopback mechanism this data

does not need to be sent over the network, which decreases

the delay.

Additionally, the data provisioning layer provides basic

safety mechanism which can be easily extended with more

complex methods like physiological models. This goes hand

in hand with the need for precise global timestamps of

measurements or information on the time passed between mea-

surements. This enrichment of the bare data with additional

information also helps with the safeguarding of measurements.

The safety layer can be extended depending on the require-

ments, however, often the difficulty is to find physiological

models in the appropriate abstraction to derive mathematical

formulas. In addition, we highlighted the need for formal

methods in the development process and aided the application

by various design decisions.

One major advantage of the presented software architecture

is the free choice for the used hardware and operating system.

Because of the abstraction layer, we do not need to modify our

existing software when enhancing an already existing setup.

VI. CONCLUSION

In this paper, we presented a modular and verifiable software

architecture based on a real-time operating system suited

for interconnected medical systems in intensive care envi-

ronments. We presented the general concept of our proposed

entities, of which such a medical cyber-physical system can

consist of, and presented a worked example implementation

for the automation of an extracorporeal membrane oxygenation

therapy. The main component we introduced was the generated

data provisioning layer and its interactions to the other parts

of the software architecture. The DPL takes care of the data

storage, needed by the different applications and algorithms.

Additionally, the DPL offers time synchronization as well

as communicating the data between nodes. The included

safety layer allows us to safeguard transmitted values and

measurements. Finally, we enable the integration of model-

based generated code into this software architecture by a

wrapping layer.

We presented a strictly static software architecture, which

allows for the efficient use of formal methods. This allows

us to prove the absence of possibly safety related issues

like the violation of real-time constraints or memory/stack

overflows, which need to be avoided in medical systems. In

conclusion, the combination of these measures allows for the

safe operation of medical cyber-physical systems.

However, the applied formal methods presented in this work

are just the standard methods and the verification of more

properties is possible. A next step would be the validation and

verification of the control algorithms to ensure the patient’s

safety. Though, the verification in a physiological closed-loop

system requires an accurate physiological model of the system,

which is challenging due to the complexity and variability of

the human physiology.

As an further outlook, we plan to improve the safety layer

by deriving safeguarding algorithms out of publicly available

physiological models. Through the use of publicly available

databases, there is also a high potential to automatically learn

the needed relations between different physiological values by

means of artificial intelligence. In addition, we plan to add

different methods for the detection and diagnosis of hardware

faults and medical complications in the system.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding of the

German Research Foundation (PAK 138/1 and 2) and the

Federal Ministry of Education and Research (031L0253B),

which allowed for these results.

350 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



REFERENCES

[1] I. Lee and O. Sokolsky, “Medical cyber physical systems,” in Design

Automation Conference, pp. 743–748, ACM, 2010.

[2] G. De Micheli, “Cyber-medical systems: Requirements, components and
design examples,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 64, no. 9, pp. 2226–2236, 2017.

[3] S. Bonfanti, A. Gargantini, and A. Mashkoor, “A systematic literature
review of the use of formal methods in medical software systems,”
Journal of Software: Evolution and Process, vol. 30, no. 5, p. e1943,
2018.

[4] Rüdger Kopp, Ralf Bensberg, Marian Walter, Jutta Arens, Rolf Rossaint,
and André Stollenwerk, “Automation of extracorporeal membrane oxy-
genation using a combined safety and control concept.,” Intensive Care

Medicine, vol. 37, no. S1, 2011.

[5] J. Kühn, C. Brendle, A. Stollenwerk, M. Schweigler, S. Kowalewski,
T. Janisch, R. Rossaint, S. Leonhardt, M. Walter, and R. Kopp,
“Decentralized safety concept for closed-loop controlled intensive
care,” Biomedical Engineering/Biomedizinische Technik, vol. 62, no. 2,
pp. 213–223, 2017.

[6] Richard Barry, “FreeRTOS,” 2023. https://www.freertos.org/.

[7] Giovanni Di Sirio., “ChibiOS,” 2023. https://www.chibios.org.

[8] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on preempt_rt,” ACM Computing Surveys, vol. 52,
no. 1, pp. 1–36, 2020.

[9] Object Management Group, “Data distribution service specification,
version 1.4,” 10.04.2015.

[10] eProsima, “Fast DDS,” 2023. https://www.eprosima.com/index.php/products-
all/eprosima-fast-dds.

[11] A. Kampmann, A. Wustenberg, B. Alrifaee, and S. Kowalewski, “A
portable implementation of the real-time publish-subscribe protocol for
microcontrollers in distributed robotic applications,” in The 2019 IEEE

Intelligent Transportation Systems Conference - ITSC, (Piscataway, NJ),
pp. 443–448, IEEE, 2019.

[12] OASIS MQTT Technical Committee, “MQTT, Version 5.0,” 07.03.2019.

[13] ASTM, “Medical devices and medical systems - essential safety require-
ments for equipment comprising the patient-centric integrated clinical
environment (ice) - part 1: General requirements and conceptual model,”
2013.

[14] J. Plourde, D. Arney, and J. M. Goldman, “OpenICE: An open, interop-
erable platform for medical cyber-physical systems,” in 2014 ACM/IEEE

International Conference on Cyber-Physical Systems (ICCPS 2014),
(Piscataway, NJ), p. 221, IEEE, 2014.

[15] Real-Time Innovations, “Connext DDS,” 2023. https://www.rti.com/.

[16] M. Kasparick, M. Schmitz, B. Andersen, M. Rockstroh, S. Franke,
S. Schlichting, F. Golatowski, and D. Timmermann, “OR.NET: a
service-oriented architecture for safe and dynamic medical device inter-
operability,” Biomedizinische Technik. Biomedical engineering, vol. 63,
no. 1, pp. 11–30, 2018.

[17] IEEE Engineering in Medicine and Biology Society, “IEEE Standard -
Health informatics – Point-of-care medical device communication - Part
10207: Domain Information and Service Model for Service-Oriented
Point-of-Care Medical Device Communication,” 2017.

[18] IEEE Engineering in Medicine and Biology Society, “IEEE Standard -
Health informatics – Point-of-care medical device communication - Part
20702: Medical devices communication profile for web services,” 2016.

[19] IEEE Engineering in Medicine and Biology Society, “IEEE Standard
- Health informatics – Point-of-care medical device communication -
Part 20701: Service-Oriented Medical Device Exchange Architecture
and Protocol Binding,” 2019.

[20] J. Okamoto, K. Masamune, H. Iseki, and Y. Muragaki, “Development
concepts of a smart cyber operating theater (scot) using orin technology,”
Biomedizinische Technik. Biomedical engineering, vol. 63, no. 1, pp. 31–
37, 2018.

[21] M. Mizukawa, H. Matsuka, T. Koyama, T. Inukai, A. Noda, H. Tezuka,
Y. Noguchi, and N. Otera, “Orin: open robot interface for the network
- the standard and unified network interface for industrial robot appli-
cations,” in SICE 2002, (Tōkyō), pp. 925–928, SICE, 2002.

[22] G. Bollella and J. Gosling, “The real-time specification for java,”
Computer, vol. 33, no. 6, pp. 47–54, 2000.

[23] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science

robotics, vol. 7, no. 66, p. eabm6074, 2022.

[24] G. Beraldo, N. Castaman, R. Bortoletto, E. Pagello, J. del R. Millan,
L. Tonin, and E. Menegatti, “Ros-health: An open-source framework
for neurorobotics,” in 2018 IEEE International Conference on Simula-

tion, Modeling, and Programming for Autonomous Robots (SIMPAR)

(H. Kurniawati, ed.), (Piscataway, NJ), pp. 174–179, IEEE, 2018.
[25] A. Stollenwerk, F. Göbe, M. Walter, J. Arens, R. Kopp, and

S. Kowalewski, “Smart Data Provisioning for Model-Based Generated
Code in an Intensive Care Application,” in 3rd Joint Workshop On

High Confidence Medical Devices, Software, and Systems & Medical

Device Plug-and-Play Interoperability : HCMDSS/MDPnP 2011 ; in

conjunction with CPSweek 2011, (Chicago), HCMDSS/MDPnP 2011,
Apr 2011.

[26] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-
tolerant, and high-precision clock synchronization for the controller area
network,” IEEE transactions on industrial informatics, vol. 4, no. 2,
pp. 92–101, 2008.

[27] IEEE Instrumentation and Measurement Society, “IEEE Standard for a
Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems,” 2019.

[28] J. Kühn, A. Stollenwerk, C. Brendle, T. Janisch, M. Walter, R. Rossaint,
S. Leonhardt, S. Kowalewski, and R. Kopp, “Sensor supervision and
control value limitations in networked intensive care,” in Gemeinsamer

Tagungsband der Workshops der Tagung Software Engineering 2016 (SE

2016), Wien, 23.-26. Februar 2016 (W. Zimmermann, L. Alperowitz,
B. Brügge, J. Fahsel, A. Herrmann, A. Hoffmann, A. Krall, D. Landes,
H. Lichter, D. Riehle, I. Schaefer, C. Scheuermann, A. Schlaefer,
S. Schupp, A. Seitz, A. Steffens, A. Stollenwerk, and R. Weißbach,
eds.), vol. 1559 of CEUR Workshop Proceedings, pp. 187–194, CEUR-
WS.org, 2016.

[29] E. Botcazou, C. Comar, and O. Hainque, “Compile-time stack require-
ments analysis with gcc: Motivation, development, and experiments
results,” in Proc. GCC Developers Summit, pp. 93–105, 2005.

[30] A. Gosain and G. Sharma, “Static analysis: A survey of techniques and
tools,” in Intelligent Computing and Applications, pp. 581–591, Springer,
2015.

[31] A. Burnard, P. Burden, L. Whiting, C. Tapp, G. McCall, M. Hennell,
C. Hills, and S. Montgomery, “MISRA C:2012,” 2013.

[32] P. Anderson, B. Curtis, P. Braione, A. Summers, C. Eng, J. Fung,
J. Gazlay, A. Hoole, J. Jarzombek, J. Lam, C. Levendis, J. Oberg,
K. Seifried, C. Turner, and A. van der Stock, “Common weakness
enumeration,” Mitre Corporation, 2007.

[33] Software Engineering Insitute CERT, “C coding standard: Rules for
developing safe, reliable, and secure systems,” Reliable, and Secure

Systems, 2016.
[34] R. Bagnara, A. Bagnara, and P. M. Hill, “The MISRA C Coding

Standard and its Role in the Development and Analysis of Safety- and
Security-Critical Embedded Software,” in Static Analysis (A. Podelski,
ed.), vol. 11002 of Lecture Notes in Computer Science, pp. 5–23, Cham:
Springer International Publishing, 2018.

[35] R. Kopp, R. Bensberg, A. Stollenwerk, J. Arens, O. Grottke, M. Walter,
and R. Rossaint, “Automatic control of veno-venous extracorporeal lung
assist,” Artificial organs, vol. 40, no. 10, pp. 992–998, 2016.

[36] A. Stollenwerk, J. Kühn, C. Brendle, M. Walter, J. Arens, M. N. Wardeh,
S. Kowalewski, and R. Kopp, “Model-based supervision of a blood
pump,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 6593–6598, 2014.

[37] M. Wiartalla, F. Berg, F. Ottersbach, J. Kühn, M. Buglowski,
S. Kowalewski, and A. Stollenwerk, “A modular and verifiable software
architecture for interconnected medical systems in intensive care,” 2023.
https://doi.org/10.18154/RWTH-2023-07342.

[38] Object Management Group, “Who’s Using DDS?,” accessed 21.12.2022.
https://www.dds-foundation.org/who-is-using-dds-2/.

[39] The Mathworks, Inc., “MATLAB Simulink (R2022b),” 2022.
[40] The Mathworks, Inc., “Polyspace (R2022b),” 2022.
[41] C. Ferdinand, “Worst case execution time prediction by static program

analysis,” in Proceedings / 18th International Parallel and Distributed

Processing Symposium, (Los Alamitos, Calif.), pp. 125–127, IEEE
Computer Society, 2004.

MARC WIARTALLA ET AL.: A MODULAR AND VERIFIABLE SOFTWARE ARCHITECTURE FOR INTERCONNECTED MEDICAL SYSTEMS 351


