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Abstract—Thermal imaging has shown great potential for
improving object detection in automotive settings, particularly
in low light or adverse weather conditions. To help and further
develop this industry, we extend our previously shared Thermal
Automotive Dataset by more than 2000 new images and 2
novel object detecting models based on YOLOv5 and YOLOv7
architecture. We point how important is the size of the dataset.
Additionally, we compare the performance of both models, to
see which is more reliable and superior in terms of detecting
small objects in thermal spectrum. Furthermore, we analysed
how preprocessing affects thermal imaging dataset and models
basing on it. The new dataset is available free from the Internet.

I. INTRODUCTION

T
HE introduction of deep learning has revolutionized the

computer vision field, bringing about remarkable ad-

vancements in object recognition and paving the way for sig-

nificant progress in various domains. One particularly crucial

area that greatly benefits from accurate and efficient object

detection is the development of self-driving vehicles. With

the ability to analyze the surrounding environment in real-

time, these vehicles rely heavily on robust object detection

algorithms to make informed and safe decisions [1], [2].

Although the prevailing source of information still constitute

digital cameras, operating in visual spectrum, in the recent

years the far infrared, so called thermovision cameras are

gaining on importance [3]. In this paper we focus on this type

of signals.

In a previous article [4], a thermal automotive dataset was

introduced, specifically designed for object detection using

the YOLOv5 model [5]. However, the presented dataset had

certain limitations, as it contained only images captured during

winter conditions. Nonetheless, even with this constraint, the

dataset proved to be valuable for training object detection

models and laying the foundation for further advancements

in the field. Additionally, the previous article introduced the

model based on YOLOv5 architecture.

In order to overcome mentioned limitations and push the

boundaries of object detection in thermal automotive appli-

cations, we present an expanded thermal automotive dataset.

This enhanced dataset incorporates over 2,000 new images,

capturing a broader range of scenarios and weather conditions.

By expanding the dataset, we aim to provide a more compre-

hensive and diverse collection of images, better reflecting the

challenges faced in real-world automotive environments.

Furthermore, we introduce a novel object detection model,

the YOLOv7, which builds upon the foundation of its pre-

decessor, the YOLOv5. The YOLOv7 model incorporates

improvements in architecture and training strategies, aiming

to enhance object detection accuracy and speed [6]. By

comparing the performance of the new YOLOv7 model with

the previous YOLOv5 model, using the expanded dataset for

evaluation, we can assess which model is superior in terms oh

object detection in thermal imaging.

Moreover, we delve into the impact of dataset size on model

training by conducting experiments with both the YOLOv5

and YOLOv7 models. We compare the performance of the

models trained on the entire expanded dataset against those

trained on only half of the dataset. This analysis allows us to

examine the influence of dataset size on the training outcomes,

shedding light on the relationship between dataset scale and

object detection performance.

By undertaking this study, our objective is to contribute

to the ongoing efforts aimed at enhancing object detection

accuracy and speed in the automotive industry. Through the

utilization of an expanded thermal automotive dataset and the

introduction of the YOLOv7 model, we aspire to facilitate

the development of safer, more efficient, and more reliable

self-driving cars. Ultimately, our research aims to propel

the advancement of autonomous driving systems, intelligent
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transportation, and the broader field of computer vision in the

automotive sector. Our new dataset is available free from the

Internet [7].

II. NETWORK ARCHITECTURES

A. You Only Look Once v5

The YOLOv5 deep convolutional neural network introduces

novel advancements building upon breakthroughs in computer

vision, particularly inspired by YOLOv4 [8] and other state-

of-the-art approaches. Notably, YOLOv5 adopts the New CSP-

Darknet53 structure as its backbone, an evolved version of the

Darknet architecture used in previous iterations.

Furthermore, both YOLOv4 and YOLOv5 employ the CSP

Bottleneck, originally proposed by WongKinYiu in the Cross

Stage Partial Networks (CSP) paper [9], for feature formu-

lation. The CSP architecture, built upon DenseNet [10], is

designed to overcome challenges such as vanishing gradients

in deep networks, facilitate feature propagation, encourage

feature reuse, and reduce the number of network parameters.

In CSPResNext50 and CSPDarknet53, the DenseNet structure

has been tailored to separate the feature map of the base layer,

thereby mitigating computational bottlenecks and enhancing

learning by directly passing an unedited feature map to the

subsequent stage.

YOLOv5 draws insights from YOLOv4’s research inquiry

to determine the optimal neck architecture. Both YOLOv4

and YOLOv5 feature the PA-NET neck for effective feature

aggregation, where each "Pi" represents a feature layer in the

CSP backbone. Other improvement is the auto-learning of

YOLO anchor boxes when custom data is input, eliminating

the need for manual anchor box tuning.

One of the main contributions of YOLOv5 repository is an

introduction of a model scaling, first proposed in EfficientNet

paper [11]. In contrast to conventional approach, that employ

arbitrary changes in model architecture, proposed scaling

method uniformly adjusts the network in depth, by changing

the number of convolutional blocks repetitions, as well as in

width, by changing number of filters in selected layers, using

a set of fixed scaling coefficients. The rationale behind the

compound scaling method is grounded in the intuitive under-

standing that to improve performance, the network requires ad-

ditional layers to expand the receptive field and more channels

to capture finer patterns in the larger image. YOLOv5 offers

different pre-trained model sizes (e.g., YOLOv5s, YOLOv5m,

YOLOv5l, YOLOv5x), which are variants of the same ar-

chitecture, but with different scaling parameters, balancing

computational costs and memory requirements.

B. You Only Look Once v7

The main focus of the introduced advancements in YOLOv7

was to achieve a superior balance between performance and

efficiency in real-time object detection.

One of the key advancements in YOLOv7 is the adop-

tion of the Efficient Layer Aggregation Networks (ELAN)

architecture as its backbone. ELAN considers memory access

cost and analyzes factors such as input/output channel ratio,

number of branches, and element-wise operations. This careful

analysis leads to reducing gradient propagation path, resulting

in faster and more accurate network inference, significantly

improving the overall efficiency of the model. Moreover,

gradient flow propagation paths also aids the module level

re-parameterization.

YOLOv7 also revisits the idea of auxiliary head proposed

in the Inception paper [12], that aids the initial model training

as well as reduces the vanishing gradient problem. Authors

experiment with varying degree of supervision for aux head,

settling on a coarse-to-fine definition where supervision is

passed back from the lead head at different granularities.

The concept of model scaling is further refined by the

authors, by compound scaling depth and width as well as layer

concatenation. As shown by ablation studies, this technique

keeps the model architecture optimal while scaling for differ-

ent sizes. Based on this, YOLOv7 provides different models

(e.g. YOLOv7-tiny, YOLOv7-X, YOLOv7-E6, YOLOv7-W6),

that have various size and scaling parameters. Each version is

tailored to different hardware configurations and requirements,

allowing users to choose the one that best suits their specific

needs and computing resources.

III. DATA ACQUISITION AND DESCRIPTION

A. Data acquisition

The video footage used in this study was captured using the

FLIR® A35 thermal imaging camera. The data acquisition pro-

cess was conducted during an autumn afternoon, specifically

between 2:30 PM and 3:15 PM, when the ambient temperature

ranged from 12°C to 14°C under clear weather conditions.

The recording setup involved capturing real-life traffic scenes

at high speeds. To achieve this, the camera was strategically

positioned on an elevated bridge overlooking the road. In

Figure 1, the provided images illustrate camera’s field of view,

showcasing the prevailing weather conditions and providing an

approximate depiction of the time of day. These meticulous

details ensure that the dataset encompasses realistic scenarios

and accurately represents the thermal imaging perspective in

a dynamic traffic environment.

B. Dataset description

Provided dataset extension consists of approximately 2000

annotated images with bounding boxes for 4 classes: car,

motorcycle, bus and truck. In order to maintain consistency

with previous version of dataset, all possible photos parameters

were kept as they were - resolution of 320x256 pixels and 8-

bit grayscale colors. For annotation we used DarkLabel [13]

software and kept the same class IDs.

In total, the dataset contains over 8000 images and approx-

imately 35000 annotations divided into 5 different classes, as

shown on Figure 3.

New images introduce not only new weather conditions,

but also other factors. The inclusion of highway traffic in our

dataset brings forth several key factors that differentiate it from

traditional city traffic datasets. Firstly, the higher speeds at

which vehicles are traveling introduce motion blur, making
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(a)

(b)

Figure 1: Camera’s field of view

the detection task more demanding. Additionally, the bigger

presence of larger vehicles, such as trucks compared to regular

city traffic.

Dataset, together with object detecting models, is publicly

available under the link: https://home.agh.edu.pl/~cyganek/

AutomotiveThermo2_0.zip.

C. Data structure

Alongside with this paper, dataset and object detection

models are provided. Dataset contains a total of over 8000

images divided into train, val and test subsets, each being

separate folder. Additionally, trained YOLOv5 and YOLOv7

based models are published.

D. Object detection model training

To ensure a fair and comprehensive comparison between

the YOLOv5 and YOLOv7 models, we adopted a systematic

training approach. For the YOLOv5-based model, we retrained

the previously published model, based on YOLOv5-M size

architecture, on the complete thermal automotive dataset. This

enabled us to evaluate the model’s performance on the same

dataset used for the YOLOv7 model.

Similarly, for the YOLOv7 model, we aimed to maintain

consistency in the training process. As default YOLOv7 model

size is comparable to YOLOv5-L, we have decided to scale

it down, so that the final models have similiar number of pa-

rameters and FLOPS. Therefore, for all our tests, we set depth

scaling parameter to 0.67 and width scaling parameter to 0.75.

This results in a model that has computational requirements of

60.4 GFLOPS (49.2 GFLOPS for YOLOv5-M), 21.26 million

parameters (21.19 million for YOLOv5-M) spread across 415

layers (291 layers in YOLOv5-M). We initially trained it using

a subset of the dataset to establish a baseline performance.

This step allowed us to gauge the model’s initial capabilities

before incorporating the expanded dataset. Subsequently, we

retrained the YOLOv7 model, taking advantage of the new

(a)

(b)

(c)

(d)

Figure 2: New sample images from the dataset
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Figure 3: Number of instances in each class.

training examples in the dataset. This sequential training

procedure facilitated a comprehensive analysis of the model’s

performance improvement with the addition of more data.

It is worth noting that both models underwent an initial pre-

training phase on the COCO dataset, a widely used benchmark

in computer vision. This pretraining step provided a foundation

for the models to learn general object detection capabilities

before being fine-tuned on the specific thermal automotive

dataset. By leveraging the pretrained models, we harnessed the

prior knowledge gained from the COCO dataset to enhance

the object detection performance of both the YOLOv5 and

YOLOv7 models on the thermal automotive dataset.

IV. EXPERIMENTAL PART AND MODELS COMPARISON

To evaluate the performance of the new dataset and compare

the YOLOv5 and YOLOv7 models, we conducted several

experiments using different training configurations.

A. Size of training dataset

Firstly, we tested how does dataset size affect training

results. We took pretrained models on previous dataset and

trained them using only half of the new dataset. Then we

again took previously trained models and trained them on the

entire new dataset. To avoid overfitting and yet to achieve best

results in models training, all were trained for 50 epochs.

Results of training all four models are presented in Figure 4.

These images present precision, recall, and mean average pre-

cision (mAP). As clearly visible, each model was increasing

its’ accuracy as with successive epochs. At first, advancements

were made rather rapidly to then slow down while coming to

the end of training, which was expected. Final numeric results

are summarized in Tables I and II.

Although the differences between using only half or entire

dataset are not very substantial, they display the overall trend

– the more data available, the more accurate the model is.

These numbers also show that using only part of the dataset,

provides us with acceptable results which might be enough

for object detection. However, we aim higher than that. The

Model Dataset Precision Recall
mAP

0.5 0.5:0.95

YOLOv5
Half 0.951 0.971 0.990 0.715

Entire 0.984 0.965 0.992 0.726

YOLOv7
Half 0.834 0.899 0.933 0.587

Entire 0.913 0.864 0.945 0.602

Table I: YOLOv5 and YOLOv7 models training results

Model Dataset Precision Recall
mAP

0.5 0.5:0.95

YOLOv5
Half 0.976 0.985 0.994 0.722

Entire 0.989 0.995 0.995 0.749

YOLOv7
Half 0.982 0.895 0.987 0.610

Entire 0.903 0.970 0.984 0.626

Table II: YOLOv5 and YOLOv7 evaluation results on test

subset

main goal is for the model to be as accurate and as robust as

possible.

B. YOLOv5 vs YOLOV7

After examination of what impact does dataset size have on

training results, we compared the two mentioned architectures.

Head-to-head numeric results are stored in Tables I and II.

Advancements made to YOLO architecture between v5 and

v7, would suggest newer version to be more accurate and have

better results than it’s predecessor. However it is not reflected

in our results. According to outcome received after training

both models, YOLOv5 outperforms YOLOv7. Particularly in

mAP_0.5:0.95 – 0.726 for YOLOv5 in contrary to 0.602 for

YOLOv7. The remaining results, although also in favor of

YOLOv5, are not as substantial as mean average precision.

These lead to a conclusion that in case of small 8-bit grey scale

images, YOLOv5 would be more reasonable to use, rather than

the newer YOLOv7.

During the training process of the YOLOv7 model on our

thermal automotive dataset, we observed a sudden drop in

precision, recall, and mAP scores. This unexpected decline

in performance raised the need for investigation to identify

the potential reasons behind this phenomenon. We search

through known issues with the YOLOv7 implementation (and

YOLOv5, as v7 codebase is heavily based on a code released

by Ultralytics) code repository. We discovered that similiar

problem was present in v5 code [14] and was possibly a code

error triggered by very small objects present in our dataset. It

was subsequently fixed in later releases, but it seems that it

was transfered to the v7 repository when forked [15].

We tried to mitigate it, firstly by changing different hy-

perparameters such as different losses, learning rate Com-

puteLossOTA, as those might have lead to miscalculating

loss function. Unfortunately though, changing values of these

hyperparameters did not result in great improvement. It only

shifted the sudden drop in epochs (e.g. drop happening in 3rd

epoch, not 23rd).

C. Virtual High Dynamic Range

In our pursuit of further enhancing the quality and informa-

tion content of our thermal automotive dataset, we explored the
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Figure 4: YOLOv5 and YOLOv7 models train results
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implementation of the Virtual High Dynamic Range (VHDR)

technique. Cyganek et al. [16] proposed another approach

towards the VHDR method for images enhancement. To

receive an VHDR image, an LDR image is taken as an

input and is being processed by a set of tone adjustment

curves to potentially reveal hidden details. Then it is fused

to HDR image. Lastly image range conversion and contrast

enhancement is done.

Based on our previous positive results with this kind of

image preprocessing [1], [2], we applied the VHDR technique

to our dataset and trained both the YOLOv5 and YOLOv7

models on this augmented dataset. However, in this case

the results did not demonstrate a significant improvement in

object detection performance. The mAP scores for both models

remained relatively unchanged when compared to the models

trained on the original dataset.

V. DISCUSSION

Our results show that the YOLOv5 model outperforms

YOLOv7 in terms of object detection accuracy on our ther-

mal automotive dataset. This is an interesting observation,

because v7 is both faster and achieves better results on regular

datasets [6]. However, this improvements were generated by

means of training procedure optimization and techniques like

model re-parametrization and dynamic label assignments [6].

These can lead to increase in performance, but it also needs

sufficiently big dataset to achieve that. When other modalities

are used, such as long wave infrared, obtaining large scale

training datasets is often unfeasible or even impossible. Older

methods, such as YOLOv5, are less prone to such problems

as their architecture is less data-specific. Additionally, the

spatial resolution of thermal images is relatively low, posing

a significant challenge for object detection, similar to the task

of detecting small objects in RGB images. Furthermore, the

limited input channel in thermal images further decreases the

availability of extracted features during the initial stages of

the network. However, the YOLOv5 algorithm addresses this

issue by incorporating a unique first layer known as the Focus

layer [17]. The primary purpose of this layer is to mitigate the

impact of the small number of input channels compared to the

significantly larger number of feature maps in deeper layers

of the network. This is achieved by dividing the input layers

into odd columns and rows, which are then redistributed as

additional channels, enhancing the representation of features,

similarly conceptually to dilated convolutions. Interestingly,

we also found that YOLOv5 achieved good performance

when trained on half the dataset, suggesting that it could

be a more practical choice for those with limited computa-

tional resources. Furthermore, when the entire dataset is used,

YOLOv5 also performs better, indicating that it is the better

choice for smaller datasets and less demanding applications.

In a parallel investigation, Yang [18] conducted a com-

prehensive analysis comparing the performance of YOLOv5,

YOLOv6, and YOLOv7 models. Interestingly, Yang’s findings

align closely with our own research, as he observed that the

YOLOv6 model exhibited superior performance compared to

its counterparts. This convergence in results reinforces the

efficacy of the YOLOv6 model and underscores its potential

for advancing object detection capabilities in various domains.

Olorunshola et al. [19] conducted comparable investigations

in the field, focusing on the performance of the YOLOv5

and YOLOv7 models. Their study employed the Google Open

Images Dataset, incorporating specific classes such as Person,

Handgun, Rifle, and Knife. Although their dataset comprised

slightly larger color images in contrast to our thermal dataset,

their findings echoed our own observations: YOLOv5 ex-

hibited superior performance across various metrics, with

the exception of Recall. These parallel outcomes indicate

a consistent trend in the comparative analysis of YOLOv5

and YOLOv7, further affirming the potential advantages of

YOLOv5 in object detection tasks.

VI. CONCLUSION

In this article, we introduced an expanded thermal automo-

tive dataset with approximately 2,000 new images and classes,

and a new object detection model based on YOLOv7. We

compared the performance of the new model with the previous

YOLOv5 model using the expanded dataset, and provided

insights into the acquisition process of the dataset. We made

our newest dataset available free from the Internet [7].

The results showed that the YOLOv5 model outperformed

the YOLOv7 model in terms of accuracy. This study con-

tributes to the development of safer and more efficient self-

driving cars by providing a better tool for object detection.

Future work will involve expanding the dataset further,

including adding images taken in different weather conditions

such as summer, which presents a harsher environment for

thermal imaging. These additions will help to improve the

robustness and versatility of our dataset and enable the devel-

opment of more accurate and reliable object detection models

for thermal automotive images.

In summary, this study provides valuable insights into the

use of advanced object detection models and thermal imaging

for object detection in the automotive industry. The expanded

thermal automotive dataset and both YOLOv5 and YOLOv7

models introduced in this article can be used as a benchmarks

for future research in this field.
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