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Abstract—In recent research, validation methods for soft
and hard clustering through general granular rough clusters
are proposed by the first author. Large-minded reasoners are
introduced and studied in the context of new concepts of non-
stochastic rough randomness in a separate paper by her. In
this research, the methodologies are reviewed and new low-
cost scalable methodologies and algorithms are invented for
computing granular rough approximations of soft clusters for
many classes of partially ordered datasets. Specifically, these are
applicable to datasets in which attribute values are numeric,
vector valued, lattice-ordered or partially ordered. Additionally,
new research directions are indicated.
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I. INTRODUCTION

BOTH hard and soft clustering with or without additional

semi-supervision are popular tools for classification in

the AIML literature [1]. The problems of cluster validation

is a long-standing one. Numeric measures are known to be

unreliable, inconsistent and mathematically unjustifiable [2],

[3]. Known proofs often proceed from questionable statistical

and topological assumptions [1], [4] about the context asso-

ciated with a dataset. Recent attempts to solve the problem

from an axiomatic granular rough set perspective [5], [6] are

proposed by the first author in the paper [7]. Ortho-partitions

are related to three-way clusterings in other recent work [8].

In the present paper, the focus is on clustering contexts that

can be coerced into granular tolerance frameworks. It is not

necessary that the clustering be distance-based.

Suppose a soft clustering S is defined as a finite sequence

of ordered pairs of cores and their fringes. The underlying

philosophy of the invented methodology is that S is valid

relative to a granular rough model R if and only if the

components of S are definite objects or are very closely

approximated in R.

In the earlier work mentioned [7], a rough model is es-

sential for cluster validation. The meaning associated with

the construction of the approximations is the basis of the
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framework. For example, blocks of a tolerance [9]–[11] can

be interpreted as maximal sets of mutually similar objects,

and approximations formed as unions of blocks have a simple

disjunctive meaning (over higher order concepts of similarity).

However, if no rough models seem to be reasonable, then can

they be discovered/constructed? A solution for this problem is

proposed through a slightly lengthy process involving concepts

of clean rough randomness, large minded reasoners, and

invented algorithms based on recent advances in the theory

of tolerances. Research directions are additionally provided.

A. Structure of this Paper

Some background is provided in the next section. The

concept of rough randomness is explained from a different

perspective, the associated polysemy is fixed, and large minded

reasoners that embody clean rough randomness are formalized

in the third section. The overall strategy for validation of soft

and hard clustering is formulated next. In the fifth, algorithms

for validation methods for truly unsupervised clustering are

invented. Related directions and applications are discussed in

the last section.

II. BACKGROUND

A distance function on a set S is a function ρ : S2 7−→ ℜ+

that satisfies

(∀a)ρ(a, a) = 0 (distance)

The collection B = {Bρ(x, r) : x ∈ S&r > 0} of all r-

spheres generated by ρ is a weak base for the topology τρ
defined by

V ∈ τρ if and only if (∀x ∈ V ∃r > 0)Bρ(x, r) ⊆ V

Any ϵ > 0 and a distance function ρ determines a tolerance

T defined by

Tab if and only if ρ(a, b) + ρ(b, a) ≤ ϵ.

One can define other tolerances through conditions such as

ρ(a, b) + ρ(b, a)

1 + ρ(a, b) + ρ(b, a)
≤ ϵ.

The point is that a function much weaker than a semimetric

suffices for defining a tolerance relation. More complex defi-

nitions are often possible.
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Proposition 1. For a numeric complete information table I,

the following holds:

1) Valuations for each attribute are totally ordered by ≤,

2) O is totally ordered relative to the induced lexicographic

order.

3) O is lattice ordered relative to ≤ defined by

(a1, . . . , an) ⪯ (b1, . . . , bn) if and only if &iai ≤ bi
with ai, bi ∈ Ran(ν(, Ati).

However, a numeric table is not necessary for any of the

three properties to hold.

A. Tolerances

For more details, the reader is referred to the works [9],

[12], [13].

If T is a tolerance on a set S, then a pre-block of T
is a subset K ⊆ S that satisfies K2 ⊆ T . The set of all

pre-blocks of T is denoted by pB(T ). Maximal pre-blocks

of T with respect to the inclusion order are referred to as

blocks. The set of all blocks of T is denoted by B(T ). If

S = ⟨underlineS, f1, f2, . . . , fn, (r1, . . . , rn)⟩ (S being a

set and fi being ri-place operation symbols interpreted on it)

is an algebra, then a tolerance T is said to be compatible if

and only if for each i ∈ {1, 2, . . . n <∞},

&ri
j=1

Tajbj −→ Tfi(a1, a2, . . . ari)fi(b1, b2, . . . bri).

When S is a lattice, every tolerance is the image of a

congruence by a surjective morphism : S 7−→ S. Further,

if A,B ∈ B(T ), then {a ∨ b : a ∈ A&b ∈ B}, {a ∧ b : a ∈
A&b ∈ B} ∈ pB(T ). The smallest blocks containing these are

unique, and the resulting lattice of blocks is denoted by S|T .

The set UBD(S) = {B(T ) : T ∈ Tol(S)} will be referred

to as the universal block distribution (UBD) of S. It can be

assigned the same algebraic lattice order on Tol(S).
A sublattice Z of a lattice S is called a convex sublattice

if and only if it satisfies (∀x, b ∈ Z)(x ≤ a ≤ b −→ a ∈ Z).
The blocks of a lattice are all convex sublattices. If C is a

subset of S then ↓ C, and ↑ C will respectively denote the

lattice-ideal and lattice-filter generated by C. The following

result [12], [14], [15] is not usable for a direct computational

strategy:

Theorem 1. For a finite lattice L, a collection C of nonempty

subsets is the set of all blocks of a tolerance T ∈ Tol(L) if

and only if it is a collection of intervals of the form {[ai, bi] :
i ∈ I}, and

•

⋃

i∈I [ai, bi] = L
• For all i, j ∈ I , (ai = aj −→ bi = bj).
• (∀i, j ∈ I)(∃k ∈ I) ak = ai ∨ aj & bi ∨ bj ≤ bk.

Theorem 2. In the context of Theorem 1,

1) (∀C,E ∈ C) (↓ C =↓ E ⇐⇒ ↑ C =↑ E) .
2) For any two elements C,A ∈ C there exist E,F such

that (↓ C∨ ↓ A) = ↓ E, (↑ C∨ ↑ A) ≤↑ E, ↓ F ≤ (↓
A∧ ↓ C), and (↑ C∧ ↑ A) = ↑ F ).

For finite chains, the following holds [16]

Theorem 3. 1) A collection C of subsets of the chain

Ln = ⟨{0, 1, 2, . . . n− 1},≤⟩ is the set of all blocks

of a tolerance T ∈ Tol(L) if and only if C is of the

form {[ni,mi] : i = 1, . . . k} for some 1 ≤ k ≤ n − 1,

with n1 = 0, mk = n − 1, and ni < ni+1 ≤ mi + 1,

and mi < mi+1 for all i = 1, . . . k.

2) A collection C of subsets of the chain Ln =
⟨{0, 1, 2, . . . n− 1},≤⟩ is the set of all blocks of a glued

tolerance T ∈ Glu(L) if and only if C is of the form

{[ni,mi] : i = 1, . . . k} for some 1 ≤ k ≤ n − 1, with

n1 = 0, mk = n − 1, and ni < ni+1 ≤ mi < mi + 1,

and mi < mi+1 for all i = 1, . . . k.

3) A collection C of subsets of the chain Ln =
⟨{0, 1, 2, . . . n− 1},≤⟩ is the set of all blocks of a

congruence R ∈ Con(L) if and only if C is of the form

{[ni,mi] : i = 1, . . . k} for some 1 ≤ k ≤ n − 1, with

n1 = 0, mk = n − 1, and ni < ni+1 = mi + 1, and

mi < mi+1 for all i = 1, . . . k.

The next theorem is a combination of special cases of known

results.

Theorem 4. • Tolerances on a product of finite lattices are

directly decomposable [17].

• If a lattice L is a direct product Πn
i=1Li of the lattices

Li, then Tol(L) ≃ Tol(L1)× Tol(L2)× . . . T ol(Ln)

So every T ∈ Tol(L) can be written as a direct product of

tolerances Ti ∈ Tol(Li) (i = 1, 2, . . . , n). That is

T = Πn
i=1Ti = {(a, b); (eia, eib) ∈ Ti, for i = 1, 2 . . . n}.

Further,

Theorem 5. Let S1 and S2 be two lattices with

compatible tolerances T1 and T2 respectively.

If T (a1, a2, . . . an)(b1, b2, . . . bn) if and only if

T1a1b1&T2a2b2& . . . Tnanbn, then the blocks of T are

direct products of the blocks of the component tolerances.

Proof. Suppose S∞ = {Bii ∈ [1, n]} and S∈ = {Fii ∈
[1,m]} are two distinct normal covers for the same tolerance

T on an algebra S. If Tab for any a, b ∈ S, then it is necessary

that a, b ∈ Fi, and a, b ∈ Bj for some i, j. This means S∞

must be a mere rearrangement of S∈. In other words, normal

covers of a tolerance are unique.

The above proof works for finite direct products as well. It

means that one needs to create all permutations of the blocks

on components in general.

B. Approximations

Let S = ⟨S, T ⟩ be a general approximation space, with S
being a set, and T a tolerance relation on it. If G is the set

of all blocks of T , and A ⊆ S, then the following granular

approximations [9] will be used in the main algorithms (the

semantics and history of the approximations are described in

the mentioned reference).
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Al =
⋃

{H : H ⊆ A, H ∈ G} (Lower)

Au =
⋃

{H : A ∩ H ̸= ∅, H ∈ G} (Upper)

Aub = Au \ Acl (Bited Upper)

Further, the model S =
〈

℘(S), γ, l, u,⊆,∪,∩, ∅, S
〉

gen-

erated by the granular approximations on the power set ℘(S)
will be used to discuss cluster validation. It is additionally a

set HGOS in the sense of the first author [6].

C. Validation Indices – a Brief Critique

The process or concept of cluster validation generally refers

to exploring the quality of one or more clustering methods

and possibly comparing them. In almost all cases, true class

information is not available (that is if one avoids looking at

anything apart from the dataset) and validation methods are

inherently not rigorous even in comparison to statistical meth-

ods used in supervised learning. For example, in a regression

modeling context, it is possible to say something concrete

about model fit relative to a set of statistical assumptions (that

may be invalid). Clustering contexts are difficult to investigate

from similar perspective. In this subsection, some issues faced

are mentioned.

A number of indices for quantifying a clustering’s quality

are known. Typically, they are used to simply assess the

quality of a single clustering or to select the most appropriate

clustering method and related parameters (like number of

optimal clusters). For datasets of the form {xi}
n
i=1 over a

Euclidean space with standard norm or some distance ρ,

common indices such as the Davies-Bouldin (DB) index,

Calinski–Harabasz(CH) index and variants thereof start with

measures of within-cluster variation and compare them with

measures of between-cluster variation from a numerical per-

spective over the real number field. Many adaptations to rough

clustering are also known [18], [19]. In the case of CH-

index, the shape of associated clusters are assumed to be

spherical, with data points concentrated around the cluster

means. Even if points close to the boundary of the sphere

are close to points on the boundary of another cluster, the

distance between the two clusters will be the distance between

the means. Further, the index is naturally connected with the

hard k-means algorithm. These can be used in determining the

appropriateness of the index in a specific application context.

From this it should be clear that indices carry very little

information about ontology.

Latent class model-based approach (LCC) is sometimes

used for clustering multivariate categorical data. There each

cluster is assumed to be a mixture component and the whole

is a mixture of probability distributions [20]. These are not

well-related to distance based approaches, though the average

silhouette width (ASW) measure that emphasizes the sepa-

ration between clusters and their neighbors is known to be

useful. ASW is also heavily used in fuzzy clustering.

External Criteria: A simple example of an external criterion

for hard clustering is the quality index Q+. If N+, N− and N

are respectively the number of correctly assigned, incorrectly

assigned and total number of clusters.

Q+ =
N+

N
&Q− =

N−

N
.

This measure can be generalized to rough clustering [19],

[21], and other soft approaches (with cores and fringes).

Obviously these indices avoid most of the complexity and

semantics involved in the clustering process. However, they

allow gradation of boundaries, and are less controversial than

other indices because of the minimal number of assumptions.

In general, the following remarks about indices may be

noted:

• Cluster validation is sometimes done from a statistical

test perspective. The null hypothesis is taken to be the

statement that the data homogeneous and unclustered

according to a null model. Reasonable clusterings are

expected to be significantly better than what is expected

relative to its performance on the null model. This is

usually done relative to specific cluster performance

indices. Both the reality of the statistical scheme of things

assumed and indices used remain very questionable.

• Clusters with complicated shapes are common in appli-

cation contexts like image processing. For example, in

many photos of natural scenarios, similar leaves can be

in different parts [22] (these are handled with descriptive

proximities and related functions). Indices for clusters in

such contexts are not well-developed.

• Combining multiple validation indices for the purpose of

measuring multiple characteristics has limited scope and

the act of combining does not go beyond forming a set

of indices [3].

In hierarchical clustering in particular, indices such as par-

tial R-squared monotonically change with number of clusters.

Strong decrease (or increase) followed by weak decrease

(or increase) of the index relative to the number of clusters

correspond to their optimal values. Further, the applicability

of associated indices is limited.

It can therefore be asserted that most indices assume some

heuristics that are not well understood and in some cases even

the values produced may not be clear (see [2], [3]) for details.

From a mathematical point of view, a few rigorous studies

on indices in the context of semimetric based clustering are

known.

III. CLEAN ROUGH RANDOMNESS AND LMR

Many types of randomness are known in the literature.

Stochastic randomness, often referred to as randomness, is

often misused without proper justification. In the paper [23],

a phenomenon is defined to be stochastically random if it

has probabilistic regularity in the absence of other types of

regularity. In this definition, the concept of regularity may

be understood as mathematical regularity in some sense.

Generalizations of mathematical probability theory through

hybridization with rough sets from a stochastic perspective are

explained in the book [24]. This approach is not ontologically
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consistent with pure rough reasoning or explainable AI as its

focus is on modeling the result of numeric simplifications in

a measure-theoretic context.

A rare property in the theory of computation is an effec-

tively testable property that is valid over a set of measure zero.

A finite or infinite sequence x is said to be algorithmically

random if and only if no computational agent recognizes x

as possessing some rare property (for details see [23], [25]).

While associations with subjective probability are known,

connections of such ideas with rough sets are not known in

the literature.

Empirical studies show that humans cannot estimate mea-

sures of stochastic randomness and weakenings thereof in

real life properly [26]. This is consistent with the observation

that connections in the rough set literature between specific

versions of rough sets and subjective probability theories

(Bayesian or frequentist) are not good approximations. In fact,

rough inferences are grounded in some non-stochastic com-

prehension of attributes (their relation with the approximated

object in terms of number or relative quantity and quality)

[27], [28].

The idea of rough randomness is expressed by the first

author [29] as follows: a phenomenon is roughly random

if it can be modeled by general rough sets or a derived

process thereof. To avoid the resulting polysemy (as the term

is used in a different sense in the monograph [24]), it is

useful to rename it as clean rough randomness (or C-rough

randomness for short). In concrete situations, such a concept

should be realizable in terms of C-roughly random functions

or predicates defined below (more variations will be part of

future work):

Definition 1. Let Aτ be a collection of approximations of

type τ , and E a collection of rough objects [9] defined on

the same universe S, then by a C-rough random function of

type-1 (CRRF1) will be meant a partial function

ξ : Aτ 7−→ E.

Definition 2. Let Aτ be a collection of approximations of type

τ , S a subset of ℘(S), and ℜ the set of reals, then by a C-

rough random function of type-2 (CRRF2) will be meant a

function

χ : Aτ × S 7−→ ℜ.

Definition 3. Let Aτ be a collection of approximations of type

τ , and F a collection of objects defined on the same universe

S, then by a C-rough random function of type-3 (CRRF3)

will be meant a function

µ : Aτ 7−→ F.

Definition 4. Let Oτ be a collection of approximation oper-

ators of type τl or τu, and E a collection of rough objects

defined on the same universe S, then by a C-rough random

function of type-H (CRRFH) will be meant a partial function

ξ : Oτ × ℘(S) 7−→ E.

It is obvious that a CRRF1 and CRRF2 are independent

concepts, while a total CRRF1 is an CRRF3, and CRRFH

is distinct (though related to CRRF3). The set of all such

functions will respectively be denoted by CRRF1(S,E, τ),
CRRF2(S,ℜ, τ), CRRF3(S, F, τ), and CRRFH(S,E, τ).
Examples that show the semantic nature of the associations

are mentioned below:

Examples: CRRF

Example 1. Let S be a set with a pair of lower (l) and upper

(u) approximations satisfying (for any a, b, x ⊆ S)

xl ⊆ xu (int-cl)

xll ⊆ xl (l-id)

a ⊆ b −→ al ⊆ bl (l-mo)

a ⊆ b −→ au ⊆ bu (u-mo)

∅l = ∅ (l-bot)

Su = S (u-top)

The above axioms are minimalist, and most general ap-

proaches satisfy them.

In addition, let

Aτ = {x : (∃a ⊆ S)x = al or x = au (1)

E1 = {(al, au) : a ∈ S} (E1)

F = {a : a ⊆ S&¬∃bbl = a ∨ bu = a} (E0)

E2 = {b : bu = b&b ⊆ S} (E2)

ξ1(a) = (a, bu) for some b ⊆ S (xi1)

ξ2(a) = (bl, a) for some b ⊆ S (xi2)

ξ3(a) = (e, f) ∈ E1 & e = a or f = a (xi3)

E1 in the above is a set of rough objects, and a number of

algebraic models are associated with it [9]. A partial function

f : Aτ 7−→ E1 that associates a ∈ Aτ with a minimal

element of E1 that covers it in the inclusion order is a CRRF

of type 1. For general rough sets, this CRRF can be used

to define algebraic models and explore duality issues [13],

and for many cases associated these are not investigated. A

number of similar maps with value in understanding models

[27] can be defined. Rough objects are defined and interpreted

in a number of other ways including F or E2.

Conditions xi1-xi3 may additionally involve constraints on

b, e and f . For example, it can be required that there is no

other lower or upper approximation included between the pair

or that the second component is a minimal approximation

covering the first. It is easy to see that

Theorem 6. ξi for i = 1, 2, 3 are CRRF of type-1.

Example 2. In the context of the above example, rough

inclusion functions, membership, and quality of approximation

functions [30], [31] can be used to define CRRF2s. An

example is the function ξ5 defined by

ξ5(a, b) =
Card(b \ a)

Card(b)
(III.1)
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In the paper [29], it is additionally proved that

Theorem 7. A rough random variable [24] in the sense of

Liu, is not a rough random function of any type.

IV. HARD AND SOFT CLUSTERING VALIDATION

STRATEGIES

The considerations of this section will be restricted to

validation of soft clustering defined through ortho-pairs [8].

In the mentioned paper, the authors do not explicitly say that

their universe is finite, and it is not clarified whether it is

a semimetric set (a set with a semimetric) or a semimetric

space. The former does not always define a semimetric topol-

ogy. Connections with proximities [32] are additionally not

mentioned. However, these assumptions are not required for

obtaining three-way clusters or rough clusters in their sense.

An ortho pair is a pair of disjoint subsets (of a universe

S) of the form O = (C,F ) with C being the core and F
being the boundary or fringe that satisfies C ∩ F = ∅. An

ortho-partition O is a collection of ortho pairs of the form

{(C1, F1), (C2, F2), (C3, F3), . . . , (Cn, Fn)}

that satisfies O0, O1, O2, and O3

For all i Ci ̸= ∅ (T1)

For all i Ci ∩ Fi = ∅ (O0)

If i ̸= j then Ci ∩ Cj = Ci ∩ Fj = Cj ∩ Fi = ∅ (O1)
⋃

(Ci ∪ Fi) = S (O2)

(∀x)(x ∈ Fi −→ (∃j)j ̸= i&x ∈ Fj) (O3)

If ∀i x /∈ Ci then ∃i, j i ̸= j&x ∈ Fi ∩ Fj (R2)

A rough clustering is a collection of ortho pairs that satisfies

O0, O1, and R2. While a three-way clustering is a collection

of orthopairs that satisfies O1, O2, and T1. However, it is

interpreted as a soft clustering K in which each cluster Ki is

associated with three regions Ci, Fi and Ei = (Ci∪Fi)
c. The

last region being interpreted as the certainly not that region.

While rough clusterings can be interpreted as ortho-

partitions, three-way clusterings are collections of ortho-pairs

that do not satisfy O3 in general. However, it is possible

to collect the elements not satisfying O3 and create a new

cluster – the resulting clustering satisfies O3. Therefore, ortho-

partitions suffice for representing semi metric based rough, and

three-way clustering, and have a few arguably nice properties

(of scale invariance, generalized richness and consistency).

If D(S) is the set of all semimetrics on S, and Π(S) the

set of all partitions of S, and O(S) the set of all ortho

partitions on S, then an algorithm is a computable function

ctw : D(S) 7−→ O(S).
Here we are concerned with validation techniques for the

clustering. Our basic principle for validation that if the in-

terpretation of the cores and exteriors are almost the same as

their respective approximations in a granular rough semantics,

then they are valid relative to the semantics. This is useful

because granular rough semantics in the sense of the first

author [6], [9] can explain the meaning of the clusters.

Formally,

Definition 5. Let S =
〈

℘(S), γ, l, u,⊆,≤,∪,∩, ∅, S
〉

be

the set HGOS generated by a tolerance and its granular

approximations. Further, let Z = {(Ci, Fi)i = 1, . . . r} be

a soft clustering on S.

• The lower deficit of a soft cluster (C,F ) ∈ Z will be the

pair ((C \ Cl)u, (F \ F l)u),
• While its upper deficit will be the pair ((Cu \C)u, (Fu \
F )u)

The lower and upper deficit of (C,F ) will respectively be

denoted by (C♭, F ♭)) and (Cð, F ð). For hard clustering, it

suffices to restrict attention to the core alone.

Definition 6. In the context of Definition 5, a soft cluster

(C,F ) ∈ Z will be said to

• lu-valid if and only if Cl = Cu = C and F l = Fu = F
• l-pre-valid if and only if (∃V,W ∈ S)V l = C&W l = F .

• u-pre-valid if and only if (∃V,W ∈ S)V u = C&Wu =
F .

• l-traceable if and only if (∃V,W ∈ S)V = Cl&W = F l.

• u-traceable if and only if (∃V,W ∈ S)V = Cu&W =
Fu.

In addition, if all soft clusters in Z are l-pre-valid (resp.

lu-valid, u-pre-valid, l-traceable, u-traceable) then Z will

itself be said to be l-pre-valid (resp. lu-valid, u-pre-valid, l-
traceable, u-traceable).

Proposition 2. In the context of Definition 5, if the l-deficit

(resp. u-deficit) of a hard cluster C is computable, then it must

necessarily be l-traceable (resp. u-traceable).

Proof. If a cluster C has l-deficit A, then it is necessary that

A = (C \Cl)u. However, for this Cl should be an element of

S. The proof for the u-deficit is similar.

Proposition 3. In the context of Definition 5, if the l-deficit

(resp. u-deficit) of a soft cluster (C,F ) is computable, then it

must necessarily be l-traceable (resp. u-traceable).

The central idea of lu-validity (and weakenings thereof) is

that of representability in terms of granules and approxima-

tions. These do not test the key predicate δ for validation,

and the aspect is left to the process of construction of rough

approximations. By contrast, the ∗-deficits are an internal

measure of what is lacking or what is in excess.

In relation to the framework of minimal soft clustering

system (MSS) invented in the paper [7], it is possible to

define the ternary predicate δ through the above concepts.

Intended meanings of δabc are a is closer to b than c in

some sense, a is more similar to b than c in some sense

and variants thereof. This predicate covers the intent of using

metrics, similarities, dissimilarities, proximities, descriptive

proximities, kernels and other functions for the purpose.
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V. ALGORITHMS AND LMR ALGORITHMS

In this section, improved algorithms for the computation

of blocks that avoid weakenings are invented. These improve

earlier work of the first author [29].

A. Direct Algorithms-1,2

The following two algorithms are used in a forthcoming

paper on satellite remote sensing by the first author. They are

resource intensive, as the computational ease is limited by the

max-clique algorithms. Their complexities are directly defined

by that of the similarity matrix computation and the maximal

clique algorithms. In the paper, a low-cost implementation

could be used through supplementary measures.

Suppose a hard clustering {Ci}
k
i=1 or a soft clustering

{(Ci, Ei)}
k
i=1 [1], [8] obtained through any method is given.

Algorithm-1:

Distance: Specify distinct distance function σi on the

i th column (attribute) for each i
Tolerance: Define a similarity (tolerance relation) Ti
on the ith column.

Conjunction: Combine to a single tolerance relation

over objects on the table through conjunction of

instances across columns.

Relation: Compute the similarity matrix through

parallelized methods.

Granules: Compute the blocks of the tolerance by a

maximal clique algorithm (for example the modified

Bronkerbosch algorithm [33]).

Approximations: Compute granular rough approxi-

mations of Ci, and Ei for each i and estimate the

closeness of the cluster core or exterior to decide on

validation.

If the rough model can explain the soft/hard clustering, then

the latter is meaningful and valid.

Algorithm-2:

Distance: Specify a single distance function σ be-

tween objects

Tolerance: Define a similarity (tolerance relation) T
on the basis of descriptive statistics relative to σ.

Relation: Compute the similarity matrix through

parallelized methods.

Granules: Compute the blocks of the tolerance by a

maximal clique algorithm.

Approximations: Compute granular rough approxi-

mations of Ci, and Ei for each i and estimate the

closeness of the cluster core or exterior to decide on

validation.

Theorem 8. The direct algorithm-2 has a computational

complexity of O(dk3
d/3

+N3), where d is the degeneracy of

the n -vertex graph corresponding to the similarity relation,

k the number of rows, and N is the maximum of number of

rows and columns in the dataset.

Proof. O(dk3
d/3

) is the complexity of computing max-cliques,

while O(N3) is that of computing the distance matrix. List

operations are assumed to be of linear complexity.

B. Improved AGRSSA (IAGRSSA)

In an earlier preprint of the first author [29], the

AGRSSA (Axiomatic Granular Reversed Similarity Based

Semi-Supervised) algorithm(s) was proposed. This is improved

below through relaxed assumptions, and stricter constraints on

the decision steps involved. It is assumed that each column

(attribute) is totally ordered, and that an order-compatible dis-

tance (as opposed to a metric) is defined on them. Specifically,

it applies to all numeric (real valued) datasets.

IAGRSSA:

Distance: Specify distinct distance functions on each

column (attribute).

Quantiles: Identify f -quantiles at a suitable level

of precision on each column. Let these be

{qi1, qi2, . . . qif} on the ith column based on the

distance specified earlier.

Interval Boundaries: Interval boundaries are speci-

fiable by the sequence ⊥i, qi1 − ei1, qi1 + ei1, qi2 −
ei2, qi2+ ei2, . . . , qif − eif , qif + eif ,⊤i. The quan-

tities ei1, ei2, . . . eif need to computed as a fraction

of the measures of variation or other heuristics.

Decision on Blocks: Assume that the intervals on

each column are exactly the set of blocks.

Blocks: Form all possible products of the sequence

of blocks on each column to form the set of admis-

sible blocks. That is if {Bij}
f
j=1

is the set of blocks

on the ith column, the blocks of the whole dataset

would have the form B1j1 ×B2j2 × . . .×Bnjk , with

k being the number of columns and ji taking values

from 1, 2, . . . f .

Approximations: Compute granular rough approx-

imations by Subsection II-B and perform decision-

making. If a set of objects H are to be approximated,

then

1) The lower approximation of H is the union of

blocks included in it.

2) The lower approximation of H is the union of

blocks that have some common elements with

H .

Meaning: This can be specified directly from blocks,

or through its associated tolerance.

IAGRSSA does not require any decision column on the

dataset, and yet its computational complexity is far below that

of the direct algorithms. Ideally, the block construction process

should involve supervision as it requires an understanding

of the attributes. AGRSSA-M [29] is based on reducing the

blocks required for decisions.

Theorem 9. IAGRSSA computes the blocks of the tolerance

constructed as a direct product of the tolerances on each

column.

Proof. First, chains and partial orders on a set are equivalent to

specific groupoidal operations [9], [34], and the compatibility

is assumed with respect to these. Additionally, direct products

6 POSITION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



of groupoids are groupoids. The rest follows from Theorems

5 and 3.

The next example illustrates the product.

Example 3. Let T1 be the tolerance on Q defined by

T1ab if and only if |a− b| ≤ 1,

and T2 be the tolerance on ℜ defined by

T2ab if and only if |a− b| ≤ e.

On the product set Q × ℜ with the induced lattice order, the

product tolerance T is defined by the condition

T (a1, a2)(b1, b2) if and only if T1a1b1&T2a2b2.

The blocks of the tolerance T1 are of the form {x : |x−q| ≤
0.5} for distinct q ∈ Q The blocks of the tolerance T2 on the

other hand are of the form {x : |x − a| ≤ 0.5e} for distinct

a ∈ ℜ. The blocks of the product need to be formed by taking

a direct product of these as the components are independent.

It is therefore the set

{(x,w) : |x− q| ≤ 0.5&|w − a| ≤ 0.5e} for q ∈ Q& a ∈ ℜ.

Exhaustive Tolerance Discovery Algorithm (ETDA-LMR)

A large-minded reasoner is so-named because it is essen-

tially about discovering suitable similarities. It selects the more

reasonable collections of blocks. The exhaustive tolerance

discovery algorithm that involves LMRs is invented in the

paper [29]. However, it is relatively opaque as it leaves out

the crucial steps of selection to the dynamics of the context.

A natural question is: can the simplicity of the structure of

blocks on chains be exploited to improve the meta algorithm.

Definition 7. A large-minded reasoner (LMR) is a partial

function ψ : UBD(A1) × UBD(A2) × . . .UBD(An) 7−→
UBD(A).

The ETDA algorithm applies to all kinds of information

tables including decision tables, and in clearer terms is given

below.

EDTA Algorithm:

Step 1: Define sequences of q number of quantiles

– this by itself means a certain understanding of

categories associated with attributes.

Step 2: Using the quantiles form intervals (with

or without intersections) under the conditions of

Theorem 3.

Step 3: Optionally, some intervals may be fused

together in relation to relative changes in decisions.

This amounts to removing interval boundaries.

Step 4: Specify the large minded reasoner ψ. This

is the same as defining a number of compatible

tolerances using the intervals.

Step 5: Identify the defined tolerances in ψ.

Step 6: Compute relevant lower, upper, and bited ap-

proximations and optionally the associated decisions

for each normal cover.

Step 7: In case of soft cluster validation, compute

the approximations of the cores and exteriors, and

evaluate their closeness to the evaluated.

Step 8: Select relevant tolerances (or normal covers)

specified in ψ.

Step 9: Explain the data context on the basis of the

associated tolerance(s) (or normal covers).

Example 4. The first three steps of the ETDA algorithm are

illustrated in this example. Let {1, 5, 6, 9, 10} be a sequence

of equally spaced quantiles. Some sets of intervals that can be

formed with these are

B1 = {[1, 6], [5, 9], [6, 10]}

B2 = {[1, 5], [5, 6], [6, 9], [9, 10]}

B3 = {[1, 9], [5, 10]}.

Definition 8. By an interpreted large-minded reasoner as-

sociated with ψ of Def. 7 will be meant a partial function

ψ∗ : UB(A1)×UB(A2)× . . .UB(An)×℘(S) 7−→ UB(A),
that indicates the granular components or parts of approxi-

mations of subsets.

The function is intended to represent the compositionality of

approximations in terms of blocks of components. These can

be quite complex (see [5], [9]), and so granular components

or parts of approximations are referred to.

Theorem 10. ψ∗ is a CRRF of type H.

VI. PROBLEMS AND DIRECTIONS

The invented algorithms appear to be well-suited for low

cost computing. A detailed investigation is necessary to con-

firm the same. Additionally, it is necessary to formulate post-

processing techniques for seamless interpretation. If a context

results in a hundred blocks, then a description of the blocks,

and the approximations generated is essential for keeping track

of meaning. How does one solve this problem of meaningful

empirical representation?

One way is to encode the blocks lexicographically on the

basis of its position on components (or columns). Next, the

extent of expression of these blocks (encoding) in relatively

important clusters can be computed. The combination of these

expressions can be expressed in natural language with limited

or no involvement of numeric estimates. A full solution of this

problem will appear separately.

The logic of decision-making on the basis of set-theoretic

measures for cluster validation requires additional work and

will appear in a forthcoming paper. A substantial amount of

the machinery required is invented in the papers [35], and a

forthcoming three part paper by the first author.

In similarity-based clustering [36], clusters are formed from

data supplemented with similarity grades (usually with values

in the real interval [0, 1] or the rationals Q) between data

points. For a set of n data points, the associated similarity

matrix formed by these similarity grades is a symmetric square

matrix K = (sij)n×n with sij being the similarity between

the ith and jth data point. These can as well be approached
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through spectral clustering methods. Can the EDTA algorithm

be extended to these contexts?

A. Problems of Medical Imaging and Beyond

Big datasets associated with medical images (obtained

through MRI, FMRI and CT scans) are mostly patterns formed

by products of finite totally ordered subsets of the reals.

Rough sets combined with clustering techniques are used to

identify brain tumors in the presence of bias field and noise

in recent work [37]. However, additional methods need to

be employed to possibly rectify the results. Specifically, the

CoLoRS segmentation algorithm does not clearly provide the

reasons for inclusion or exclusion of tumors or healthy tissues.

It is of interest to use the transparent algorithms invented

in this research to these problem contexts, and additionally

in those for identification of lesions in lung CT [38]. These

characteristics are typical of a number of other application

contexts of AIML, and therefore the application contexts are

boundless.
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