
Mitigating the effects of non-IID data in federated

learning with a self-adversarial balancing method

Anastasiya Danilenka

0000-0002-3080-0303

Faculty of Mathematics and Information Science

Warsaw University of Technology, Warsaw, Poland

Email: anastasiya.danilenka.dokt@pw.edu.pl

Abstract—Federated learning (FL) allows multiple devices to
jointly train a global model without sharing local data. One
of its problems is dealing with unbalanced data. Hence, a
novel technique, designed to deal with label-skewed non-IID
data, using adversarial inputs is proposed. Application of the
proposed algorithm results in faster, and more stable, global
model performance at the beginning of the training. It also
delivers better final accuracy and decreases the discrepancy
between the performance of individual classes. Experimental
results, obtained for MNIST, EMNIST, and CIFAR-10 datasets,
are reported and analyzed.

I. INTRODUCTION

F
EDERATED learning (FL) was introduced in [1]. It

aims at creating a shared model, combining information

from multiple sources, without sharing local data. In standard

FL, training proceeds in rounds. Here: (1) global model is

initialized, (2) current version of the global model is sent to

selected clients, (3) they complete training, using their local

data, (4) model updates are gathered on the server and used to

generate a new version of the global model [1]. In this work,

complete models are communicated (in (2) and (4)).

How to aggregate updates is a subject of intensive research.

The basic approach is to average updates (using the FedAvg

algorithm). A natural extension to FedAvg is weighting, i.e.

assigning individual importance to each client, based on ad-

ditional knowledge. For example, clients with more local data

receive larger weights for their updates [1].

In FL, the complete dataset is never “known”. Hence, the

statistical properties of local and global datasets are unknown.

Therefore, it cannot be established if data is identically inde-

pendently distributed (IID). However, it has been established

that non-IID datasets negatively affect the quality of the FL-

trained model [2]. Non-IID data can be classified on the

basis of the source of heterogeneity [2], i.e.: (1) data quantity

skew (local datasets differ in size), (2) label distribution skew

(different devices have different subsets of labels inside local

dataset), (3) attribute skew (local data has unique characteristic

features, noise, perturbations, etc.), (4) temporal skew (local

data distributions differ over time, or data was collected in

different time periods). Obviously, combinations of skews can

materialize. This work concentrates on non-IID datasets with

the label distribution skew. Depending on how many labels are

represented in the local dataset, the skew can be extreme, with

only 1 label in each dataset, to a (C−1)-label skew, where C is

the number of labels in the set. Here, each local dataset lacks

data for exactly one label. In research experiments, the data

partition strategy determines, which label(s) is(are) missing.

In this context, a novel method, to overcome the problems

caused by the label distribution skew, called Adversarial

Federated Learning (AdFL), is proposed. It is inspired by

adversarial attacks and is applicable, primarily, to neural net-

works applied to image data. To the best of our knowledge, it is

the first attempt to recover local data distribution information,

from the clients, using adversarial inputs and to use adversarial

images to coordinate the training process.

In what follows, in Section II, related research is outlined.

Section III, introduces adversarial attacks followed, in Sec-

tion IV, with the description of the AdFL algorithm. Section V,

presents the experimental setup and results, obtained with

MNIST [3], EMNIST [4] and CIFAR-10 [5]. Conclusions and

directions for future research complete this work.

II. RELATED WORK

When the problem of data heterogeneity was acknowledged,

the quantity skew was mitigated by weighting the updates,

based on the number of data samples in local datasets. In

other approaches, to deal with the problem of non-IID data,

FedProx [6] and SCAFFOLD [7], tackled the problem by

restricting local model updates using proxy terms and control

variates. Moreover, use of gradient correction [8], utilization

of knowledge distillation [9], applied client picking [10], data

sharing [11] and adapted loss functions in presence of data

imbalance [12] have been explored.

While many methods reported improvements on standard

datasets (MNIST, CIFAR-10, CIFAR-100), still, (i) some re-

quired additional information from clients (e.g. distribution in-

formation, averaged data), (ii) others rely on external datasets

(representative of the local data), or (iii) involve training of

additional, data generator, models. This may not be feasible

in the real world or may introduce new privacy risks. Hence,

the proposal is articulated in what follows.

III. ADVERSARIAL FEDERATED LEARNING

In FL, in the past, adversarial techniques were used to gen-

erate data (a) to improve resistance to adversarial attacks [13],

or (b) to increase the amount of locally available data [14].

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 925–930

DOI: 10.15439/2023F6549

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 925 Thematic track: Recent Advances in Information

Technology – Doctoral Symposium



Here, a different way of integrating adversarial data into FL

is proposed.

A. Adversarial attack

Adversarial attacks make it possible to alter a sample from

the training data, in a way that is undetectable to humans, so

that the network will misclassify such (previously classified)

sample [15]. In other words, when the attack is performed

on a trained model then, by modifying the target sample, the

adversary tries to make a valid target sample cross the decision

boundary of the classifier [16], and be misclassified.

Depending on the applied changes, one can distinguish

non-targeted and targeted attacks. A non-target attack aims

at making the model deliver incorrect predictions. Targeted

attacks set the class, to which the misclassification should

be attributed. Separately, white-box attacks can access the

model’s architecture and parameters, while black-box can

access only the model’s output. Among the most famous

attacks are: one-step Fast Gradient Sign Method (FGSM) [17],

its iterative version I-FGSM [18], and its version enhanced

with momentum MI-FGSM [19].

B. Transferability of adversarial inputs

An important property of adversarial inputs is their trans-

ferability, i.e. adversarial inputs generated for one model will

mislead also other model(s) trained on similar datasets, to

solve similar tasks. Note that in FL clients share the same

task, model architecture, and data space. Hence, adversarial

samples, generated by all clients, should be transferrable. To

establish this, a series of experiments, to measure the attack

success rate (ASR) – a common metric for qualifying the

performance for adversarial attacks [19] – was performed. In

these experiments, and in what follows, MI-FGSM was used

to create targeted adversarial attacks [19]. Overall, data was

IID distributed among 40 clients (all clients had samples of

all classes in local datasets). During each server-side epoch,

10 clients were selected, according to the strategy described

in Section IV, and performed local training. Next, clients’

models (returned to the server) were used to generate one

adversarial sample per class (see, Section IV-A). Hence, 10∗C
adversarial images were generated, where C is the number of

classes. Next, updated clients’ models classified the adversarial

samples, and if the predicted class was equal to the target,

the attack was qualified as successful. Table I shows the

transferability metric for standard datasets (MNIST, EMNIST,

and CIFAR-10) during the 5th, 25th, and 50th epochs.

TABLE I
ATTACK SUCCESS RATE (ASR) STUDY INSIDE A FEDERATED SCENARIO

Epochs

Dataset 5 25 50

MNIST 1 1 1
EMNIST 0.98 1 1
CIFAR-10 0.5 0.99 1

As can be seen, ASR is high, therefore, due to the high

transferability of adversarial data and its connection with the

decision boundaries, it is possible to derive insights about the

local data, by asking clients’ models to produce adversarial

images, while “keeping private information private”. This

observation became the foundation of the AdFL algorithm.

IV. ADFL ALGORITHM

The AdFL algorithm uses adversarial images as a source

of additional knowledge about FL training. To do so, the

adversarial data is generated first. Here, there are two places

where adversarial images can be generated. (1) Clients can

produce them, as they have access to all necessary data. (2)

Server can use the updated models to generate them. In AdFL,

adversarial data is generated on the server, using a random

noise image as a starting point. The server-side part of the

AdFL algorithm is summarized in Algorithm 1.

Algorithm 1 AdFL algorithm (Server); Cl states for client;

Cle – subset of clients picked for training on epoch e; global

distribution tracks distribution of classes during FL training;

distrall – estimated classes presence in clients’ local datasets

Ensure: global model w0, global distribution, clients ready

for e in epochs do

if e == 0 then

Cle ← all clients

else

Cle, global distribution← pick clients(distrall, global

distribution)

end if

for Cl in Cle do

wCl
e ← run training(we)

end for

adv data ← create adversarial data([w0
e , ..., wCle

e ])

if e == 0 then

distrall ← estimate distribution(adv data)

end if

CS[0−Cle] ← calculate coherence(adv data, w
[0,..,Cle]
e )

we ← FedAvg([w
[0,..,Cle]
e ], CS[0−Cle])

end for

Overall, there are 6 steps that define the AdFL algorithm.

Note that all AdFL-specific steps take part on the server, with

no additional Client-side computations.

1) During “warm-up”, round all clients perform local train-

ing, and return models to the server. In subsequent

rounds, local training is completed by a subset of clients

on the received version of the global model.

2) On the server, updated clients’ models generate adver-

sarial samples, as described in Section IV-A

3) Generated adversarial samples are used to estimate the

distribution of classes across clients (see, Section IV-B).

4) Coherence scores (CS) are calculated, based on updated

models and adversarial samples (see, Section IV-D).

5) CS are used as weights during aggregation, resulting in

the next global model, sent to the clients.

926 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



6) From there on, the subset of clients that participate in

the training is defined by the client-picking strategy

(Section IV-C) and the process repeats.

A. Adversarial inputs creation

To create adversarial data, the data-free approach has been

selected, to protect clients’ data. Hence, the initial data source

is a random noise image that, by default, is not classifiable.

Starting from this image, a targeted adversarial attack is

performed, using the MI-FGSM. Here, the adversarial image

creation lacks malicious intent, becoming less sensitive to the

amount of allowed changes. Hence, the MI-FGSM parameters

have been aligned with the pursued goal. Overall, each updated

client model generates C images representing classes that are

present in the task. The steps of adversarial input generation

are presented in Algorithm 2, with the default federated steps

omitted.

Algorithm 2 Adversarial data generation

Ensure: targets ← [0, ..., C − 1]

Ensure: w
[0,..,Cle]
e {Clients’ updated models during epoch e}

for target in targets do

for wi
e in w

[0,..,Cle]
e do

adv img ← rand noise[Ch, H , W ]{Random sample}

for step in num steps do

adv imgi
target ← step(wi

e, adv imgitarget, target)

end for

end for

end for

B. Local distribution estimation

Based on generated adversarial data, it is possible to es-

timate the class distribution among the clients. Here, it was

established that predictions of adversarial samples, returned

by the clients’ updated models, are illustrative of the presence

of certain classes in the local dataset (of this client). Therefore,

uncovering class presence within clients’ data can be used for

balancing the label-skew. It is also the reason why adversarial

sample generation runs for a set number of steps (30). If

the target class is missing from the client’s local dataset, the

model will fail to generate an adversarial sample of that class.

Moreover, using this knowledge, AdFL performs a warm-

up epoch, by initiating training on all
¯

clients. This allows

capturing a meta-level picture of class presence across clients,

gathering the data needed for the client-picking routine that

will occur in each training round.

After the updated models return to the server, adversarial

data generation occurs, and the results of all models’ predic-

tions are used to estimate class distributions. Here, all updated

models generate adversarial samples and predict the resulting

samples. Next, for each model, its predictions are summarised

and classes that appeared in the predictions are treated as signs

of these classes being present in the client’s dataset.

A set of experiments was performed to establish how precise

the estimation of classes’ presence in local datasets is. The

experiments were performed for two extreme cases: IID setup

(all classes are present), and ≤20% of classes setup, i.e.

two classes per client for MNIST and CIFAR-10 datasets,

and 12 classes for the EMNIST dataset. The effectiveness

was measured as the percent of classes detected from the

adversarial data in total, across all clients during the warm-

up FL training round, against the average number of classes

detected per client. The results are listed in Table II.

TABLE II
DETECTED CLASSES (DC) METRICS FROM ADVERSARIAL DATA

MNIST CIFAR-10 EMNIST

Metric IID 2 IID 2 IID 12

DC (%) 100 100 100 100 100 97.1
Avg. DC 10 2 10 2 62 11.4

Although the experiments show that class detection can

be performed quite accurately, it remains only an estimation

of the actual classes’ presence. Moreover, the quality of the

adversarial samples depends on the number of local training

epochs. Thus, tuning this parameter is important for obtaining

a proper class distribution prediction. Hence, for the reported

experiments, the number of local epochs is set to 10 for

MNIST and EMNIST and 2 for CIFAR-10.

C. Client-picking strategy

After predicting classes that are present in the local datasets,

a client-picking strategy that will mitigate the presence of

local label-skew can be proposed. Based on the estimation of

classes’ presence in local datasets obtained during the “warm-

up” round, a simple approach to balance the training process

was designed. Specifically, the balance of classes during the

training process is maintained by the global label frequency

vector of size C, where C is the number of unique classes

in the classification task. This vector is updated in each FL

training epoch after a client is selected to be involved in the

current training epoch. It reflects the frequency of a particular

class being picked for training. To ensure equal exposure

for all classes, the clients for each FL round are selected

to make the values in C close to a uniform distribution.

Here, a Kullback–Leibler (KL) divergence is used (for details,

see [20]). This allows each FL round to include clients with

rare classes in their data, by computing the KL-divergence

of the global classes frequency, with respect to the uniform

distribution, if a client (its data classes) is to be added to the

training round. In each round, clients with the smallest KL

divergence are picked. Here, note that several clients may have

the same KL divergence (possibly, a minimum for the current

set of clients). In this case, random client selection is applied.

D. Clients coherence measurement

Another outcome of the transferability of adversarial sam-

ples is an ability to identify “problematic clients”, i.e. clients,

whose models are not able to produce or identify transferable

adversarial samples. In order to measure the “two-side trans-

ferability”, the coherence score (CS) measure was defined.

ANASTASIYA DANILENKA: MITIGATING THE EFFECTS OF NON-IID DATA IN FEDERATED LEARNING WITH A SELF-ADVERSARIAL 927



CS calculation can be described as follows: (1) at the end

of the training round, all updated models create adversarial

samples for each target class, (2) each updated model predicts

all adversarial samples produced by models participating in the

round, (3) for each updated model the CS consists of two parts:

(i) describing how good this model recognized adversarial

samples from other models, and (ii) how successfully other

models recognized this models samples. Therefore, models

with high CS excel in both creating transferable samples and

correctly classifying those created by others.

Here, the ability of the updated model to predict adversarial

images produced by other models is measured according to

Equation 1, where each multiplication consists of a binary flag

indicating whether or not the prediction for class c generated

by model k was correct, and the probability returned by the

model. Predicting own inputs is omitted.

predicted others =
K∑

k=1

C−1∑

c=0

is correctk,c ∗ returned prob.k,c

(1)

A similar measure was applied to evaluate the ability, of

the updated model, to produce adversarial images that are

recognized by the other models. The individual CS is a result

of a simple summation of the two scores. After the coherence

scores, for all clients, are calculated, they are normalized and

used as weights for the FedAvg aggregation.

V. EXPERIMENTAL SETUP, RESULTS, AND THEIR ANALYSIS

A. Data partitioning

During experiments, label-skew was simulated using three

parameters: (1) number of unique classes in dataset, (2) total

number of data samples in dataset, and (3) probability of class

appearing in data. The number of unique classes inside the

local dataset is fixed for an experiment, and all clients have

the same number of unique classes. However, the set of local

labels differs between clients. Total number of samples is also

fixed, and all clients have the same amount of data. Moreover,

local data is equally divided among classes, e.g. for 2 classes,

50% of data will be of class 1, and 50% of class 2. The

probability of all classes appearing in a local dataset is defined,

by drawing a sample from the normal distribution for each

of the classes. Next, the resulting values are normalized to

represent the probability vector. To determine the classes of

a specific client, a random subset of the set size is drawn.

Since the normal distribution was used, borderline cases may

materialize, when few classes have a high probability of

appearing. Therefore, they will be overrepresented, while a few

other classes may be left out, because of their extremely low

probability of occurrence. Here, random seeds were used to

ensure robustness. An example of the probability of occurrence

for 10 classes is presented in Figure 1.

Note that this data partitioning scheme introduces a chal-

lenging label-skew scenario, as it allows some classes to be

“common” in the clients’ population, while others are rare,

therefore, producing a global class imbalance.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

PROBABILITY OF CLASS OCCURRENCE

CLASS

PR
O
B
A
B
IL
IT
Y

Fig. 1. Probability of occurrence for 10 classes

B. Models and hyperparameters

In the experiments, Convolutional Neural Networks (CNN)

were used. For MNIST and EMNIST, a LeNet-5 architecture

was used [21]. For CIFAR-10, the pre-trained version of the

mobilenetv2 [22] model was used, provided by the torchvision

package, with weights coming from Imagenet dataset [23].

The pre-trained version of the mobilenetv2 model was chosen

to verify the applicability of the algorithm to more complex

datasets and architectures that are not trained from scratch.

If not stated otherwise, the cross-entropy loss function was

used. The Stochastic Gradient Descent (SGD) was used as the

optimizer. Model and algorithm-specific hyperparameters are

presented in Table III.

TABLE III
HYPERPARAMETERS USED IN THE EXPERIMENTS

Parameter MNIST EMNIST CIFAR-10

Num. classes per client 2 12 2
Total classes 10 62 10
Clients per training round 10 10 10
Total clients 40 40 40
Data samples per client 400 1200 400
Learning rate 0.001 0.001 0.001
Batch size 10 10 10
Num fed epochs 10 10 2
FedProx µ 0.1 0.1 0.1
FedMix M 400 1200 400
FedMix λ 0.2 0.2 0.05
Num of adv. steps 30 30 30

C. Experimental setup

The performance of AdFL was tested on three datasets:

MNIST, EMNIST, and CIFAR-10. The project, including

both AdFL and other algorithms, was implemented in Python

(3.7.9), using PyTorch (1.10.0). Moreover, for ready model

architectures and datasets, torchvision (0.11.1) was used.

D. Experimental results and their analysis

AdFL performance is compared to FedAvg, FedProx, and

FedMix algorithms (Section II). The parameters for FedProx

and FedMix were as in [11]. The experiments were performed

10 times for MNIST and 6 times for EMNIST and CIFAR-10,

928 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



with different random seeds, while preserving data partition.

For MNIST, the resulting median test accuracy, over a set of

experiments, is presented in Figure 2.

0 20 40 60 80 100 120 140

10

20

30

40

50

60

70

80

AdFL
FedAvg
MixUp
Prox

IID ACCURACY PER METHOD

EPOCH

TE
S
T 

A
C
C
U

R
A
C
Y

Fig. 2. Test accuracy for MNIST

AdFL improves model performance at the beginning of the

training, and ensures stable performance, with slight accuracy

improvement, later. This can be valuable in the case of the lim-

itation of client-server communication rounds. The minimum

accuracy improvement is about 3.3%.

For EMNIST, the median test accuracy of different algo-

rithms is presented in Figure 3. Again, AdFL is more stable

0 20 40 60 80 100 120

10

20

30

40

50

60

AdFL
FedAvg
FedMix
FedProx

IID ACCURACY PER METHOD

EPOCH

TE
S
T 

A
C
C
U

R
A
C
Y

Fig. 3. Test accuracy for EMNIST

at the beginning and shows gradual improvement without

significant peaks. It also results in test accuracy improvement

of around 2% (compared to FedAvg).

Note that, with a very challenging label-skew scenario, the

performance of the models depends directly on the probabil-

ities of class occurrence and how they are distributed among

clients. Here, an additional set of 7 EMNIST experiments

was performed, where the random seeds were changed each

time before generating probabilities of classes occurrence and

classes distribution, while preserving other parameters listed in

Table III. The EMNIST dataset was chosen for testing, as it has

62 classes (as opposed to 10 classes in the remaining datasets).

The average accuracy improvement and the Wilcoxon signed-

rank test [24] results are presented in Table IV. As can be seen,

the accuracy improvement remains for varying data partitions,

with respect to FedAvg, FedProx, and FedMix algorithms.

TABLE IV
ADFL PERFORMANCE STUDY ON VARYING EMNIST DATA PARTITIONS

FedAvg FedProx FedMix

Acc. impr. 1.70% 3.87% 1.88%
Std 1.11 1.61 2.91
p-value 0.0469 0.0156 0.0313

For CIFAR-10, the median accuracy is shown in Figure 4. It

can be seen that, compared to previous datasets, training was

less stable and the results show accuracy fluctuations even

for a median of results. Still, on average, AdFL shows better

accuracy from the very start of the training, resulting in a final

accuracy improvement of around 2%.

0 20 40 60 80 100

10

20

30

40

50

60

AdFL
FedAvg
FedMix
FedProx

IID ACCURACY PER METHOD

EPOCH

TE
S
T 

A
C
C
U

R
A
C
Y

Fig. 4. Test accuracy for CIFAR-10

The summary of all experiments is presented in Table V

together with the standard deviation of the final accuracy. The

statistical accuracy improvement, related to AdFL, was mea-

sured with the Wilcoxon signed-rank test, on results presented

in Table V and is depicted in Table VI.

TABLE V
EXPERIMENTS SUMMARY

MNIST CIFAR-10 EMNIST

ACC STD ACC STD ACC STD

AdFL 56.44 0.51 51.77 2.36 56.67 0.41
FedAvg 53.71 1.75 47.70 2.53 53.39 1.38
FedProx 52.28 1.39 48.42 3.21 51.99 1.09
FedMix 51.03 1.53 49.13 2.30 50.81 1.47

TABLE VI
WILCOXON SIGNED-RANK TEST P-VALUE

MNIST EMNIST CIFAR-10

FedAvg 0.0039 0.0313 0.0313
FedProx 0.0039 0.0313 0.0313
FedMix 0.0039 0.0313 0.0313

The results of the Wilcoxon signed-rank test show that

the difference in accuracy achieved by AdFL is statistically

ANASTASIYA DANILENKA: MITIGATING THE EFFECTS OF NON-IID DATA IN FEDERATED LEARNING WITH A SELF-ADVERSARIAL 929



significant. To better encapsulate the unstable performance on

the CIFAR-10, the median over the last 10 epochs was taken as

the final accuracy. AdFL improves the accuracy of the global

model and, moreover, reduces the gap in performance between

individual classes, despite their uneven distribution across

local datasets. It can be measured as a standard deviation

between accuracy among all classes (see, Table VII).

TABLE VII
TEST ACCURACY DEVIATION AMONG INDIVIDUAL CLASSES PER METHOD

Dataset FedAvg FedProx FedMix AdFL

MNIST 0.095 0.179 0.112 0.025
EMNIST 0.34 0.33 0.39 0.26
CIFAR-10 0.35 0.34 0.37 0.23

For all datasets, the standard deviation within the classes

is significantly lower for the AdFL algorithm, therefore, illus-

trating the benefits of balanced training. Finally, the Wilcoxon

signed-rank test was applied and it was found that the obtained

results are statistically significant.

VI. CONCLUDING REMARKS

In this work, it was shown that utilizing adversarial data on

the server side, during FL training, can reveal data distribution

information. Use of this information results in more balanced

performance in all classes, in the case of label-skewed data.

Future research can concentrate on (1) exploring properties of

adversarial samples, and (2) applicability of AdFL to more

complex datasets, models, and label-skew scenarios. Improve-

ments can also be made to the client-picking strategy and the

adversarial data generation process. Additional research can

also explore AdFL’s potential to battle other non-IID scenarios,

e.g., by locating clients with corrupted data.

ACKNOWLEDGMENT

This work was supported by the Centre for Priority Research

Area Artificial Intelligence and Robotics of Warsaw Univer-

sity of Technology within the Excellence Initiative: Research

University (IDUB) programme and by the Laboratory of

Bioinformatics and Computational Genomics and the High-

Performance Computing Center of the Faculty of Mathematics

and Information Science Warsaw University of Technology.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th International Conference

on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, 20–22
Apr 2017, pp. 1273–1282.

[2] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid
data: A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021. doi:
https://doi.org/10.1016/j.neucom.2021.07.098

[3] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[4] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 International Joint Conference on

Neural Networks (IJCNN), 2017. doi: 10.1109/IJCNN.2017.7966217 pp.
2921–2926.

[5] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf, 2009.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proceedings of

Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA,

March 2-4, 2020, I. S. Dhillon, D. S. Papailiopoulos, and V. Sze, Eds.
mlsys.org, 2020.

[7] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proceedings of the 37th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp.
5132–5143.

[8] E. Ozfatura, K. Ozfatura, and D. Gündüz, “Fedadc: Accelerated fed-
erated learning with drift control,” in 2021 IEEE International Sym-

posium on Information Theory (ISIT). IEEE Press, 2021. doi:
10.1109/ISIT45174.2021.9517850 p. 467–472.

[9] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning global
model via data-free knowledge distillation for non-iid federated learn-
ing,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2022. doi: 10.1109/CVPR52688.2022.00993 pp.
10 164–10 173.

[10] M. Tang, X. Ning, Y. Wang, Y. Wang, and Y. Chen, “Fedgp: Correlation-
based active client selection for heterogeneous federated learning,” 03
2021.

[11] T. Yoon, S. Shin, S. J. Hwang, and E. Yang, “Fedmix: Approximation
of mixup under mean augmented federated learning,” in International

Conference on Learning Representations, 2021.
[12] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance

in federated learning,” Proceedings of the AAAI Conference on Artifi-

cial Intelligence, vol. 35, no. 11, pp. 10 165–10 173, May 2021. doi:
10.1609/aaai.v35i11.17219

[13] C. Chen, Y. Liu, X. Ma, and L. Lyu, “Calfat: Calibrated federated
adversarial training with label skewness,” 2023.

[14] Y. Lu, P. Qian, G. Huang, and H. Wang, “Personalized feder-
ated learning on long-tailed data via adversarial feature augmen-
tation,” in ICASSP 2023 - 2023 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2023. doi:
10.1109/ICASSP49357.2023.10097083 pp. 1–5.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2013.

[16] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras, “When
does machine learning FAIL? generalized transferability for evasion
and poisoning attacks,” in 27th USENIX Security Symposium (USENIX

Security 18). Baltimore, MD: USENIX Association, Aug. 2018. ISBN
978-1-939133-04-5 pp. 1299–1316.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

[18] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2017.

[19] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2018. doi:
10.1109/CVPR.2018.00957 pp. 9185–9193.

[20] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The

Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79 – 86, 1951. doi:
10.1214/aoms/1177729694

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998. doi: 10.1109/5.726791

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018. doi:
10.1109/CVPR.2018.00474 pp. 4510–4520.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE

Conference on Computer Vision and Pattern Recognition, 2009. doi:
10.1109/CVPR.2009.5206848 pp. 248–255.

[24] D. Rey and M. Neuhäuser, Wilcoxon-Signed-Rank Test. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1658–1659. ISBN
978-3-642-04898-2

930 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


