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Abstract—In precision agriculture, non-invasive remote sensing
using UAVs can be employed to observe crops in visible and non-
visible spectra. This paper investigates the effectiveness of state-
of-the-art knowledge distillation techniques for mapping weeds
with drones, an essential component of precision agriculture that
employs remote sensing to monitor crops and weeds. The study
introduces a lightweight Vision Transformer-based model that
achieves optimal weed mapping capabilities while maintaining
minimal computation time. The research shows that the student
model effectively learns from the teacher model using the
WeedMap dataset, achieving accurate results suitable for mobile
platforms such as drones, with only 0.5 GMacs compared to
42.5 GMacs of the teacher model. The trained models obtained
an F1 score of 0.863 and 0.631 on two data subsets, with a
performance improvement of 2 and 7 points, respectively, over
the undistilled model. The study results suggest that developing
efficient computer vision algorithms on drones can significantly
improve agricultural management practices, leading to greater
profitability and environmental sustainability.

I. INTRODUCTION

P
RECISION agriculture has become increasingly impor-
tant due to the growth of the world’s population—which

is expected to reach nine billion people by 2050—and the
resulting need to increase food production [1]. However, the
resources that sustain agriculture are becoming increasingly
scarce, degraded, and vulnerable to climate change. This has
led to the need for more sustainable and efficient agricultural
practices that make optimal use of available resources.

Unmanned aerial vehicles (UAVs), also known as drones,
have emerged as valuable tools for precision agriculture due to
their versatility and affordability [2]. They can capture high-
resolution images and data from agricultural fields, which can
be used to monitor crop growth, identify diseases and pests,
and optimize irrigation. By providing farmers with accurate
and timely information, drones can help reduce costs, increase
yields, and minimize the use of inputs such as water, fertilizer,
and pesticides. Traditional ground-based methods, such as
manual exploration or satellite remote sensing, cannot match
the level of detail that drones can provide. Drones can fly
over crops and capture images and data in real-time, enabling
farmers to make informed decisions quickly. Another benefit
of drones is their ability to quickly and efficiently cover large

areas. Drones can fly over fields and acquire data in hours,
which would otherwise take days or weeks with traditional
methods. This can help farmers save time and resources
and make more timely decisions. Newer techniques now
allow their application in swarm configurations, significantly
improving their efficiency and the range of tasks they can
perform [3].

One area of particular interest in precision agriculture that
could benefit significantly from using drones is weed mapping.
Weed mapping is critical in precision agriculture because
it allows farmers to apply herbicides accurately and reduce
overuse, which can cause environmental and health problems.
Convolutional Neural Network (CNN)-based models have
been recently proposed to perform semantic segmentation and
identify weeds in images captured by drones or other aerial
vehicles [4], [5], [6]. However, these models are typically com-
putationally expensive, making them difficult to implement
on drones with limited processing power and limited battery.
These limitations and the need for real-time responses call for
lightweight solutions.

In cases like this, knowledge distillation (KD) can help.
KD is a technique that allows a smaller model to learn from a
larger, more complex model, often referred to as a teacher [7].
The goal is to transfer the knowledge learned from the teacher
to a smaller, lighter student, which can be used on resource-
limited devices such as drones.

In this study, we explore the application of different knowl-
edge distillation techniques to evaluate their effectiveness in
the context of drone-based weed mapping. The focus is on
using the WeedMap dataset [8] and proposing specific, extra-
lightweight architectural designs that aim to achieve superior
weed mapping capabilities while maintaining minimal compu-
tational time. This technology can improve weed management
practices, leading to more sustainable and efficient agriculture.

The rest of this paper is structured as follows. Section II
reviews related work. Sections III and IV describe materials
and methods. Section V reports and discusses the experimental
results. Section VI concludes the paper and outlines future
developments in our research.

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 393–400
DOI: 10.15439/2023F960

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 393 Thematic track: AI in Agriculture



II. RELATED WORK

Many precision agriculture tasks have been addressed
thanks to the recent development of computer vision tech-
niques and remote sensing data collection methodologies.
Recent tasks include disease and pest identification, abiotic
stress assessment, growth monitoring, crop yield prediction,
and weed mapping.

A. Weed Mapping

Weed mapping is a semantic segmentation task in which
each pixel of an image is assigned a class. Deep learning
algorithms have significantly outperformed more traditional
techniques in this task. Dos Santos et al. [4] were among
the first to demonstrate the superiority of CNNs, particularly
AlexNet, over traditional machine learning approaches such as
SVM and Random Forest. Lottes et al. [9] used a CNN with
two decoders, one for detecting stem position and the other for
plant segmentation. They used the BoniRob dataset and one
collected with a UAV for evaluation. They obtained an mAP of
79.2% for stem detection and 75.3% for segmentation. SegNet
with ResNet50 as an encoder was used in [6], achieving an
F1 score of 64.6%.

Depending on the bands acquired, multispectral images can
contain information on the growth and health status of a plant
and its species. Consequently, they can improve the accuracy
of deep learning models compared to models trained only
with RGB. Furthermore, multispectral image sensors can be
easily integrated into UAVs. The popular U-Net was used on
a dataset available on the Internet to separate weeds from
crops and soil, achieving an F1 score of 89% and a mIoU of
98% [10]. WeedNet, a semantic segmentation network based
on SegNet, was developed and trained on the WeedMap dataset
and achieved an F1 score of 80% [5]. WeedMap contains
two sets of images of sugar beet fields collected in Germany
(Rheinbach) and Switzerland (Eschikon). Both were collected
using UAVs equipped with multispectral cameras. The for-
mer used a 5-channel RedEdge-M camera, while the latter
used a 4-channel Sequoia camera. The authors also trained
SegNet using various combinations of the acquired channels,
resulting in an AUC of 84.3% [8]. On the WeedMap dataset,
the DeepLabV3 architecture for semantic segmentation was
compared with SegNet and U-Net, achieving an F1 score
of 81% on the Rheinbach subset [11]. Mozzam et al. [12]
used patch-based training with a modified VGG model on
the same dataset, also using the Eschikon subset. The patches
were chosen by hand, and those that contained both classes
were removed. On the Rheinbach subset, the accuracy reached
92%, and on Eschikon 90%. WeedMap has been used here for
benchmarking purposes, as it has become the preferred dataset
in several works due to its volume and quality.

B. Knowledge Distillation

Knowledge distillation is a popular method for “com-
pressing” neural models [7]. However, previous studies have
shown a significant size gap between student and teacher
networks, which limits the effectiveness of KD. Mirzadeh et

al. [13] showed that the gap between student and teacher could
not be arbitrary and proposed a solution for this problem,
called teacher assistant knowledge distillation. This method
requires training one or more teaching assistant networks
and is computationally expensive. In addition, errors of the
teaching assistant can accumulate and transfer to the student.
To mitigate these problems, Jafari et al. [14] introduced
annealing KD, which achieves state-of-the-art performance in
natural language understanding and computer vision tasks. In
annealing KD, the teacher’s goals are annealed to convey the
information provided by the teacher to the student gradually.
The predictions are annealed using a temperature parameter
that gradually decreases during training. After this first phase,
the student is trained with the ground truth. Although it
can handle the capability gap problem, annealing KD is still
vulnerable to noisy data and teachers’ results. In addition,
the training requires deciding when to switch from the first
to the second phase, which can be challenging. Inspired by
continuation optimization, Jafari et al. [15] tried to solve the
above problems by introducing continuation KD. This method
starts with an easy-to-train objective function that becomes
increasingly complex as the training progresses, allowing the
student model to learn and gradually improve its performance.

Several works have already used KD to obtain lightweight
models suitable for UAVs. For example, Li et al. [16] have
applied this technique for video saliency estimation, while Liu
et al. [17], Yu [18], Ding et al. [19], and Luo et al. [20] used
it for object detection, object recognition, action recognition,
and UAV delivery, respectively. However, to our knowledge,
no work has investigated knowledge distillation to produce
efficient and accurate models tailored for UAVs in the context
of weed mapping.

III. MATERIALS

This section will discuss the dataset and the preprocessing
and augmentation techniques implemented.

A. Dataset

Discrimination between weeds and crop plants is a sig-
nificant challenge in agricultural imaging. To address this
problem, the present study relied on the WeedMap dataset
proposed by Sa et al. [8], which consists of orthomosaic
maps of sugar beet fields (variety Beta vulgaris “Samuela”)
with three classes: background, crop, and weeds. Despite the
limited number of classes, the dataset demonstrates a level
of complexity comparable to larger semantic segmentation
datasets, such as Cityscapes [21]. This complexity stems from
the subtle differences between crop and weed classes and the
limited number of examples. In particular, cultivated plants
occupy 15-20 pixels, while individual weeds occupy only 5-
10 pixels. Therefore, using pre-trained models or additional
techniques, such as data augmentation, is necessary to improve
the performance of the segmentation model.

More specifically, the dataset used in this study includes
eight orthomosaic maps divided into two subsets based on the
location of the fields: Rheinbach in Germany and Eschikon
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in Switzerland. The orthomosaic maps were further divided
into tiles, resulting in 971 tiles for the Rheinbach subset and
700 tiles for the Eschikon subset. Data were acquired using
two unmanned aerial vehicles: a DJI Inspire2 equipped with
a RedEdge-M camera for the Rheinbach subset and a DJI
Mavic Pro with a Sequoia camera for the Eschikon subset.
The RedEdge-M camera acquired five channels of raw image
data, including red, green, blue, near-infrared (NIR), and red
edge (RE). On the other hand, the Sequoia camera acquired
the same channels except for the blue channel.

B. Data Preprocessing

Although the dataset has already been thoroughly processed
by the authors [8], further preprocessing is necessary. First,
since the orthomosaic maps are not rectangles, they have some
black areas at the edges, which generate many completely
black tiles. As a first preprocessing step, these tiles were
removed, reducing the dataset to 557 tiles for the Rheinbach
subset and 561 for the Sequoia subset. In addition, the height
of each tile of 360 is quite problematic because it must be di-
visible by 2i, i > 3 as some convolutional filters would require.
For this reason, four crops of size 256 × 256 were extracted
from each image. This also reduces the computational load.

C. Data Augmentation

The authors of the dataset implemented a random horizontal

flip during their experiments, a commonly used augmentation
technique because it does not distort the image. However, a
vertical flip can also be used without problems for images
acquired from a nadir direction. Similarly, random rotations
can be applied to images with a degree range of 0 to 360.
To resolve the class imbalance, selective random rotation was
used, applying the increment only to examples containing
at least one pixel of the minority class (i.e., weeds). This
approach helped to increase the number of images containing
weeds, improving the model’s ability to learn the minority
class. This technique was applied only to the Eschikon subset,
which had a weed representation of only 0.166% and later
increased to 0.499%. The Rheinbach subset, on the other hand,
already had a weed representation of 0.706%.

IV. METHODS

Two different architectures, both Transformers, were used.
The first, used as a teacher, is HRNet+OCR+PSA [22], [23].
The second is a modified version of Lawin [24], which
is a Vision Transformer (ViT) [25] suitable for semantic
segmentation. In particular, we lightened the architecture by
obtaining an extra-light model, which we named “Lawin-L0”.
Both architectures have achieved state-of-the-art results on
the Cityscapes, ADE20K, and COCO-Stuff reference datasets.
However, they cannot be directly applied as-is. Weed mapping,
like other precision agriculture tasks, benefits from some
bands of the non-visible spectrum, particularly the NIR and
RE bands. This hinders the application of deep learning
models, which are typically suited to be fed RGB images.
A concatenation layer with a modified first convolution layer
is needed to handle other channels besides RGB.

A. Teacher

The network used as a teacher in this paper is a modified
version of the HRNet+OCR+PSA architecture [23]. It com-
prises the HRNet+PSA backbone, a version of HRNetV2 [26]
with the Polarized Self Attention (PSA) block as the attention
block. High Resolution Net V2 (HRNetV2) is an ad-hoc
architecture for semantic segmentation, derived from HRNet.
It consists of four stages, each of which produces high-
resolution features. The stages consist of repeated multi-
resolution blocks. Each block consists of a multi-resolution
group convolution and a multi-resolution convolution. The
multi-resolution group convolution is an extension of the
group convolution. It separates the input channels into multiple
subsets of channels and applies a standard convolution to each
subset at different spatial resolutions. In a multi-resolution
convolution, on the other hand, the input and output subsets are
fully connected, and each connection is a standard convolution.
The output channels for each subset are the sum of the results
of the convolutions on each subset of input channels.

The HRNet features are then transmitted to the decoder,
which serves as the OCR (Object Contextual Representation)
module [27]. The central concept of the OCR module is that
the label assigned to each pixel must match the label of the
object containing it. To achieve this goal, the OCR module
first extracts soft object regions from feature maps and then,
using an attention mechanism, computes representations of the
object regions together with the pixel representations. These
representations are used to improve the final representations
employed to predict the segmentation map.

Starting from the basic architecture, we modified it specif-
ically to solve the weed mapping problem (see Fig. 1). In
particular, to handle additional input channels, we modified the
first input layer so that it can accept not only visible channels
but also non-visible channels.

B. Student

Like the teacher and other semantic segmentation models,
Lawin includes an encoder and a decoder. The encoder is
a type of architecture called Mix Transformer (MiT) [28],
explicitly designed for semantic segmentation as an alternative
to the original ViT. MiT can produce multilevel features
with different resolutions, similar to CNNs, and outputs a
feature map for each Transformer block. This hierarchical
representation provides high-level coarse-grained and low-
level fine-grained features that generally improve performance
in semantic segmentation. For example, starting from an RGB
image of size 3×H×W , the first Transformer block generates
a feature map of size C1 ×

H
4
× W

4
, where C1 is the chosen

embedding dimension. Then, each subsequent transformer
block takes as input the feature maps of the previous block
and produces a feature map Fi ∈ R

Ci×
H

2i+1
×

W

2i+1 , where i is
the index of the block.

The decoder uses a technique called Large Window Atten-
tion Spatial Pyramid Pooling (LawinASPP), which consists of
five different branches, including a pooling layer, a shortcut
connection, and three large window attentions with different
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Fig. 1. HRNet+OCR+PSA modified for weed mapping (“Conv” is a convolutional layer with a 3× 3 kernel, while H , W , and Cin are the height, width,
and channels of the input images, respectively). Unlike the original version, the model accepts both visible and non-visible channels as input.

context sizes. The pooling branch handles the global context,
while the three window attentions serve as local context ex-
tractors. The last two outputs of the encoder are processed with
a standard multilayer perceptron and an upsampling operation.
However, the first output is not processed by LawinASPP
but concatenated with its output. A final linear transformation
is applied to create the final segmentation map, followed by
an upsampling operation. The resulting map is a probability
distribution that assigns each pixel to a specific class.

As for HRNet+OCR+PSA, starting from the basic archi-
tecture of Lawin, we modified it to accept visible and non-
visible channels. Moreover, to further improve performance,
we propose a lighter variant of Lawin, Lawin-L0, which uses
SegFormer as the encoder [28]. SegFormer, in turn, has five
variants based on embedding size and model depth (B0, B1,
B2, B3, B4). Lawin-L0 has a halved embedding size and
a halved number of blocks in each phase compared with
Lawin-B0. In addition, Lawin-B0 repeats each of the four
stages twice, while Lawin-L0 repeats them only once. The
embedding size in Lawin-B0 is (32, 64, 160, 256), while in
Lawin-L0 it is (16, 32, 80, 128). The decoder also reflects
these sizes, further reducing the computational cost. Lawin-
L0 is shown in Fig. 2.

C. Vanilla Knowledge Distillation

In precision agriculture using drones, obtaining lightweight
models is critical. Knowledge distillation can help achieve
higher accuracy on lighter models. In particular, for weed
mapping, we want to show that lightweight models can achieve
comparable performance to large models when adequately
trained.

In vanilla KD, the loss is a weighted sum of a task loss and
a distillation loss:

L = (1− α)Ltask + αLKD

where Ltask is the task-specific loss function for the student
model, LKD is the distillation loss, and α is a hyperparameter
controlling the relative weighting between the two losses.

D. Teacher Assistant Knowledge Distillation (TAKD)

This variant of KD consists of two distillation stages [13],
where the first stage involves the teacher model distilling its
knowledge to an intermediate assistant model, and the second
stage involves the assistant model further distilling knowledge
to the final student model. This approach is designed to lever-
age the expertise of the teacher model while mitigating the
impact of the capability gap between the teacher and student
models. Introducing the assistant model as an intermediary
aims to minimize the loss of information and enable a more
effective transfer of knowledge to the student model. As an
assistant, we used Lawin, specifically the B0 variant, which
falls between the teacher and student models in terms of
complexity.

E. Annealing Knowledge Distillation

This technique tries to solve the capacity gap problem by
modifying the KD loss and introducing a dynamic temperature
function to make the student’s training gradual and smooth
[14]. The process is divided into two phases: Stage I, gradual
training of the student to imitate the teacher using the anneal-
ing KD loss; Stage II, fine-tuning the student with hard labels
using the task loss. The resulting loss can be defined as:

L =

{

Lannealing
KD (i), Stage I: 1 ≤ Ti ≤ τmax

Ltask, Stage II: Tn = 1

where i denotes the epoch index in the training process with
n maximum epochs for Stage I and Ti the corresponding
temperature value. At epoch (i), Lannealing

KD (i) is defined as:

Lannealing
KD (i) = ||zs(x)− Φ(Ti)zt(x)||

2

2

Φ(T ) = 1−
T − 1

τmax

, 1 ≤ T ≤ τmax, T ∈ N

In this case, the distillation loss is a mean squared error
(MSE) between the student’s logits (zs(x)) and an annealed
version of the teacher’s logits (zt(x)), obtained by multiplying
them by the annealing function Φ. The annealing function
is a monotonically decreasing function Φ : [1, τmax] ∈
N → [0, 1] ∈ R. τmax represents the hyperparameter for the
maximum temperature.

396 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Tr
an

sf
om

er
 

Bl
oc

k 
1

Tr
an

sf
om

er
 

Bl
oc

k 
2

Tr
an

sf
om

er
 

Bl
oc

k 
3

Tr
an

sf
om

er
 

Bl
oc

k 
4

M
LP

M
LP

U
ps

am
pl

e
M

LP

C
on

v

Lawin
R = 2

Lawin
R = 4

Lawin
R = 8

Pooling

C
on

v
U

ps
am

pl
e

M
LP

U
ps

am
pl

e

Encoder
Decoder

MLP

C
on

v

U
ps

am
pl

e

C
on

ca
t

C
on

ca
t

C
on

ca
t

C
on

ca
t

Fig. 2. Lawin-L0 (“Conv” is a convolutional layer with a 3× 3 kernel, “MLP” stands for fully-connected layer, and H , W , and Cin are the height, width,
and channels of the input images, respectively). As before, unlike the original version, the model accepts both visible and non-visible channels as input and
has a reduced number of hidden channels.

F. Continuation Knowledge Distillation

This technique is based on continuation optimization, a
method for solving optimization problems by gradually in-
creasing the complexity of the objective function [15]. The
idea is to start with an easy-to-train objective function that
becomes increasingly complex as the training progresses,
allowing the student model to learn and gradually improve
its performance. The loss function is defined as:

L = ψ(i)Ltask + (1− ψ(i))LKD

where ψ(i) is a monotonically increasing linear function ψ :
N → [0, 1] ∈ R. The ψ function is defined as:

ψ(i) =

{

i
Nepochs

if i ≤ Nepochs

1 if i > Nepochs

where i is the epoch index and Nepochs is the number of
epochs the student model will learn from the teacher.
LKD is the distillation loss, defined as the MSE between

the student’s logits (zs(x)) and the annealed teacher’s logits
(zt(x)) similarly to annealing KD, but with a defined margin
m:

LKD = max{0, ||zs(x)− Φ(Ti)zt(x)||
2

2
− Φ(Ti)m}

where Φ(Ti) is the annealing function.

V. EXPERIMENTS

This section presents our experimental setup, followed by
the quantitative and qualitative results of crop and weed
segmentation.

A. Experimental Setup

For the Rheinbach subset, we used the same train-test
subdivision applied in [8] and [29], namely [000, 001, 002,
004]–[003]. Due to the limited number of images containing
weeds in the Eschikon subset test set, we opted for a different

split to ensure more reliable results, i.e., [005, 007]–[006]. All
channels provided in the two subsets are fed to the models.
We used Adam as an optimizer for model training, with batch
size 6, a maximum number of epochs of 500, and an early
stop with patience 25. Specifically, the validation sets were
randomly extracted from the training sets for early stopping.
We used the regional mutual information [30] as the task loss,
weighted by the frequency of pixel classes, as done in [8]:

LRMI = λwcLce(y, p) + (1− λ)
1

B

B
∑

b=1

C
∑

c=1

(−Ib,cl (Y;P))

where λ ∈ [0, 1] is a weight factor, Lce is the cross-entropy,
B denotes the batch size, C the number of classes, Ib,cl (Y;P)
is the mutual information between the ground truth and
the prediction, and Y and P are the ground truth and the
prediction, respectively. wc are the class weights, calculated
as:

wc =
FoA(c)

F̃ oA(c)

FoA(c) =
Ic

I

where f(x)c is the probability of the true class c predicted by

the model, F̃ oA(c) is the median of FoA(c) by varying c, Ic
is the number of pixels in c, and I is the total number of pixels.
The eventual application of these weights is a hyperparameter
in the experiments.

In addition, we used Kullback-Leibler divergence and MSE
for vanilla KD as the distillation loss, with α = 0.8. The
same hyperparameters were used for TAKD. As for annealing
KD, we used an initial temperature of 0.9. In addition, it is
not possible to use early stopping because the temperature
is a function of epochs, so we set 50, 100, and 150 as the
maximum epochs. For continuation KD, we used the same
hyperparameters as for annealing KD, but given the way ψ
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TABLE I
COMPARISON OF DIFFERENT KD TECHNIQUES WITH THE TEACHER AND THE UNDISTILLED MODEL FOR BOTH SUBSETS OF DATA

Rheinbach Eschikon

F1 F1 Background F1 Crop F1 Weed F1 F1 Background F1 Crop F1 Weed

Teacher 0.868 0.990 0.877 0.737 0.656 0.995 0.816 0.155
No distillation 0.843 0.989 0.847 0.696 0.565 0.995 0.653 0.046

Vanilla KD 0.855 0.989 0.855 0.719 0.624 0.990 0.668 0.215
TAKD 0.850 0.988 0.842 0.720 0.631 0.992 0.763 0.138

Annealing KD 0.853 0.989 0.849 0.722 0.581 0.994 0.691 0.059
Continuation KD 0.863 0.990 0.862 0.736 0.553 0.987 0.666 0.005

is defined, the early stopping technique can be used. The
experiments were performed on an RTX 3080 Ti with 12 GB
of VRAM.

We used the F1 score for each class and macro-averaged to
assess the models quantitatively. It was calculated as follows:

F1 =
2TP

2TP + FP + FN

where TP stands for true positives, FP for false positives,
and FN for false negatives.

B. Quantitative Results

The study’s results are presented in Table I, which compares
the performance of the teacher model used alone, the student
model without teacher knowledge distillation, and the student
model with knowledge distillation. We do not show the results
obtained with all possible hyperparameter configurations for
better readability, but only the best ones obtained. Further-
more, it is worth noting that the different KD methods did not
modify the number of parameters of the resulting models but
only the training procedure.

The study found that in both subsets, the use of knowledge
distillation improved performance. Interestingly, the vanilla
KD approach was sufficient to improve the score. Continuation
KD outperformed the other models for the Rheinbach subset,
with an average F1 score of only 0.005 lower than the
teacher model and 0.001 lower for the weed class. On the
other hand, the Eschikon subset presented difficulties due
to the differences between the crops of the three collected
fields, highlighting the difficulty of generalization in weed
mapping. However, the teacher assistant technique showed
promise, improving performance by up to 7%. The F1 score
for weeds also showed a substantial increase, from 0.046
without KD to 0.138 with TAKD. In addition, the F1 score
for crop class showed a significant increase from 0.653 to
0.753. Although there was a reduction in the background class
score, the score was still high enough to make the reduction
insignificant. State-of-the-art models for the WeedMap dataset
include DeepLabV3 [11], which obtained an F1 score of 0.81
on the Rheinbach subset. Instead, while not using F1 in their
experiments [8], replicating SegNet scores 0.445 on Eschikon
and 0.836 on Rheinbach. Therefore, our lightweight model
outperforms even the dataset’s state-of-the-art.

Regarding computational time and complexity, Lawin-L0
has a relatively low amount of computational operations, mea-
sured in GMacs (giga multiply-accumulated operations), equal

RGB image Ground truth Teacher Student No distillation

Fig. 3. Segmentation examples performed on test field [003] (black =
background, green = crop, red = weed).

CIR image Ground truth Teacher Student No distillation

Fig. 4. Segmentation examples performed on test field [006] (black =
background, green = crop, red = weed). CIR stands for color infrared.

to 0.5 GMacs, and a relatively low number of parameters,
measured in millions, equal to 0.98 million parameters. On the
other hand, HRNet+OCR+PSA has significantly higher com-
putational requirements, with 42.04 GMacs and 75.74 million
parameters. Despite the substantial reduction in parameters, a
satisfactory level of accuracy can be achieved.

C. Qualitative Evaluation

A qualitative assessment of weed mapping found that the
segmentation maps obtained from the students’ model were
the same quality as those obtained from the teacher model.
This is reflected in the F1 score obtained from both models.
This indicates that the students’ model can learn effectively
from the teacher model and produce accurate weed mapping
results. Examples of segmentation maps obtained as output
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from the best execution of student Lawin-L0 and teacher
HRNet+OCR+PSA on Rheinbach are shown in Fig. 3. In the
Rheinbach subset, the segmentation maps reveal no apparent
visual difference in the F1 score, despite all models performing
well. However, distinct differences are observed for the weed
class in the Eschikon subset, shown in Fig. 4. The models
show an imbalance toward the weed class, with high recall,
low precision, and many false positives. In particular, this
phenomenon is more pronounced in the undistilled model than
in the distilled model. The segmentation maps produced by the
distilled model resemble those of the teacher model, indicating
the significant influence of the teacher model on students’
predictions.

VI. CONCLUSION

Our study demonstrated that knowledge distillation in the
context of drone-based weed mapping could be effectively
used to train an extremely lightweight model with only 0.5
GMacs. Our results indicate that this model can provide high-
level performance while maintaining a short inference time.
This makes them ideal for mobile platforms such as drones or
ground control stations, which can also be smartphone devices.
In particular, we have shown that the student model can learn
from the teacher model and produce accurate results. Applying
knowledge distillation to the Rheinbach subset resulted in
a relatively modest 2% increase in the F1 score. However,
the technique proved more effective for the more challenging
Eschikon subset, where a significant 7% improvement was
achieved. This highlights the practical value of knowledge dis-
tillation in this particular context. A potential future direction
of this research could be to apply knowledge distillation to
other tasks similar to weed mapping. This would allow us to
evaluate the effectiveness of our approach further and explore
its potential applications in a broader range of contexts where
lightweight models are critical (for example, in crowd flow
detection [31]).

In conclusion, developing effective and efficient computer
vision algorithms on drones can significantly improve weed
management practices, leading to more sustainable and effi-
cient farming practices. By enabling farmers to quickly and
easily identify infested areas and prioritize control efforts,
this technology has significant implications for precision agri-
culture, ultimately increasing profitability and environmental
sustainability.
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