
Expectation-Maximization Algorithms for Gaussian

Mixture Models Using Linear Algebra Libraries on

Parallel Shared-Memory Systems

Wojciech Kwedlo

0000-0002-5040-2302

Faculty of Computer Science

Białystok University of Technology

Wiejska 45A, 15-351 Białystok, Poland,

w.kwedlo@pb.edu.pl

Abstract—In this paper the problem of parameter estimation
of Gaussian mixture models using the expectation-maximization
(EM) algorithm is considered. Four variants of the EM algorithm
parallelized using the OpenMP standard are proposed. The
main difference between the variants is the degree of usage
of vendor-optimized linear algebra libraries. The computational
experiments were performed using 25 large datasets on a system
with two 12-core Intel Xeon processors. The results of experi-
ments indicate that the EM variant using level 3 (matrix-matrix)
operations and L3 cache blocking is the fastest one. It is 1.75–2.75
times faster than the naive version using level 2 (matrix-vector)
operations. Its parallel efficiency relative to the sequential version
is always greater than 83%.

I. INTRODUCTION

F
INITE mixture models [1] are a very versatile tool used

for modeling complex probability distributions. Gaussian

mixture models (GMMs) which assume multivariate normal

density of a component, are arguably the most popular mix-

ture models. GMMs have been successfully applied to many

problems in engineering, finance, biology and data mining.

The maximum likelihood estimation (MLE), which seeks

a maximum of the log-likelihood function, is a method

of choice for GMM parameter estimation. The expectation-

maximization (EM) algorithm [2] is the most common ap-

proach for MLE of GMM parameters. The algorithm is

simple and easy to implement. Its important drawback is high

computational complexity. The complexity of a single iteration

is O(NKd2), where N is the number of data items, K is the

number of mixture components, and d is the dimension of

a feature space. These high computational requirements limit

the usability of the EM, especially when d is large.

The problem of high computational requirements can be

tackled a by parallel realization of the EM for GMMs (e.g.,

[3]). The importance of parallel formulations of the EM stems

from ubiquity of relatively cheap multi-core processors. How-

ever, these processors have complex structures with multiple

This work was supported by the grant WZ/WI-IIT/4/2023 from Białystok
University of Technology. Computations were carried out using the computers
of Centre of Informatics Tricity Academic Supercomputer & Network, in
Gdansk, Poland.

SIMD execution units and two- or three-level hierarchy of

cache memory. This complexity makes an efficient imple-

mentation of the EM a tedious task. The difficulties in an

efficient implementation can be alleviated by using a vendor-

optimized matrix algebra libraries, for instance based on the

BLAS standard [4].

This paper proposes four such parallel formulations, two

of which use level 2 BLAS calls, and the remaining two

leverage more efficient level 3 BLAS operations. The pro-

posed algorithms are parallelized using the OpenMP standard,

implemented in C++, and employ the Eigen template library1

which seamlessly invokes the BLAS calls. We also investigate

the use of blocking [5] for L3 cache. The computational exper-

iments indicate that this optimization significantly improves

the performance of the EM variant based on level 3 BLAS

calls.

II. GMM PARAMETER ESTIMATION

A finite mixture model with K components has the proba-

bility density function given by:

f(x|Θ) =
K
∑

m=1

αmφ(x;θm), (1)

where φ(x;θm) is the probability density function of the

m-th component parameterized on θm, and α1, . . . , αK are

the mixing proportions which must satisfy the following two

conditions: α1+ · · ·+αK = 1 and αm ≥ 0 for m = 1, . . . ,K.

Θ = {α1, . . . , αk,θ1, . . . ,θK} is the complete set of param-

eters defining the mixture.

In Gaussian mixture models each component has the fol-

lowing (multivariate normal) probability density function:

φ(x;θm) = N (x;µm,Σm) =

1

(2π)d/2 det(Σm)1/2
e[−0.5(x−µm)Σ−1(x−µm)T ], (2)

with the set of parameters θm = [µm,Σm], where d is

the dimension of the feature space, µm ∈ R
d is the mean

1http://eigen.tuxfamily.org

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 1047–1052

DOI: 10.15439/2023F9859

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1047 Thematic track: Scalable Computing



and Σm is the d × d covariance matrix. Thus, for a GMM

the complete set of mixture parameters is given by Θ =
{α1, . . . , αK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK}.

Given a set of N independent and identically distributed

feature vectors X = {x1, . . . ,xN}, where xi ∈ R
d, the log-

likelihood function, corresponding to a K-component mixture

is given by:

log f(X|Θ) =
N
∑

i=1

log
K
∑

m=1

αmN (x;µm,Σm). (3)

The maximum likelihood estimate of parameters is obtained

as: Θ∗ = argmax
Θ

log f(X|Θ).

The EM algorithm [2], [6] is an iterative procedure which,

given an initial estimate of parameters Θ(0), produces a

sequence of estimates with increasing log-likelihood (3). j-

th iteration of the algorithm consists of two steps called

expectation step (E-step) and maximization step (M-step).

In the E-step [7], using the parameters Θ =
{α1, . . . , αK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK} from the previous

iteration, for each feature vector xi, i = 1, . . . , N and for

each mixture component m, m = 1, . . . ,K the posterior

probability that xi was generated from m-th component is

calculated as:

P (m|xi) =
αmN (xi;µm,Σm)
K
∑

k=1

αkN (xi;µk,Σk)

. (4)

The M-step [7], using the posterior probabilities P (m|xi),
computes new estimate of parameters Θ as (m = 1, . . . ,K):

αm =
1

N

N
∑

i=1

P (m|xi), (5)

µm =

N
∑

i=1

P (m|xi)xi

N
∑

i=1

P (m|xi)

, (6)

Σm =

N
∑

i=1

P (m|xi)(xi − µm)T (xi − µm)

N
∑

i=1

P (m|xi)

. (7)

The E-step and M-step are applied alternately until a conver-

gence criterion is met.

III. FOUR FORMULATIONS OF THE EM USING MATRIX

ALGEBRA LIBRARIES

All formulations of the EM algorithm for GMMs dis-

cussed in this section store the training set in a ma-

trix (two-dimensional array in the C++ language) X =
[xi,j ]1≤i≤N,1≤j≤d, where i-th row, denoted by xi,∗ stores the

feature vector xi. Similarly, the posterior probabilities are

stored in a matrix P = [pi,j ]1≤i≤N,1≤j≤K , where pi,j =
P (m|xi).

Algorithm 1 shows a high-level overview of the EM. The

equations (3) and (4) indicate that in order to perform both

the convergence check and the E-step we need to compute

Gaussian probability density function values multiplied by the

corresponding mixing proportions. An obvious optimization

is to compute densities weighted by mixing proportions once,

store them in a matrix W = [wi,j ]1≤i≤N,1≤j≤K , where wi,j =
αj ∗ N (xi,∗;µj ,Σj) and use them in subsequent E-Step and

computation of log-likelihood.

The four variants of the EM discussed in the paper follow

this pattern. After the computation of weighted densities W

(line 3 of Algorithm 1), the log-likelihood using (3) is com-

puted (line 4). If the algorithm is not terminated in line 6, then

the posterior probability matrix P using weighted densities

W is obtained by equation (4) (line 8). The computation

of the log-likelihood L and the matrix P based on W are

very straightforward. We have implemented them using Eigen

C++ library, which generates an efficient vectorized code. The

Algorithm 1 The pseudocode of the EM algorithm

Require: X, Θ0, M , ε
1: Θ← Θ0

2: for i← 1 to M do

3: W← WeightedDensities(X, Θ)

4: L′ ← L, L← Loglikelihood(W)

5: if i > 1 and ConvergenceCheck(L,L′) then

6: Terminate the algorithm

7: end if

8: P← EStep(W)

9: Θ← MStep(X,P)
10: end for

11: return Θ

iterations of the EM algorithm are performed until either the

algorithm converges or the maximal number of iterations M
is reached.

The four variants of the EM algorithm differ in implemen-

tation of WeightedDensities and MStep functions.

A. Variant I: EM-L2

This variant uses BLAS Level 2 (matrix-vector) calls in im-

plementation of WeightedDensities and MStep, hence

its name EM-L2. The pseudocode of WeightedDensities

function is shown in Algorithm 2. The function starts (lines 1–

3) with the computation of invariants which do not depend on

the feature vector. The inverse and determinant of covariance

matrices are calculated (line 2) using the Cholesky decomposi-

tion [8]. Next, the loop (lines 4–10) iterating over all rows of X

and W is executed. In this loop, for each mixture component j
a squared Mahalanobis distance between the i-th row xi,∗ and

mean vector µj is calculated in lines 6–7. The computations

in line 7 are done using cblas_dsymv and cblas_dot

calls [4]. Next (line 8) weighted normal density is calculated.

Algorithm 3 shows the pseudocode of MStep function. The

function calculates sums in equations (5)–(7) in two passes

over rows of matrices X and P. In the first pass (lines 4–8),

1048 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



Algorithm 2 WeightedDensities function in EM-L2

Require: X, Θ

1: for j ← 1 to K do

2: Sj ← Σj
−1, bj ← 1/

(

2π)d/2 det(Σj)
1/2

)

3: end for

4: for i← 1 to N do

5: for j ← 1 to K do

6: y← xi,∗ − µj

7: wi,j ← −0.5ySyT

8: wi,j ← αjbj exp(wi,j)
9: end for

10: end for

11: return W = [wi,j ]

Algorithm 3 MStep function in EM-L2

Require: X, P

1: for j ← 1 to K do

2: Σj ← 0, µj ← 0, sj ← 0
3: end for

4: for i← 1 to N do

5: for j ← 1 to K do

6: sj ← sj + pi,j , µj ← µj + pi,jxi,∗

7: end for

8: end for

9: for j ← 1 to K do

10: µj ← µj/sj , αj ← sj/N
11: end for

12: for i← 1 to N do

13: for j ← 1 to K do

14: y← xi,∗ − µj

15: Σj ← Σj + pi,jy
ty

16: end for

17: end for,

18: for j ← 1 to K do

19: Σj ← Σj/sj
20: end for

21: return Θ = {α1, . . . , αK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK}

for each component j, the sum of posterior probabilities sj and

the sums in the numerators of (6) are accumulated. Next, the

final values of mixing proportions αj and mean vectors µj

are obtained (lines 9–11). In the second pass (lines 12–17),

using the mean vectors computed in the first pass, for each

component j, the sum in the numerator of (7) is obtained.

The computation in line 15 is performed using cblas_dsyr

call [4], which calculates rank-1 update of a symmetric matrix.

Finally, in lines 18–20, the covariance matrices are obtained

from accumulated numerators of (7).

B. Variant II: EM-L2-reordered

Our initial experiments with EM-L2 indicated the abysmal

performance, where both dimension of the feature space d and

the number of mixture components K are high. However, a

simple interchange of loops in lines 12–17 of Algorithm 3,

which places the loop iterating over the mixture components

first was able to significantly improve the performance. We call

this variant EM-L2-reordered. It used the same formulation of

WeightedDensities function as EM-L2.

C. Variant III: EM-L3-blocking

This variant uses Level 3 BLAS operations [4], which

usually have have O(n2) memory complexity and much

larger O(n3) computational complexity, which allows for

higher reuse of data and higher level of optimization [5].

Additionally it uses employs blocking (called also loop tiling

[5]) to further optimize the most time-critical operations of

WeightedDensities and MStep functions. We apply

this technique to process the data in smaller blocks that are

more likely to fit in the last level of cache memory. The

WeightedDensities and MStep functions are shown in

Algorithms 4 and 5, respectively. These functions require

additional parameter, which is the number of blocks. This pa-

rameter is denoted by β in WeightedDensities function

and by γ in the MStep function.

In the WeightedDensities function the computation of

squared Mahalanobis distance is performed for blocks of rows

of the data matrix X. To simplify description, we assume that

the number of feature vectors N is divisible without remainder

by the number of blocks β. In such case the size of each block

equals B = N/β. The outermost loop (line 5) iterates over

blocks. It starts by the computation of the indices of the first

(is) and the last (ie) row in current l-th blocks. These must

satisfy the condition ie− is+1 = N/β. The inner loop (lines

7–13) is performed for submatrix of X consisting of rows

is, is+1, . . . , ie, which we denote as Xis:ie,∗. All the matrices

involved in the inner loop nest including the submatrices of

X and W have B rows. Since the computations in lines 8–12

are repeated K times, this approach allows for much greater

reuse of data in the cache memories.

The code in lines 7-13 computes the squared Mahalanobis

distances and stores them in a block of the matrix W. Using

the Cholesky decomposition of Σ−1
j the squared distance

between a feature vector in i-th row of X and j-th mixture

component can be written as:

(xi,∗−µj)Σ
−1
j (xi,∗−µj)

T = (xi,∗−µj)LjL
T
j (xi,∗−µj)

T =
[

(xi,∗ − µj)Lj

] [

(xi,∗ − µj)Lj

]T
. (8)

Lines 8–12 implement this computation efficiently using two

temporary matrices. The B×d temporary matrix Y is obtained

by subtracting µj from each row of the block of X. The

temporary B× d matrix Z, where i-th row is given by zi,∗ =
(xi,∗ − µj)Lj is computed in line 7 using cblas_dtrmm

(Level 3) BLAS call [4], which multiplies a general matrix by

a triangular matrix.

The pseudocode of MStep function is shown in Algorithm

5. The less time-consuming (O(NKd) computational com-

plexity) computation of mean vectors µj and posterior sums sj
(lines 4–11) is performed similarly to EM-L2 version shown

WOJCIECH KWEDLO: EXPECTATION-MAXIMIZATION ALGORITHMS FOR GAUSSIAN MIXTURE MODELS 1049



Algorithm 4 WeightedDensities function in EM-L3-

blocking

Require: X, Θ, β
1: for j ← 1 to K do

2: Sj ← Σj
−1, Lj ← chol(Sj)

3: bj ← 1/
(

2π)d/2 det(Σm)1/2
)

4: end for

5: for l← 1 to β do

6: is, ie ← BlockIndices(N, β, l)
7: for j ← 1 to K do

8: Y ← Xis:ie,∗ − µj

9: Z← YLj

10: for i← is to ie do

11: wi,j ←
d
∑

k=1

z2i−is+1,k

12: wi,j ← bjαj ∗ exp(−0.5 ∗ wi,j)
13: end for

14: end for

15: end for

16: return W = [wi,j ]

Algorithm 5 MStep function in EM-L3-blocking

Require: X, P, γ
1: for j ← 1 to K do

2: Σj ← 0, µj ← 0, sj ← 0
3: end for

4: for j ← 1 to K do

5: for i← 1 to N do

6: sj ← sj + pi,j , µj ← µj + pi,jxi,∗

7: end for

8: end for

9: for j ← 1 to K do

10: µj ← µj/sj , αj ← sj/N
11: end for

12: for l← 1 to γ do

13: is, ie ← BlockIndices(N, γ, l)
14: for j ← 1 to K do

15: for i← is to ie do

16: yi−is+1,∗ = (xi,∗ − µj) ∗
√
pi,j

17: end for

18: Σj ← Σj +YYT

19: end for

20: end for

21: for j ← 1 to K do

22: Σj ← Σj/sj
23: end for

24: return Θ = {α1, . . . , αK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK}

in Algorithm 3. The only change is the reordering of loops

starting in lines 4–5.

However, sums in numerators of (7) are obtained (lines 12–

17) in a completely different way. Similarly to Algorithm 4,

the data are processed in γ blocks, with size of block equal

C = N/γ. After a calculation of temporary C × d matrix Y

in lines 12–15, the numerator of (7) is updated by a single

cblas_dsyrk level 3 BLAS call [4].

The WeightedDensities and MStep functions of the

EM-L3-blocking variant were designed to delegate the most

time-consuming code fragments with O(Nd2) complexity to

Level 3 BLAS calls. MStep requires additional O(N) square

root calculations (line 14 of Algorithm 5) per single covariance

matrix.

The method for choosing numbers of blocks β and γ
remains to be described. Denote by L the total capacity of

last level cache in bytes. In our implementation, to conserve

memory, we store X using single precision floating point

numbers. Y, Z, W, P are stored using double precision

numbers. Taking into consideration that a single precision

number needs 4 bytes of storage and a double precision 8

bytes, the loop in lines 7–13 of Algorithm 4 needs 4dB bytes

for storage of Xis:ie,∗, 8dB bytes for Y and Z and 8KB bytes

for the submatrix of W. Assuming, that the total working set

in the loop should be equal to L bytes, we have:

β =
(20 ∗ d+ 8K)N

L
. (9)

After performing a similar analysis of the loop in lines 14–

19 of Algorithm 5 we get:

γ =
(12 ∗ d+ 8K)N

L
. (10)

D. Variant IV: EM-L3

This variant is a simplification of EM-L3-blocking, which

does not perform loop tiling, i.e., sets the number of blocks

β = 1 and γ = 1. We implemented this variant in order to

assess the influence of blocking on the performance of the

variant III.

IV. PARALLELIZATION FOR SHARED-MEMORY SYSTEMS

All the EM variants described in the previous section

can be parallelized using data decomposition approach. We

have designed parallel formulation of the algorithms and

implemented them using the OpenMP standard [9] for shared-

memory architectures.

An OpenMP application can be viewed as a group of coop-

erating threads. At the begin, only a master thread executes.

When this thread encounters the #pragma omp parallel

directive, the execution of the following block of code is

performed by a team of threads. When a team of threads

encounters the #pragma omp for directive, a succeeding

for loop is parallelized by the team of threads. In this case

each thread executes a subset of the loop iterations. In our

approach we use static loop scheduling, where each of t
threads is assigned approximately n/t iterations, when n is

the total number of loop iterations.

1050 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



In the parallelization of the WeightedDensities and

EStep functions we use the fact that the rows of output

matrices (W and Θ, respectively) can be computed using

the corresponding rows of the input matrices (X and W,

respectively) without the knowledge about the remaining rows.

We employ the data decomposition of the matrices X, W, P

in which each thread is responsible for a block of consecutive

rows. In case of EM-L3-blocking, where data are processed

in blocks we divide further each of β or γ blocks into t sub-

blocks.

Similar decomposition scheme is applied to the paral-

lelization of Loglikelihood function, where each thread

computes the local sum (3) using its assigned block of rows.

Next, the local sums computed by the team of threads are

added up giving the final log-likelihood. This is an example

of the reduction operation which, for a single variable, can be

easily carried-out using the OpenMP reduction clause.

The above decomposition scheme can be easily applied

to WeightedDensities in Algorithm 2, by placing

a #pragma omp parallel for directive before loops

starting in lines 1, 5, and 12. For the WeightedDensities

function shown in Algorithm 4 we use #pragma omp for

before lines 1 and 10, and manually divide the rows of matrices

Y and Z (lines 8–9) into t threads of the OpenMP team.

The parallelization of MStep functions is also based on

data decomposition. Additionally, we have to tackle the prob-

lem of computing the sj and the sums in numerators of

(5), (6) and (7). We use a similar approach to that in the

Loglikelihood function. Each OpenMP thread calculates

local sums which are added up using the reduction operation.

Since OpenMP 4.5 does not provide reduction operation for

user-defined datatypes we have used the binary tree reduction

algorithm [10].

V. EXPERIMENTAL RESULTS

All the results reported in this section were obtained using

single compute nodes of the Tryton cluster installed in Centre

of Informatics Tricity Academic Supercomputer and Network

in Gdansk, Poland. A single node of the cluster is equipped

with two 12-core Intel Xeon E5-2670 v3 (2.3 GHz) CPUs and

128 GiB of DDR4 RAM. The programs were compiled using

the Intel C/C++ compiler (icpc) version 2021.7.1 and linked

with the Intel MKL library version 2022.2.1, which provided

the BLAS calls. We run the sequential version of EM-L3-

blocking on a single core, assuming in (9) and (10) the last

level cache size L = 30∗220 bytes, according to manufacturer

specification of the processor. We run parallel versions of all

four algorithms using all 24 cores and assuming the last level

cache size of multiplied by two: L = 60 ∗ 220 bytes, because

two processors were used in the calculations.

The experiments were performed on synthetic datasets

obtained by the MixSim simulator proposed in [11]. The

experiments were executed as follows. First we chose d ∈
{20, 40, 60, 80, 100} and K ∈ {20, 40, 60, 80, 100}. For each

of 25 combinations of K and d we generated a single dataset

using the MixSim simulator. The number of feature vectors

N was chosen to set the total size of the dataset as close of

512MiB (512 ∗ 220 bytes) as possible. Thus, all the datasets

were much larger as the total size of last level cache memory

in a compute node. For each dataset we generated a single

initial solution of the EM algorithm. This solution was used

to initialize all the variants of the EM algorithm. Because all

the variants started from the same solution, they converged

after the same number of iterations. We obtained the average

iteration time by dividing the total execution time measured

using a system high-precision real time clock by the number

of iterations. The shorter average EM iteration time indicated

the higher performance of the algorithm.

The results indicated that EM-L3-blocking is the fastest

of all parallel algorithms in all the experiments. Due to

space limitations we have to omit the presentation of average

iteration times in a table. These times ranged from 1.13 second

(EM-L3-blocking, d = 20, K = 20) to 150 seconds (EM-L2,

d = 100, K = 100). Using these measurements we have

calculated the algorithmic speedup and parallel efficiency of

the EM-L3-blocking. Figure 1 shows the algorithmic speedup

of the EM-L3-blocking variant over the EM-L3. For a given

dataset. an algorithmic speedup S of EM-L3-blocking over

another variant A is defined as: S = tA/tEM−L3−blocking,
where tA and tEM−L3−blocking denote average iteration times

of EM variant A and EM-L3-blocking, respectively. The figure

20 40 60 80 100
Number of features d

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Sp
ee

du
p

K= 20
K= 40
K= 60
K= 80
K= 100

Fig. 1. Algorithmic speedup of the EM-L3-blocking variant over EM-L3
variant. The dotted horizontal line indicates equal speed of both algorithms.

indicates that EM-L3-blocking is faster than EM-L3 for all

datasets and its advantage is increased with decreased feature

space dimension d.

Figure 2 shows the algorithmic speedup of the EM-L3-

blocking over the faster of two variants (EM-L2 and EM-L2-

reordered) using level 2 BLAS operations. The plots indicate

that EM-L3-blocking is always faster and its advantage is

increased with the increase of the dimension d.

We end the presentation of the results by showing the

parallel efficiency of EM-L3-blocking with respect to its

sequential version. A parallel efficiency (in percent) is defined

as the ratio of measured parallel speedup to the ideal linear

WOJCIECH KWEDLO: EXPECTATION-MAXIMIZATION ALGORITHMS FOR GAUSSIAN MIXTURE MODELS 1051



20 40 60 80 100
Number of features d

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Sp
ee

du
p

K= 20
K= 40
K= 60
K= 80
K= 100

Fig. 2. Algorithmic speedup of the EM-L3-blocking variant over the fastest
variant using L2 BLAS operations. The dotted horizontal line indicates equal
speed of both algorithms.

speedup (equal to the number of the cores in a compute node).

In turn, the parallel speedup is given by the ratio of the

iteration time of the sequential version to iteration time of the

parallel version of the algorithm. The plots indicate that the

20 40 60 80 100
Number of features d

84

86

88

90

92

94

Ef
fic

ie
nc

y 
[%

]

K= 20
K= 40
K= 60
K= 80
K= 100

Fig. 3. Parallel efficiency of the EM-L3-blocking variant of the EM algorithm.

EM-L3-blocking variant scales very well with the efficiency

higher then 83% in all the cases and higher than 90% where

K ≥ 40 and d ≥ 40.

VI. CONCLUSIONS AND FUTURE WORK

In the paper we described four variants of the EM algorithm.

Two of them use level 2 BLAS operations while the remaining

two are based on level 3 BLAS operations which can be

implemented more efficiently on the contemporary hardware.

We proposed a parallelization scheme for all the variants using

OpenMP threads. The results of the study indicate that a

combination of level 3 BLAS operations with the blocking

for last level cache achieves the shortest runtime for all tested

datasets. The resulting algorithm scales very well on a 24-core

system.

An obvious extension our work would be a hybrid paral-

lelization using many nodes of the cluster. In this method a

parallel application could consists of processes communicating

using a message-passing (e.g., MPI [12]) framework. One MPI

process would be executed in each compute node of the cluster.

Each process would execute in several OpenMP threads, with

the number of threads equal to the number of cores in a

compute node. A reduction operation in the MStep function

would be performed hierarchically, first on the process level,

then on the MPI application level. We have successfully

applied this approach to multi-node parallelization of the well-

known K-means algorithm [13].

REFERENCES

[1] G. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley,
2000.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Royal Stat. Soc. Ser. B,
vol. 39, no. 1, pp. 1–38, 1977.

[3] W. Kwedlo, “A parallel EM algorithm for Gaussian mixture models
implemented on a NUMA system using OpenMP,” in Proceedings of

the 22nd Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing PDP 2014. IEEE CPS, 2014, pp. 292–
298.

[4] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S.Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Reming-
ton, and R. Whaley, “An updated set of basic linear algebra subprograms
(BLAS),” ACM Transactions on Mathematical Software, vol. 28, no. 2,
pp. 135–151, 2002.

[5] M. Kowarschik and C. Weiß, An overview of cache optimization tech-

niques and cache-aware numerical algorithms, ser. Lecture Notes in
Computer Science, vol 2625. Springer, 2003, pp. 213–232.

[6] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
New York: Wiley, 2008.

[7] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood
and the EM algorithm,” SIAM Rev., vol. 26, no. 2, pp. 195–239, 1984.
[Online]. Available: https://www.jstor.org/stable/2030064

[8] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
MD: Johns Hopkins, 1996.

[9] OpenMP Architecture Review Board, “OpenMP application
program interface version 4.5,” http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf, 2015.

[10] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: theory, practice, and experience,” Concurr. Comput.

Pract. Exp., vol. 19, no. 13, pp. 1749–1783, 2007.
[11] R. Maitra and V. Melnykov, “Simulating data to study performance

of finite mixture modeling and clustering algorithms,” J. Comput.

Graph. Stat., vol. 19, no. 2, pp. 354–376, 2010. [Online]. Available:
https://doi.org/10.1198/jcgs.2009.08054

[12] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard Version 3.1,” 2015. [Online]. Available: http://mpi-forum.org/
docs/mpi-3.1/mpi31-report.pdf

[13] W. Kwedlo and P. J. Czochański, “A hybrid MPI/OpenMP parallelization
of K-means algorithms accelerated using the triangle inequality,” IEEE

Access, vol. 7, pp. 42 280–42 297, 2019.

1052 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023


