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Abstract—The permutation flow-shop scheduling problem
(PFSP) is an important problem in production industry. The
problem has been a subject of many research and various
algorithms to solve PFSP have been developed over the years.
The newly developed algorithms are usually tested on Taillard
and VRF benchmarks and their results are compared using
various measures that assess the size of error made by an
algorithm and the computation time. In this paper, we propose
two new measures to assess the quality of results of algorithms for
solving PFSP with the makespan criterion. The first ARD.NEH
measure gives similar results as the well known ARPD mea-
sure but is robust to updates of the best known solutions of
benchmark problems. The second ARID measure is an interval-
based measure which is able to assess whether the good quality
of an algorithm results stems from its good behavior of this
algorithm for a few instances or from its good behavior for most
instances. The computational experiments confirm the usefulness
of the proposed quality measures.

I. INTRODUCTION

T
HE permutation flow-shop scheduling problem (PFSP) is

one of the most studied combinatorial optimization prob-

lems, rooted in the manufacturing industry. It can be defined

as follows: given a finite set of m machines {M1, . . . ,Mm}
and a finite set of n jobs {J1, . . . , Jn}, each of which should

go through all the m machines in the same order, the goal is

order the jobs so as to minimize the assumed optimization

criterion (e.g., makespan, total tardiness, flow time, cost,

energy consumption).

The PFSP with makespan criterion, commonly referred to

as Fm|prmu|Cmax [1], is undoubtedly the most frequently in-

vestigated scheduling problem. Garey and Johnson [2] proved

that Fm|prmu|Cmax is NP-hard if m ⩾ 3. Therefore, various

heuristics have been developed to solve this problem in a rea-

sonable amount of time. Among them, the Navaz, Enscore and

Ham (NEH) construction heuristic [3] plays an important role;

for a long time NEH has been regarded as the best heuristic

for solving Fm|prmu|Cmax.

Since optimal solutions are generally not known for some

instances, the only way to asses the results of new methods

is to compare them with the best solutions known so far. The

well-known measure of solution quality, initially referred to as
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the increase over optimum (IOO) [4] and later as the relative

percentage deviation (RPD) [5], is defined as:

RPD =
S −Best

Best
× 100%, (1)

where S is the solution of the evaluated algorithm and Best

is the best solution known so far for a given instance of the

problem. For a group of instances, a synthetic solution qual-

ity measure, called the average relative percentage deviation

(ARPD), is calculated as:

ARPD =
1

I

I∑

i=1

Si − Besti

Besti
, (2)

where I is the number of instances, Si is the solution of the

evaluated algorithm on the instance i of a given size, and Besti
is the best solution known so far for this instance.

The quality of solutions is obviously not the only aspect of

algorithms evaluation – the running time is also an important

feature (we often face the trade-off between the quality of

results and computational time). Literature research shows that

the computational time is often reported in time units (usually

in milliseconds) [6], sometimes, especially in case of simpler

algorithms, the computational complexity is provided. Given

several algorithms to be compared and various instances, the

computational effort is usually measured by using the average

CPU time (ACPU) computed as follows:

ACPUj =
1

I

I∑

i=1

CPUi,j , (3)

where CPUi,j is the CPU time consumed by algorithm j on

instance i. However, the running time scheduling algorithms

strongly depends on the size of the problem instance, therefore

Fernandez-Viagas and Framinan [7] proposed to measure

the average relative percentage time (ARPT) consumed by

algorithm j:

ARPT′

j =
1

I

I∑

i=1

RPTi,j , (4)

where RPTi,j (relative percentage computation time of algo-

rithm j for instance i) is computed as:

RPTi,j =
CPUi,j −ACTi

ACTi

, (5)
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and ACTi (average computational time for instance i) is

computed as:

ACTi =

∑J

j=1
CPUi,j

J
. (6)

Since ARPT′

j can yield negative values (ARPT′

j > −1),

Fernandez-Viagas and Framinan [8] proposed to compute

ARPT = ARPT′+1, which allows the graphics to be shown

in logarithmic scale.

The above described features of ACPU and ARPT make

these two measure not very authoritative and quite cumber-

some in practice. In [9], we have proposed the ART.NEH (the

Average Relative Time over NEH) indicator defined by the

following formula:

ART.NEH =

∑I

i=1

CPUi

CPUi,NEH

I
, (7)

where I is the number of considered instances, CPUi is

the CPU time of a considered algorithm for the instance

i, and CPUi,NEH is the CPU time of NEH for the in-

stance i. ART.NEH indicates how many times, on average,

the evaluated algorithm is faster (ART.NEH<1) or slower

(ART.NEH>1) than the classical NEH. Following this idea,

we propose in Section II several new measures to compare

the quality of results produced by algorithms for solving PFSP

with the makespan criterion. Numerical experiments showing

the usefulness of the proposed measures are described in

Section III. The paper ends with concluding remarks.

II. NEW MEASURES OF ALGORITHMS EFFICIENCY

New algorithms are expected to be better than existing ones,

but a fair comparison of algorithms is quite difficult (due to

implementation issues and hardware used). However, most of

papers on solving PFSP with the makespan criterion provide

the results produced by NEH. So, it seems quite natural to use

this well-known heuristic as a computational benchmark.

The ARPD indicator given by formula (2) is by far the most

popular measure for assessing the quality of scheduling algo-

rithms taking into account the size of the error. It has, however,

some drawbacks which led to the development of alternative

measures. An important drawback, we want to emphasize, is

that the value of ARPD can change when new better solutions

are found for an analyzed instance. In this regard, the ARPD

value of an algorithm can change significantly over the years.

A good example can be the most known PFSP benchmark

– Taillard’s benchmark [10] published in 1993. Though it is

now 30 years since its publication, better solutions are still

found for various instances [11]. Thus, since the ARPD factors

change, the whole measure change as well. In that case, it is

difficult to compare the new results with existing (published)

ones due to different reference values (the results of such

a comparison may not be reliable). To get rid of this drawback,

in this paper we propose a new measure ARD.NEH (Average

Relative Deviation over NEH) which will not change in time

thanks to the use of the NEH results as reference results. The

proposed ARD.NEH measure is computed from the following

formula:

ARD.NEH =
1

I

I∑

i=1

NEHi − Si

NEHi

, (8)

where I is the number of instances, Si is the solution of the

evaluated algorithm on the instance i, and NEHi is the solution

obtained using the NEH algorithm for this instance.

The main reason for developing this measure was to make

it easier to compare the results produced by new algorithms

with the results available in the literature. The advantage of

ARD.NEH over ARPD is that it does not change over time.

This particular feature of ARD.NEH is due to the fact that

ARD.NEH does not depend on the best solutions known so far,

but on the results of NEH. So, the measure is especially useful

to deal with those problems for which the optimal solution is

not know yet. Since ARD.NEH indicates how far the results

of an algorithm are from the results of NEH, the greater is

ARD.NEH the better.

Another new measure to assess the quality of the results, we

propose in this paper, is the ARID(inf, sup) (Average Relative

Interval Deviation) measure. ARID(inf, sup) is different from

existing quality measures in that it is based on the interval

[inf, sup] (it is assumed that the interval [inf, sup] can be

improper) instead of a single value (reference point). By taking

different intervals, we can obtain various quality measures.

The concept behind this measure is to equalize the impact of

each benchmark instance on the final value of the evaluation

measure. The value of ARID(inf, sup) is computed from the

following formula:

ARID(inf, sup) =
1

I

I∑

i=1

max(inf, sup)− Si

sup− inf
(9)

where Si is the solution for the instance i.

Proposition 1: ARPD and ARD.NEH measures are a special

case of the ARID measure.

Proof: Let I be the set of instances, and Besti, NEHi, and

Si the best known solution, the solution produced by NEH,

and the solution for the instance i, respectively. It holds that

ARID(Best, 0) =
1

I

I∑

i=1

max(Besti, 0)− Si

0−Besti
=

=
1

I

I∑

i=1

Besti − Si

−Besti
=

1

I

I∑

i=1

Si −Besti

Besti
= ARPD

ARID(0,NEH) =
1

I

I∑

i=1

max(NEHi, 0)− Si

NEHi − 0
=

=
1

I

I∑

i=1

NEHi − Si

NEHi

= ARD.NEH

In what follows, we set inf = Best, sup = NEH, where

Best means that we use the best solutions (makespans) known

so far for benchmark instances, and NEH means that we use
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the solutions produced by NEH for the respective instances.

Then, ARID(Best,NEH) (further referred to as simply ARID),

similarly as ARPD, uses the best know solutions, so ARID is

recommended to be used for problems with Best = Opt. ARID

allows to equalize the impact of different instances on the final

result. For example, the ARPD value for Taillard benchmark is

the most influenced by the instances having the best solutions

far from the optimum and the less influenced by the instances

having the best solution close to the optimum. Making each

instance to have comparable impact on the final evaluation of

an algorithm, allows to compare different algorithms in terms

of the stability of their results in relation to the dynamically

determined value, which in this case is the result of NEH.

The result of NEH can therefore be considered as a kind of

assessment of the difficulty of a given instance. The stability

of an algorithm should be understood here as a possibility

to obtain better results than NEH for as many instances as

possible. Let us note that the value of ARID, similarly as the

value of ARD.NEH, should be maximized. The next section

presents the experiments that aim to show the usefulness of

the proposed measure of the algorithms quality.

III. COMPUTATIONAL EXPERIMENT

The measures proposed in Section II were used to assess the

results of various algorithms for Taillard benchmark [10] and

VRF Large benchmark instances [12]. Best solutions provided

by the authors of the benchmarks are updated with the recent

results presented in [11] (Taillard) and [13] (VRF Large).

Tables I and II show the values of the ARPD, ARD.NEH

and ARID measures obtained for, respectively, Taillard and

VRF Large benchmarks by using selected deterministic al-

gorithms for solving PFSP (cf., [14], [15], [16], [17], [18],

[7], [8], [19], [20], [21], [22], [9]). As can be seen from the

tables, only two algorithms (RAER and RAER-di) achieved

negative values of ARD.NEH measure, which means that

their average results were worse than the average result of

NEH. It can be seen as well that only FRB and N -list

technique-based algorithms (the latter will be further referred

to as N -algorithms) achieved the results that are better than

NEH results by more than 1 percent, for both benchmarks.

As for the ARID measure, only FRB algorithms and N -

algorithms achieved the values greater than 15%. Moreover,

only 3 algorithms (for Taillard benchmark) and 2 algorithms

(for VRF Large benchmark instances) achieved the results

greater than 50%, which means that only 3 algorithms were

able to improve the results of NEH by, on average, more than

a half distance between the best solution produced by NEH

and the best solution known so far for a given instance.

Figures 1 and 2 show the rank (y-axis) of each algorithm

with respect to the specific quality measure. As we can see,

the ranks with respect to ARD.NEH and ARPD coincide for

all algorithms. This means that the ARPD measure can be

successfully replaced with the ARD.NEH measure. If we take

a look at the ARID measure, we can see that this measure

ranks the algorithms in a different manner than the other

two measures. Those algorithms that are ranked below the

TABLE I
ARPD, ARD.NEH AND ARID VALUES FOR TAILLARD BENCHMARK

Algorithm ARPD ARD.NEH ARID

RAER 3.94 -0.56 -56.99

RAER-di 3.57 -0.20 -40.97

NEH 3.37 0.00 0.00

NEMR 3.21 0.15 -6.91

NEHKK1-di 3.20 0.17 -0.16

KKER 3.19 0.17 -3.25

NEH1-di 3.15 0.21 4.73

NEHKK2 3.14 0.22 7.54

NEHR 3.10 0.26 2.52

NEH-di 3.08 0.28 9.37

vN-NEH+(2) 3.02 0.34 9.69

NEMR-di 3.01 0.34 4.81

N-NEH+(2) 2.99 0.36 10.27

NEHFF 2.95 0.41 1.41

KKER-di 2.91 0.44 13.87

NEHR-di 2.90 0.46 13.48

NEHD-di 2.88 0.47 6.00

vN-NEH+(3) 2.82 0.52 15.83

N-NEH+(3) 2.74 0.60 18.64

SP+(0.3)N+(2) 2.70 0.64 18.25

vN-NEH+(4) 2.67 0.67 20.42

N-NEH+(4) 2.60 0.74 22.09

FRB42 2.37 0.95 31.04

N-NEH+(8) 2.36 0.96 29.48

vN-NEH+(8) 2.28 1.04 32.77

SP+(0.3)N+(4) 2.27 1.05 32.85

SMα+(8)N+(2) 2.26 1.06 35.14

N-NEH+(16) 2.24 1.08 33.15

FRB44 2.17 1.15 34.93

vN-NEH+(16) 2.07 1.25 42.25

SP+(0.3)N+(8) 2.03 1.29 40.02

SMα+(8)N+(4) 2.01 1.31 43.51

FRB48 1.99 1.32 40.22

FRB2 1.98 1.33 32.81

FRB46 1.96 1.35 40.88

FRB410 1.92 1.39 42.49

SP+(0.3)N+(16) 1.89 1.41 44.51

SMα+(8)N+(8) 1.86 1.44 48.47

FRB412 1.84 1.46 45.01

SMα+(8)N+(16) 1.75 1.55 51.70

FRB3 1.66 1.64 50.06

FRB5 1.53 1.77 55.79

line determined by the ARPD and ARD.NEH measures can

be considered as more stable. The results produced by these

algorithms are less due to the fact of significant improvements

of NEH results for single instances, and more due to improve-

ments of NEH results for more instances. Due to the design

of the measure, large improvements for single instances are

less promoted than frequent but less significant improvements.

Hence the deterioration of the results of individual algorithms,
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Fig. 1. Ranking of algorithms based on ARPD, ARD.NEH and ARID values for Taillard benchmark

Fig. 2. Ranking of algorithms based on ARPD, ARD.NEH and ARID values for VRF Large instances

for which the position for the ARID measure deviates upwards

from the line ARPD/ART.NEH.

IV. CONCLUSION

This work proposes two new measures for assessing the

quality of results produced by algorithms for solving permuta-

tion flow-shop problems with the makespan criterion. The first

ARD.NEH measure has the very useful feature of elimination

of the dependency of the quality assessment from the best

known results which, as shown by the performed analysis,

change over time, and therefore the comparison of new results

with the older one might be cumbersome. The second ARID

measure is to our best knowledge the first interval-based

measure. It is worth to underline that the ARID measure

with properly selected intervals is equivalent to ARPD or

ARD.NEH measures. The proposed new measure have been

tested on 42 selected deterministic algorithms for solving

PFSP run on Taillard and VRF Large benchmarks. Based

on the obtained results it can be concluded that ARPD and

ARD.NEH measures coincide, i.e., they rank the algorithms in

a very similar manner. The ARID measure, in turn, is useful

in assessing the stability of the algorithms, i.e., it indicates

whether a good (average) quality of results stems from good

results for a few instances of from good results for most

instances. The numerical experiments show that the proposed

measures are very useful for more reliable comparison of

algorithms for solving PSFP with the makespan criterion.
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