
Mushroom Picking Framework with Cache

Memories for Solving Job Shop Scheduling

Problem

Piotr Jedrzejowicz, Izabela Wierzbowska

0000-0001-6104-1381

0000-0003-4818-4841

Department of Information Systems,

Gdynia Maritime University,

ul. Morska 81-87, 81-225 Gdynia, Poland;

Email: {p.jedrzejowicz, i.wierzbowska}@wznj.umg.edu.pl

Abstract—Applying population-based metaheuristics is a
known method of solving difficult optimization problems. In this
paper the search for the best solution is conducted by decentral-
ized, self-organized agents, working in parallel threads, in the
so called mushroom-picking method. The search is enhanced by
remembering in which part of the recently improved solution the
last successful change took place and intensifying the search in
this part. A computational experiment shows that introducing
the component for remembering the most recent changes may
improve the results obtained by the model in the case of JSSP
problems.

I. INTRODUCTION

P
OPULATION-BASED methods belong to the most ef-

fective approaches when dealing with computationally

difficult optimization problems, including combinatorial opti-

mization ones. A population, in a broad term, represents here

solutions of the problem, potential solutions, parts of solutions,

or some constructs that can be somehow transformed into

solutions.

The main focus while using population-based methods is to

find a proper mechanism controlling their three fundamental

components - intensification, diversification, and learning [1].

Diversification is understood as the method of identifying

diverse promising regions over the whole search space, while

intensification is the method of finding a solution by exploring

some promising regions. Learning is gaining and using the

knowledge of where and how applying intensification and

diversification operations. Population-based methods belong to

a wider class of metaheuristics. Metaheuristics differ between

themselves by using different intensification, diversification

and learning rules.

Pioneering population-based methods included genetic pro-

gramming – (GP) [2], genetic algorithms (GA) [3], evolution-

ary computations - EC [4], [5], ant colony optimization (ACO)

[6], particle swarm optimization (PSO) [7] and bee colony

algorithms (BCA) [8]. Since the nineties a massive number of

metaheuristics using the population-based paradigm have been

proposed (see reviews [9], [10]), some of them named after

biological, physical, chemical, and other natural sciences phe-

nomena. Generally, the discussed metaheuristics have achieved

a certain level of perfection in finding solutions to many

computationally difficult problems. None of them, however,

could be considered a champion and their performances differ

depending on the problem characteristics and specifications.

Moreover, a vast majority of well-performing population-

based metaheuristics require fine-tuning or even adaptation

to produce high-quality solutions to difficult computational

problems.

An important step towards increasing the effectiveness of

the population-based methods was the emergence, during the

last few decades, of commonly accessible technologies en-

abling parallelization of search over the solution space. Among

the successful attempts to parallelize searching for the best

solution among the population of solutions was parallel GA

on MapReduce framework using the Hadoop cluster [11]. The

method was designed for solving instances of the travelling

salesman problem (TSP). A similar approach for implementing

a parallel genetic algorithm with the Hadoop MapReduce for

TSP can be found in [12]. Spark-based ant colony optimization

algorithm for solving the TSP was proposed in [13]. A Spark-

based version of the population learning metaheuristic applied,

among others, to job-shop scheduling problem (JSSP) can be

found in [14]. Some extensive reviews of developments in

the field of parallel metaheuristics can be found in [15], [16],

and [17].

Job-shop scheduling problem (JSSP) is one of the “clas-

sic” computationally hard problems. In recent years sev-

eral approaches to solving the JSSP using population-based

metaheuristics have been proposed. Some examples of such

approaches include:

• Specialized cuckoo search algorithm [18].

• A hybrid particle swarm optimization (PSO) and neural

network algorithm [19].

• An improved whale optimization algorithm [20].

• Genetic Algorithm for JSSP [21].

• Wolf pack algorithm for JSSP [22].

Communication Papers of the 18th Conference on Computer

Science and Intelligence Systems pp. 157–164

DOI: 10.15439/2023F9294

ISSN 2300-5963 ACSIS, Vol. 37

©2023, PTI 157 Thematic track: Computational Optimization



• Biomimicry hybrid bacterial foraging optimization algo-

rithm for JSSP [23].

• Hybrid harmony search algorithm for JSSP [24].

• Discrete particle swarm optimization (PSO) algorithm for

JSSP [25].

• Hybrid PSO optimization algorithm with nonlinear iner-

tial weight and Gaussian mutation for JSSP. [26]

To take advantage of the expected speed-up several attempts

of using parallel computational environments for solving the

JSSP have been also recently reported. MapReduce coral reef

algorithm for solving JSSP instances was proposed by [27].

The distributed Evolutionary Algorithm for scheduling large-

scale problems was suggested by [28]. An efficient parallel

tabu search for the blocking job shop scheduling problem was

suggested by [29].

Another metaheuristic designed for parallel environments

named Mushroom Picking Algorithm (MPA) was proposed by

the authors in [30]. The approach proved successful in solving

the JSSP instances. Motivated by the good performance of the

MPA when solving the JSSP we proposed in [31] an extension

of the MPA in the form of the software framework named

Mushroom Picking Framework (MPF). The MPF provides a

generic functionality of parallel searching for the best solution

among population members and is implemented as a multiple-

agent system. MPF can be adopted by a user to fit particular

combinatorial problem requirements.

In this paper, we further extend the MPF by equipping

each solution with a cache memory where recent changes that

occur during the search process are stored. The extended MPF

is denoted as MPF+. The rest of the paper is organized as

follows. Section 2 contains a description of the Mushroom

Picking Framework with cache memories. Section 3 recalls

briefly the Job Shop Scheduling Problem. Section 4 explains

our implementation of the proposed MPF with cache memories

for solving JSSP instances. Section five presents the results of

the computational experiment held to validate the approach.

The final section contains conclusions and suggestions for

future research.

II. MUSHROOM PICKING FRAMEWORK WITH CACHE

MEMORIES

A. Mushroom Picking Algorithm (MPA)

Mushroom Picking Algorithm was introduced in [30] for

solving difficult optimization problems. It is characterized by

the following features:

• It operates on a population of individuals representing so-

lutions to the given combinatorial optimization problem.

• It uses a set of agents, that may improve a solution or

solutions from the population

• Randomly selected agents try to improve randomly se-

lected solutions. If successful, the resulting solution may

replace a solution from the population.

Each agent reads a solution or solutions, depending on its

improvement method and requirements as to the number of

the input solutions (here one or two). Each agent then runs its

internal improvement algorithm creating a new solution. If the

fitness of a newly generated solution is better than the fitness

value of the solution drawn from the population, or is better

than the worse fitness of the two initially drawn solutions, it

replaces the worse solution.

In order to avoid obtaining a population with a very low

diversity of solutions, whenever two solutions drawn from the

population are similar to one another, one of them is replaced

by a new, random solution. The similarity of solutions is

decided through a comparison of the respective fitness values.

If these values are identical or differ by a predefined value,

solutions are considered identical. The procedure allows for

the maintenance of the required diversity of solutions in the

population.

B. Mushroom Picking Framework (MPF)

Mushroom Picking Framework works in the following man-

ner:

• The initial population of solutions is generated.

• The search for the best solution is performed in cycles.

• In each cycle, the population of solutions is divided into

several subpopulations of equal size.

• Using the Apache Spark functionality subpopulations are

independently and in parallel explored by improvement

agents. Each subpopulation is processed in a separate

thread.

• In each subpopulation the Mushroom Picking Algorithm

is used to improve solutions.

• After each cycle, all the solutions from the subpopulations

are drawn back into the common memory and shuffled.

• A predefined number of the worst solutions may be

replaced by the currently best one. Then the next cycle

begins.

The process of searching for the best solution is iterative

and runs as described by Algorithm 1. The stopping criterion

is defined by the maximum number of consecutive cycles in

which the best solution in the population does not improve (the

process ends when the best makespan of the solutions has not

changed for predefined number of consecutive cycles).

What happens within the method optimize is shown as

Algorithm 2. In each subpopulation, the process of applying

improvement agents to solutions - MPA - is represented

by the p.applyOptimizations in Algorithm 2. Attempted

improvements are executed by improvement agents. The set

of agents in each subpopulation is identical and consists of an

equal number of agents of the same type.

Algorithm 1 Mushroom Picking Framework operation

solutions← set of random solutions;

2: while ! stoppingCriterion do

solutions← solutions.optimize;

4: bestSolution ← the best solution chosen from

solutions;

end while

6: return bestSolution;

158 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



Algorithm 2 Method optimize

Require:

solutions = set of solutions;

2: k = number of parallel threads in which the solutions will be processed;

Ensure:

populations← solutions divided to a list of k-element subpopulations;

4: populationsRDD ← populations parallelized in Apache Spark;

populationsRDD ← populationsRDD.map(p => p.applyOptimizations);
6: solutions← solutions collected from populationsRDD;

solutions← solutions with l worst solutions replaced with the best solution;

The framework may be used for all problems, for which a

task, a solution with a method that returns the fitness value,

and a set of agents working as in MPA is defined.

C. Cache memories

For the JSSP instances, we use the MPF implementation

proposed in [31] extended by adding the cache memory to each

population member. The extended framework will be denoted

as MPF+.

The general assumption is that solutions are encoded in the

form of lists. In our framework improvement agents try to

improve current solutions by moving, swapping, or modifying

parts of the lists that encode solutions. The proposed cache

memory is used to record and store for each solution the

position (index in the list representing the solution), in which

the last successful improvement move or change took place.

The above feature helps to intensify the search for successful

moves in the vicinity of the recent change. The idea of

using information stored in the cache memory is to improve

the synergistic effects of agent interactions, by providing the

current information on which part of the solution they should

focus it the next step.

Since we consider solutions that are represented as a list,

changing an element in such a list (for example moving

or swapping it with another element), results in saving its

position together with the respective weight which is allo-

cated by the user. In the next iteration of improvement in

ApplyOptimizations, the new starting position for a change

is drawn at random from the close neighborhood of the

element at the saved position, and either the weight’s value

is reduced by one or - if the next change successfully led

to a solution with better makespan - a new position with the

maximum weight is remembered. When after several iterations

the weight reaches value 0, the saved position receives a

random value.

The process described above is shown as Algorithm 3.

For simplicity’s sake, Algorithm 3 covers the case of a

single argument agent. The cache memory is represented by

solution.position and solution.weight values. When cre-

ating a random solution, its position and weight are set

to random position and maximum weight. The radius and

the maximum weight are both predefined as the algorithm

parameters.

III. JOB SHOP SCHEDULING PROBLEM (JSSP)

Job shop scheduling problem (JSSP) is a well-known NP-

hard optimization problem in which n jobs (J1, . . . Jn) must

be processed on m machines (m1, . . .mm).
In JSSP each job consists of a list of operations, the

operations must be processed in the exact order as in the

given list, and only after all preceding operations have been

completed. Also every operation has to be processed on a

specific machine in the given time. The operations cannot be

interrupted and each machine can process only one operation

at a time.

The makespan is defined as the length of the schedule, or

the time in which all operations of all jobs will be processed.

The JSSP objective is to find such schedule, that its makespan

is minimal.

In JSSP a solution may be represented as sequence of jobs’

numbers of the length ≤ n×m. In this sequence each job j

appears at most m times, and the i-th occurence of the job

corresponds to the i-th operation of this job. The algorithm in

this paper uses this representation to find the solution with the

smallest makespan.

Fig. 1 presents a solution of JSSP problem that may

be represented by, for example, list (1,2,0,1,1,2,0,0) or

(2,1,0,1,2,1,0,0).

Fig. 1: Solution of JSSP task with makespan 12

IV. MPF+ IMPLEMENTATION FOR SOLVING JSSP

INSTANCES

In the Mushroom Picking Framework, one has to define the

task, the solution and the agents. We implement the solutions

as lists of job numbers - as it has been described in the previous

section. All solutions in the initial population are randomly

generated. The agents that try to improve solutions transform

the lists by changing the order of elements or moving the

elements to different positions. In the MPF+ for JSSP, the

following agents are used:

PIOTR JĘDRZEJOWICZ, IZABELA WIERZBOWSKA: MUSHROOM PICKING FRAMEWORK WITH CACHE MEMORIES FOR SOLVING JOB SHOP 159



Algorithm 3 ApplyOptimizations with cache memory of recent changes

Require:

W =maximum weight;

2: R =radius;

Ensure:

for iteration in the given range do

4: agent← agent drawn at random according to some probability set by the user;

solution← random solution;

6: if solution.weight > 0 then

newWeight← solution.weight− 1
8: newPosition← random(solution.position−R, solution.position+R);

else

10: newWeight← solution.weight;

newPosition← random(0, solution.size);
12: end if

optimizedSolution with optPosition and optWeight← agent(solution, start = newPosition);
14: if optimizedSolution is better than solution then

return optimizedSolution with optPosition and optWeight;

16: else

return solution with newPosition and newWeight;

18: end if

end for

• RandomSwap - replaces pairs representing jobs on two

random positions in the list of pairs. If successful, the

position of the first swapped element is remembered as

the base for future exploring.

• RandomMove - moves one element representing the job

and moves it to another, random position. If successful,

the original position of the element is remembered as the

base for future exploration.

• RandomOrder - takes a random slice of the list and

shuffles the elements in this slice (the order of the slice’

elements changes at random). If successful, the middle

element of the slice is remembered as the base for future

exploration.

• RandomCrossover - requires two randomly drawn solu-

tions. A slice from the first solution is extended with the

missing elements in the order as in the second solution. If

successful, the middle element of the slice is remembered

as the base for future exploration.

Each agent stores in the solution’s memory index of one

element of the list representing solution. When the solu-

tion is again sent to an agent (in the next iteration in

the ApplyOptimizations method), the agent will draw the

starting point for the transformation from the part of the

solution given by the range of indices: (solution.position−
R, solution.position+R), where R is given as the algorithm

parameter.

Each iteration of the ApplyOptimizations method

starts with drawing at random an agent. The agents

are drawn with the following probabilities: 0.28 for

each one-argument agent and 0.14 for RandomCrossover

agent, to maintain the empirically identified required

frequency of calling a single and double argument

agents.

V. RESULTS

A. Computational experiment

To validate the proposed approach, we have carried out

several computational experiments. Experiments were run on

a benchmark dataset for the JSSP problem: the set of 40 in-

stances proposed by Lawrence [32], that have sizes from 5x10

to 15x15. All computations have been run on the Spark cluster

at the Centre of Informatics Tricity Academic Supercomputer

and Network (CI TASK) in Gdansk. In all experiments 240

subpopulations have been used, each consisting of 3 solutions.

These subpopulations have not been processed literally in

parallel due to a varying temporary constraint on the number

of available nodes. Using a cluster with more allocated nodes

would lead to shorter computation times, as demonstrated

in [31].

The use of our cache memory has been controlled by

two parameters R and W . R is used to define the range

of solution elements from which the next starting point for

an agent will be drawn. The starting point is drawn from

(position − R, position + R). R parameter has been set to

5 in all experiments. W is the weight assigned to a solution

after an agent performs a change. Its value was set to 0, 10,

or 15, where 0 value results in not using the cache memory at

all. For tasks from la01 to la15 and task la31, if the solution

was calculated using the cache memory, the weight of 10 was

used. For the remaining solutions, their initial weight was set

as 15.

The time of computations mainly depends on the number

of iterations in one cycle, and the stopping criterion, which

160 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



is the maximum number of cycles in which the best solution

does not change, denoted mwc. The number of iterations was

set to 1000, 3000 or 6000 iterations in one cycle. The mwc

was set to 2 or 5. The values of parameters that were used in

the experiment are described in the Table I.

TABLE I: Parameters used at the experiments

Task R and W if cache used Number of iterations

la01 5, 10 1000 2
la02 5, 10 3000 2
la03 5, 10 3000 5
la04 5, 10 3000 2

la05-la15 5, 10 3000 2
la16-la27 5, 15 3000 5
la28-la30 5, 15 6000 5

la31 5, 10 3000 2
la32 5, 15 3000 5
la33 5, 15 3000 2

la34-la35 5, 15 3000 5
la36-la40 5, 15 6000 5

Average computation times and average errors are shown in

Table II. BKS stands for the best-known solution (in terms of

the solution makespan) and the errors have been calculated for

BKS values. The average errors and times have been calculated

from at least 30 results.

Tables III and IV contain a comparison of results obtained

by MPF+ with results obtained by other recently published

algorithms. Table III contains Q-Learning Algorithm (QL,

[33]) and a hybrid EOSMA algorithm [34] that mixes the

strategies of Equilibrium Optimizer (EO) and Slime Mould

Algorithm (SMA). Table IV shows results for the Coral Reef

Optimization (CROLS, [35]). The average errors for CROLS,

QL and EOSMA algorithms have been calculated based on

average results given in the original papers. In the case of

the Coral Reef Optimization results reported in [35] were

given for only chosen instances of the problem. The Coral

Reef algorithm was run for three different reef sizes. For each

task in the table, the best Coral Reef Optimization result was

chosen from among the three available results in [35]. In the

case of QL0 and QL1 [33] running times of algorithms were

not given. Algorithm EOSMA needed from over 10 seconds

to 103 seconds of running time.

Figures 2 and 3 present convergence for six different runs

of the algorithm for tasks ls03 and la26 respectively. For both

figures such runs of the algorithm have been chosen for which

solutions with the best known makespan were found. In three

of the runs the cache memories were used (red lines with

triangles), and three runs did not use the cache memories (blue

lines with circles).

VI. DISCUSSION

From Table II it can be seen, that in many cases inten-

sifying the search using data stored in the proposed cache

memory leads to better results obtained in comparable and

even occasionally shorter times. To gain better knowledge of

the performance of the proposed MPF+ implementation as

compared with its earlier version (MPF) we have carried out a

pairwise comparison using the Wilcoxon matched pairs tests.

Fig. 2: Convergence for runs with and without cache on la03

Fig. 3: Convergence for runs with and without cache on la26

The null hypothesis in such a case states that results produced

by two different methods are drawn from samples with the

same distribution. With T statistics equal to 53.00, Z statistics

equal to 2.771429, and a p-value equal to 0.005581, the null

hypothesis has to be rejected at the significance level of 0.05.

Analysis of results from Tables III and IV allows observing

that MPF+ implementation for solving the JSSP instances

performs well as compared with several other approaches

offering for numerous instances better performance or shorter

computation time.

From Fig. 2 and Fig. 3 it can be noticed that most runs in

which the cache was used required less time to finish. The

markers show the error of the best makespan found at the

time when a cycle ends, and after most of the cycles the best

makespan value found so far was better in cases when the

cache was used.

VII. CONCLUSION

The main contribution of the paper is extending the earlier

proposed Mushroom Picking Framework by incorporating the,

so-called, cache memory. It serves to store recent changes to

solutions effected by improvement agents. A novel version of

the framework referred to as MPF+ can be used for solving

a variety of computationally hard combinatorial optimization

problems. The approach takes advantage of better controlling

the intensification part of searching for the best solution. The

PIOTR JĘDRZEJOWICZ, IZABELA WIERZBOWSKA: MUSHROOM PICKING FRAMEWORK WITH CACHE MEMORIES FOR SOLVING JOB SHOP 161



TABLE II: Average computation times and average errors obtained in the experiment

MPF MPF+

Task BKS Avg err Avg time (s) Avg err Avg time (s)

la01 666 0.00% 3.53 0.00% 3,07

la02 655 0.00% 11.33 0.00% 9,93
la03 597 0.45% 23.67 0.25% 22,37
la04 590 0.07% 10.97 0.02% 13.33
la05 593 0.00% 8.23 0.00% 8.40
la06 926 0.00% 11.93 0.00% 13.10
la07 890 0.00% 14.33 0.00% 13.20

la08 863 0.00% 10.23 0.00% 10.40
la09 951 0.00% 10.03 0.00% 10.10
la10 958 0.00% 12.23 0.00% 10.63
la11 1222 0.00% 13.20 0.00% 13.43
la12 1039 0.00% 13.50 0.00% 13.27

la13 1150 0.00% 13.57 0.00% 13.20
la14 1292 0.00% 13.23 0.00% 13.60
la15 1207 0.00% 18.23 0.00% 20.27
la16 945 0.47% 60.23 0.34% 43.07

la17 784 0.39% 42.83 0.27% 46.43
la18 848 0.44% 45.85 0.33% 48.63
la19 842 1.15% 54.13 1.34% 47.23

la20 901 0.65% 38.60 0.63% 37.43

la21 1046 3.94% 121.70 3.57% 125.93
la22 927 2.64% 152.43 2.80% 113.73
la23 1032 0.05% 96.23 0.07% 87.07

la24 935 4.14% 103.90 4.12% 111.63
la25 977 4.13% 126.53 3.75% 122.73

la26 1218 2.18% 199.20 1.96% 197.83

la27 1235 5.60% 171.40 5.40% 200.10
la28 1216 3.23% 321.67 3.31% 419.83
la29 1152 7.95% 363.13 7.43% 428.90
la30 1355 0.92% 375.63 0.60% 347.87

la31 1784 0.00% 146.73 0.00% 155.53
la32 1850 0.00% 227.83 0.00% 235.50
la33 1719 0.00% 222.00 0.00% 176.17

la34 1721 0.58% 366.90 0.62% 388.87
la35 1888 0.11% 274.83 0.06% 298.97
la36 1268 4.46% 290.15 4.51% 311.85
la37 1397 4.95% 372.18 4.83% 380.53
la38 1196 6.42% 434.65 6.11% 411.63

la39 1233 4.25% 375.90 3.15% 436.53
la40 1222 4.37% 350.20 4.36% 390.07

avg 1.59% 138.08 1.50% 143.81

mechanism helps enhance the synergetic effects of interactions

between agents by providing constantly updated information

pointing directly at a part of the solution in which the recent

change caused some improvement of the fitness function value.

As a test-bed for validation purposes, we have selected one

of the classic computationally hard combinatorial optimiza-

tion problems – the job shop scheduling problem. While

incorporating the proposed cache memory has not caused

a dramatic improvement in the quality of results, it helped

nevertheless to improve some of them, and in many cases has

led to a shortening of the computation time. For the JSSP

results obtained in the experiments are competitive, even if

the cluster environment that has served as the platform to

run the programs has not been able to provide fully parallel

computations for all threads.

We believe that the MPF+ could be further improved.

Future research should focus on finding mechanisms for the

automatic setting of weights values depending on the scale of

improvements. Another possibility is to take advantage of re-

inforcement learning techniques for controlling and managing

the course of computations.

ACKNOWLEDGMENT

This research was funded by Gdynia Maritime University,

grant number WZNJ/2023/PZ/03

REFERENCES

[1] F. Glover and M. Samorani, “Intensification, diversification and learning
in metaheuristic optimization,” Journal of Heuristics, vol. 25, 03 2019.
doi: 10.1007/s10732-019-09409-w

[2] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992. ISBN 0-262-11170-5

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Reading, MA: Addison-Wesley, 1989.

[4] D. B. Fogel, “On the relationship between the duration of
an encounter and the evaluation of cooperation in the iterated
prisoner’s dilemma,” Evol. Comput., vol. 3, no. 3, pp. 349–363,
1995. doi: 10.1162/evco.1995.3.3.349. [Online]. Available: https:
//doi.org/10.1162/evco.1995.3.3.349

162 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE III: Comparison of results obtained by MPF+ with other recently published results (average error and average running

time)

Task MPF+ QL01 [33] QL02 [33] EOSMA [34]
err time (s) err err err

la01 0.00% 3.07 0.00% 0.15% 0.00%
la02 0.00% 9.93 4.58% 3.21% 0.00%
la03 0.25% 22.37 3.69% 5.03% 2.35%
la04 0.02% 13.33 5.08% 3.05% 0.00%
la05 0.00% 8.40 0.00% 0.00% 0.00%
la06 0.00% 13,10 0.00% 0.00% 0.00%
la07 0.00% 13,20 8.65% 0.11% 0.00%
la08 0.00% 10.40 1.51% 0.00% 0.00%
la09 0.00% 10.10 0.00% 0.00% 0.00%
la10 0.00% 10.63 0.00% 0.00% 0.00%
la11 0.00% 13.43 0.00% 0.00% 0.00%
la12 0.00% 13.27 0.00% 0.00% 0.00%
la13 0.00% 13.20 0.00% 0.00% 0.00%
la14 0.00% 13.60 0.00% 0.00% 0.00%
la15 0.00% 20.27 7.87% 4.06% 0.00%
la16 0.34% 43.07 4.02% 5.08% 3.24%
la17 0.27% 46.43 2.04% 2.55% 1.13%
la18 0.33% 48.63 2.95% 3.07% 2.22%
la19 1.34% 47.23 3.92% 6.29% 4.17%
la20 0.63% 37.43 4.22% 4.55% 1.67%
la21 3.57% 125.93 5.83% 12.81% 7.07%
la22 2.80% 113.73 10.25% 18.99% 5.79%
la23 0.07% 87.07 0.58% 6.59% 1.45%
la24 4.12% 111.63 6.95% 15.19% 7.91%
la25 3.75% 122,73 9.93% 14.23% 7.11%
la26 1.96% 197.83 6.90% 17.65% 4.82%
la27 5.40% 200.10 10.45% 18.95% 9.02%
la28 3.31% 419.83 11.68% 15.79% 7.26%
la29 7.43% 428.90 18.32% 24.91% 11.83%
la30 0.60% 347.87 2.58% 14.10% 3.88%
la31 0.00% 155.53 4.09% 6.84% 0.08%
la32 0.00% 235.50 3.46% 8.22% 0.19%
la33 0.00% 176.17 5.70% 6.92% 0.17%
la34 0.62% 388.87 6.22% 12.38% 2.16%
la35 0.06% 298.97 5.14% 11.55% 0.42%
la36 4.51% 311.85 11.59% 16.72% 6.38%
la37 4.83% 380.53 9.74% 14.96% 9.14%
la38 6.11% 411.63 11.54% 19.98% 11.19%
la39 3.15% 436.53 10.14% 18.09% 8.43%
la40 4.36% 390.07 7.28% 22.09% 8.93%

avg 1.37% 126.96 5.17% 8.35% 3.20%

[5] Z. Michalewicz, “Genetic algorithms + data structures = evolution
programs,” in Springer Berlin Heidelberg, 1996. doi: 10.1007/978-3-
662-03315-9

[6] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents,” IEEE transactions on systems,

man, and cybernetics. Part B, Cybernetics : a publication of the IEEE

Systems, Man, and Cybernetics Society, vol. 26 1, pp. 29–41, 1996. doi:
10.1109/3477.484436

[7] R. Poli, J. Kennedy, and T. M. Blackwell, “Particle swarm op-
timization,” Swarm Intelligence, vol. 1, pp. 33–57, 1995. doi:
10.1109/icnn.1995.488968

[8] T. Sato and M. Hagiwara, “Bee system: finding solution by a concen-
trated search,” 1997 IEEE International Conference on Systems, Man,

and Cybernetics. Computational Cybernetics and Simulation, vol. 4, pp.
3954–3959 vol.4, 1997.

[9] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, “Multi-
population techniques in nature inspired optimization algorithms: A
comprehensive survey,” Swarm Evol. Comput., vol. 44, pp. 365–387,
2019. doi: 10.1016/j.swevo.2018.04.011

[10] P. Jedrzejowicz, “Current trends in the population-based optimization,”
in Computational Collective Intelligence, N. T. Nguyen, R. Chbeir,
E. Exposito, P. Aniorté, and B. Trawiński, Eds. Cham: Springer
International Publishing, 2019. doi: 10.1007/978-3-030-28377-3_4343.
ISBN 978-3-030-28377-3 pp. 523–534.

[11] H. R. Er and N. Erdogan, “Parallel genetic algorithm to solve traveling
salesman problem on mapreduce framework using hadoop cluster,”
JSCSE, 01 2014. doi: 10.7321/jscse.v3.n3.57

[12] E. Alanzi and H. Bennaceur, “Hadoop mapreduce for parallel genetic
algorithm to solve traveling salesman problem,” International Journal

of Advanced Computer Science and Applications, vol. 10, 01 2019. doi:
10.14569/IJACSA.2019.0100814

[13] Y. Karouani and Z. Elhoussaine, “Efficient spark-based framework for
solving the traveling salesman problem using a distributed swarm intelli-
gence method,” in 2018 International Conference on Intelligent Systems

and Computer Vision (ISCV), 2018. doi: 10.1109/ISACV.2018.8354075
pp. 1–6.

[14] P. Jedrzejowicz and I. Wierzbowska, “Apache spark as a tool for parallel
population-based optimization,” in Intelligent Decision Technologies

2019, I. Czarnowski, R. J. Howlett, and L. C. Jain, Eds. Singapore:
Springer Singapore, 2020. ISBN 978-981-13-8311-3 pp. 181–190.

[15] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics:
Recent advances and new trends,” International Transactions in Op-

erational Research, vol. 20, pp. 1–48, 08 2012. doi: 10.1111/j.1475-
3995.2012.00862.x

[16] P. González, X. Pardo, R. Doallo, and J. Banga, “Implementing
cloud-based parallel metaheuristics: an overview,” Journal of Com-

puter Science and Technology, vol. 18, p. e26, 12 2018. doi:
10.24215/16666038.18.e26

PIOTR JĘDRZEJOWICZ, IZABELA WIERZBOWSKA: MUSHROOM PICKING FRAMEWORK WITH CACHE MEMORIES FOR SOLVING JOB SHOP 163



TABLE IV: Comparison of results obtained by MPF+ with other recently published results (average error and average running

time for chosen la instances)

Task MPF+ CROLS1 [35] CROLS2 [35]
err time (s) err time (s) err time (s)

la01 0.00% 3.07 0.00% 39,91 0.00% 15.64
la02 0.00% 9.93 0.00% 40.91 0.00% 15.27
la06 0.00% 13,10 0.00% 151.82 0.00% 92.45
la07 0.00% 13,20 0.08% 148.18 0.00% 88.73
la11 0.00% 13.43 0.00% 224.09 0.00% 136.55
la12 0.00% 13.27 0.03% 228.55 0.00% 149.91
la16 0.34% 43.07 0.29% 125.91 0.39% 132.55
la17 0.27% 46.43 0.17% 198.55 0.39% 130.09
la21 3.57% 125.93 0.27% 269.36 0.63% 165.55
la22 2.80% 113.73 0.62% 185.18 0.56% 265.55
la26 1.96% 197.83 0.98% 281.73 1.01% 440.36
la27 5.40% 200.10 0.33% 260.18 0.34% 447.36
la32 0.00% 235.50 0.16% 453.45 0.12% 418.45
la33 0.00% 176.17 0.08% 643.09 0.29% 617.27
la39 3.15% 436.53 0.70% 675.45 0.37% 502.82
la40 4.36% 390.07 1.33% 585.45 2.16% 495.55

avg 1.37% 126.96 0.32% 281.99 0.39% 257.13

[17] M. Essaid, L. Idoumghar, J. Lepagnot, and M. Brévilliers, “GPU paral-
lelization strategies for metaheuristics: a survey,” International Journal

of Parallel, Emergent and Distributed Systems, vol. 34, pp. 1–26, 01
2018. doi: 10.1080/17445760.2018.1428969

[18] H. Hu, W. Lei, X. Gao, and Y. Zhang, “Job-shop scheduling prob-
lem based on improved cuckoo search algorithm,” International Jour-

nal of Simulation Modelling, vol. 17, pp. 337–346, 06 2018. doi:
10.2507/IJSIMM17(2)CO8

[19] Z. Zhang, Z. Guan, J. Zhang, and X. Xie, “A novel job-shop scheduling
strategy based on particle swarm optimization and neural network,”
International Journal of Simulation Modelling, vol. 18, pp. 699–707,
12 2019. doi: 10.2507/IJSIMM18(4)CO18

[20] J. Zhu, Z. Shao, and C. Chen, “An improved whale optimization
algorithm for job-shop scheduling based on quantum computing,” In-

ternational Journal of Simulation Modelling, vol. 18, pp. 521–530, 09
2019. doi: 10.2507/IJSIMM18(3)CO13

[21] X. Chen, B. Zhang, and D. Gao, “Algorithm based on improved
genetic algorithm for job shop scheduling problem,” in 2019

IEEE International Conference on Mechatronics and Automation

(ICMA). IEEE Press, 2019. doi: 10.1109/ICMA.2019.8816334.
ISBN 978-1-7281-1698-3 p. 951–956. [Online]. Available: https:
//doi.org/10.1109/ICMA.2019.8816334

[22] F. Wang, Y. Tian, and X. Wang, “A discrete wolf pack algorithm for
job shop scheduling problem,” in 2019 5th International Conference

on Control, Automation and Robotics (ICCAR), 2019. doi: 10.1109/IC-
CAR.2019.8813444 pp. 581–585.

[23] A. Vital-Soto, A. Azab, and M. Baki, “Mathematical modeling and
a hybridized bacterial foraging optimization algorithm for the flex-
ible job-shop scheduling problem with sequencing flexibility,” Jour-

nal of Manufacturing Systems, vol. 54, pp. 74–93, 01 2020. doi:
10.1016/j.jmsy.2019.11.010

[24] H. Piroozfard, K. Y. Wong, and A. D. Asl, “A hybrid harmony search
algorithm for the job shop scheduling problems,” in 2015 8th Interna-

tional Conference on Advanced Software Engineering & Its Applications

(ASEA), 2015. doi: 10.1109/ASEA.2015.23 pp. 48–52.

[25] R. Krishnaswamy and C. Rajendran, “A novel discrete PSO algorithm
for solving job shop scheduling problem to minimize makespan,” IOP

Conference Series: Materials Science and Engineering, vol. 310, p.
012143, 02 2018. doi: 10.1088/1757-899X/310/1/012143

[26] H. Yu, Y. Gao, L. Wang, and J. Meng, “A hybrid particle swarm
optimization algorithm enhanced with nonlinear inertial weight and
gaussian mutation for job shop scheduling problems,” Mathematics,
vol. 8, no. 8, p. 1355, Aug 2020. doi: 10.3390/math8081355. [Online].
Available: http://dx.doi.org/10.3390/math8081355

[27] C.-W. Tsai, H.-C. Chang, K.-C. Hu, and M.-C. Chiang, “Parallel coral
reef algorithm for solving JSP on spark,” in 2016 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2016. doi:
10.1109/SMC.2016.7844511 pp. 001 872–001 877.

[28] L. Sun, L. Lin, H. Li, and M. Gen, “Large scale flexible
scheduling optimization by a distributed evolutionary algorithm,”
Computers & Industrial Engineering, vol. 128, pp. 894–904,
2019. doi: https://doi.org/10.1016/j.cie.2018.09.025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S036083521830442X

[29] A. Dabah, A. Bendjoudi, A. AitZai, and N. Nouali-Taboudjemat, “Effi-
cient parallel tabu search for the blocking job shop scheduling problem,”
Soft Computing, vol. 23, p. 13283–13295, 12 2019. doi: 10.1007/s00500-
019-03871-1

[30] P. Jedrzejowicz and I. Wierzbowska, “Parallelized swarm intelligence
approach for solving TSP and JSSP problems,” Algorithms, vol. 13,
no. 6, p. 142, Jun 2020. doi: 10.3390/a13060142. [Online]. Available:
http://dx.doi.org/10.3390/a13060142

[31] P. Jedrzejowicz, E. Ratajczak-Ropel, and I. Wierzbowska, “A
population-based framework for solving the job shop scheduling
problem,” in Computational Collective Intelligence: 13th International

Conference, ICCCI 2021, Rhodes, Greece, September 29 – October

1, 2021, Proceedings. Berlin, Heidelberg: Springer-Verlag, 2021. doi:
10.1007/978-3-030-88081-1_26. ISBN 978-3-030-88080-4 p. 347–359.
[Online]. Available: https://doi.org/10.1007/978-3-030-88081-1_26

[32] S. Lawrence, “Resource constrained project scheduling - technical
report,” Carnegie-Mellon University: Pittsburgh, PA, USA, Tech. Rep.,
1984.

[33] M. A. Belmamoune, L. Ghomri, and Z. Yahouni, “Solving a job shop
scheduling problem using Q-learning algorithm,” in Service Oriented,

Holonic and Multi-Agent Manufacturing Systems for Industry of the

Future, T. Borangiu, D. Trentesaux, and P. Leitão, Eds. Cham:
Springer International Publishing, 2023. doi: 10.1007/978-3-031-24291-
5_16. ISBN 978-3-031-24291-5 pp. 196–209.

[34] Y. Wei, Z. Othman, K. Mohd Daud, S. Yin, and Q. Luo, “Equilibrium
optimizer and slime mould algorithm with variable neighborhood search
for job shop scheduling problem,” Mathematics, vol. 10, p. 4063, 11
2022. doi: 10.3390/math10214063

[35] C.-S. Shieh, T.-T. Nguyen, W.-W. Lin, D.-C. Nguyen, and M.-
F. Horng, “Modified coral reef optimization methods for job
shop scheduling problems,” Applied Sciences, vol. 12, no. 19, p.
9867, Sep 2022. doi: 10.3390/app12199867. [Online]. Available:
http://dx.doi.org/10.3390/app12199867

164 COMMUNICATION PAPERS OF THE FEDCSIS. WARSAW, POLAND, 2023


