
Postquantum symmetric cryptography inspired by

neural networks

Wojciech Węgrzynek∗, Paweł Topa†

Faculty of Computer Science, Electronics and Telecommunications,

AGH University of Kraków

Kraków, Poland

Email: ∗wegrzynek@student.agh.edu.pl,
†topa@agh.edu.pl

Abstract—We introduce a novel approach to postquantum
symmetric encryption that allows us to modify and continue
to use any encryption scheme. By composing the encryption
and decryption functions with the evaluation of arbitrarily wide
neural networks we are able to verify that anyone performing
these functions has access to at least a certain amount of
memory. Since the number of qubits in quantum computers has
been relatively slow-growing, this provides us security from the
Grover’s search attack, and any attack utilizing a similar oracle
circuit.

Index Terms—post-quantum cryptography, symmetric key
cryptography, encryption, neural networks

I. INTRODUCTION

T
HE development of quantum computers is likely to lead

to major breakthroughs in many areas of science and

engineering. Cryptography is one area where this breakthrough

is already evident. Although we do not yet have a quantum

computer capable of cracking the 2048-bit RSA key, the world

is preparing for that moment. In 2016, the US NIST announced

a competition for a post-quantum public key algorithm. In

June 2022, after three rounds of review, four algorithms

implementing key encapsulation (Crystals-Kyber) and digital

signature functionality (Crystals-Dilithium, Falcon, Sphincs+)

were selected.

Secret key cryptography is much less threatened by quantum

computers. The Grover algorithm is only able to halve the

security strength of the AES algorithm. This means that AES

with a 256-bit key will be as secure as AES with a 128-bit

key is today.

This is still enough of a security margin not to change the

cipher, which is the "workhorse" of the Internet, too quickly.

However, it is worth considering all possible directions for

post-quantum secret key cryptography. Here, we present an

idea of making Grover’s search attack more challenging in

terms of qubits of memory needed on a quantum computer.

II. STATE-OF-THE-ART

Currently, the most widely used symmetric cipher is

AES [1], which is susceptible to the Grover’s search attack.

AES exists in three variants: AES-128, AES-196, and AES-

256 named after the length of the binary key string. The

key spaces are then of size 2128, 2196, and 2256 respectively.

Since Grover’s search attack effectively halves the exponent

of the key space size, AES-256 would be reduced to the

security level of AES-128 and the remaining two variants

would become insecure by the previous standard. Since AES-

128 is currently considered secure, switching to AES-256 is

the solution provided in [2] and [3]. Additionally, for purposes

requiring AES-256 level security, [3] extends AES to include

a 512 key length variant.

It is first worth noting that there already exist solutions

that are secure against the Grover’s search attack, in par-

ticular AES-QPP, which is a variant of AES in which the

SubBytes and AddRoundKey are replaced by a Quantum

Permutation Pad operation, granting quantum safety [4], or

Saturnin, which is a block cipher that has been specifically

designed for the purpose of being quantum-safe while also

maintaining lightweight properties making it more suitable for

IoT applications [5]. In comparison to them, however, AES

has the benefit of having been exposed to extensive analysis

by the public.

Using neural networks cryptographic solution, at least aca-

demically, is not a novel concept either. In [6] the authors

utilize recurrent neural networks of a specific shape to define

a symmetric cipher. In [7] a cryptographic hash function is

defined based on the evaluation of a neural network with

randomized matrices.

III. PRELIMINARIES AND DEFINITIONS

In this section, we introduce the terms and notation we

will use throughout this article. Since this work exist at

the intersection of a few different subfields within computer

science, we divide it into subsections

A. Algebraic notation

For the sake of simplicity of notations in this subsection,

we will introduce some shorthands that we will use throughout

this article.

Let v ∈ Fn be an n-dimensional vector over some field F ,

by v[i] for 0 ≤ i < n we will denote the i-th element of the

vector.

A Galois field is synonymous to a finite field and we use

the notation GF (q) to denote a Galois field of size q. By a

well-known algebraic theorem when q is of the form q = pn

for some prime p and some n ∈ N+ then GF (q) exists and

Proceedings of the 18th Conference on Computer

Science and Intelligence Systems pp. 1205–1210

DOI: 10.15439/2023F9901

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 1205 Thematic track: Cyber Security, Privacy and Trust

is unique in the sense of isomorphisms. For any other size a

finite field does not exist, thus GF (q) is well-defined only for

powers of a prime number.

B. Cryptography

Here we attempt to formalize some notions present in

cryptography. Note that it is particularly difficult to reflect

the practical nature of this field. We nonetheless make the

attempt in order to provide a mathematical argument for the

correctness of our claims.

Definition 1. A symmetric cipher is a tuple (e, d,P, C,K)
such that:

• P is a set of plaintexts,

• C is a set of ciphertexts,

• K is a key space,

• e : P ×K → C,

• d : C × K → P ,

• for any p ∈ P , k ∈ K: d(e(p, k), k) = p.

A cipher σ = (e, d,P, C,K) is going to be secure if the

following conditions are met:

1) Given only the value of e(p, k) it is impossible to

reliably compute p faster than the naive approach of

iterating through all of the key space.

2) Given only the values of e(p, k) and p it is impossible

to reliably compute k faster than the naive approach of

iterating through all of the key space.

Any algorithm or process that proves a cipher to be insecure

is called an attack. Note that this is one place where there is

a discrepancy between this formal definition and the practical

notion of security — many ciphers are still considered practi-

cally secure despite existing attacks because those attacks are

proved to be impractical.

An attack that violates the first property will be called a

ciphertext-only attack and an attack that violates the second

(but not the first) will be called a known-plaintext attack.

C. Neural networks

Since the main result of this work is heavily inspired by

neural networks, we feel the need to define some notions from

that field of study. Let us start with defining, arguably, the

simplest type of neural network — the multilayer perceptron.

This will be the only type of neural network we will refer to in

this work, so we will sometimes use the term neural network

as a synonym for a multilayer perceptron, but we note that in

the wider topic such equivalence would be false.

Definition 2. A multilayer perceptron over the field F is a

function f : Fn1 → Fnd+1 of form f = l1 ◦ l2 ◦ · · · ◦ ld, where

d ∈ N+ is the depth of the neural network. Each function

li : Fni → Fni+1 for 1 ≤ i ≤ d (which we will call a layer)

must be in the form li = mi ◦ ai where:

• mi : Fni → Fni+1 is a linear transformation using the

matrix Mi ∈ Fni×ni+1 ,

• ai : Fni+1 → Fni+1 is a non-linear transformation (we

will sometimes call ai the activation function).

Note that the typical definition is usually constrained to

F = R and also requires the activation function to be differ-

entiable and monotonic on each element. This is a conscious

choice on our part, since we need to generalize this concept

to other fields, because of the impracticality of representing

real numbers on computers.

D. Quantum computing

A qubit is the most fundamental unit of quantum informa-

tion. The state of a qubit is any vector ψ ∈ C
2 with its norm

equal to 1. We traditionally denote the state of a qubit as a

ket in bra-ket notation (also called Dirac notation), like so |ψ⟩.
Two special states, forming an orthogonal basis, are usually

distinguished:

|0⟩ =
(

1
0

)

, |1⟩ =
(

0
1

)

.

If more than one qubit exists, the state of such a sys-

tem is the Hadamard product of the states of each qubit.

In bra-ket donation, the Hadamard product of two states

|ψ⟩ and |φ⟩ is denoted by |ψ⟩ |φ⟩, or sometimes |ψφ⟩.
For an n-qubit system we also define the orthogonal basis

{|0⟩n , |1⟩n , · · · , |2n − 1⟩n} where |i⟩n is a vector such that

|i⟩n [i] = 1.

A quantum gate O, acting on an n-qubit state, is any

invertible, unitary 2n×2n matrix over complex numbers. The

application of O on the state |φ⟩ is the product of the matrix

and vector, and is denoted as O |ψ⟩.
Notice that because of the definition of a quantum gate,

to uniquely identify a quantum gate, it suffices to define the

results of applying it to some basis. Below we use this fact

to define some gates that will be referenced throughout this

article.

The NOT gate, or the X gate is a quantum gate acting on

a single qubit, and is defined as follows:

• X |0⟩ = |1⟩,
• X |1⟩ = |0⟩.

The Toffoli or the CCX gate is a quantum gate acting on a

3-qubit state. The Toffoli gate acts according to the following

rules:

• CCX |11a⟩ = |11⟩ (X |a⟩),
• CCX |abc⟩ = |abc⟩, if |ab⟩ ≠ |11⟩.

IV. CRYPTANALYSIS WITH QUANTUM COMPUTERS

The development of quantum computing technology poses

a threat to our existing, widely used, ciphers. In the field of

public-key cryptography, there is, for example, the famous

Shor’s algorithm, the usage of which can break RSA (Diffie-

Hellman, ElGamal and elliptic curve cryptography too) in

polynomial time. For private-key encryption the known quan-

tum attacks are much less spectacular, nonetheless, they do

exist and are worth investigating.

Grover’s search algorithm is a quantum computing algo-

rithm that, given an oracle circuit Q, over n+ 1 qubits, with

1206 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

the property that for any x ∈ {0, 1, · · · , N − 1}, and for any

a ∈ {0, 1}

Q |x⟩ |a⟩ =
{

|x⟩X |a⟩ , iff x = a

|x⟩ |a⟩ , otherwise

is able to find a with only O(
√
N) invocations of Q. This

is an obvious improvement over an analogous situation in

classical computing where the fastest such algorithm needs

O(N) invocations.

For any symmetric cipher σ = (e, d,P, C,K) we may then

define the following known plaintext attack:

1) Define an oracle Q that given k1 as input, returns

e(p, k) = e(p, k1).
2) Use Grover’s search algorithm to compute k.

This takes O(
√

|K|) invocations of Q, making it an attack on

σ. Note that this attack is only possible if the attacker is able

to execute the oracle circuit — which is what we make use

of in this work.

V. THE PROPOSED SOLUTION

We introduce a novel approach that allows one to secure

any private key cipher against a Grover attack, provided

that both communicating sides have more memory bits on

their machines than an attacker might have on their quantum

computer. The algorithm works by modifying a scheme σ to

form a scheme σ′, such that the decryption function σ′ requires

at least a set number of bits of memory to compute — thus

preventing the formation of the Grover oracle. In this section,

we will detail how we achieve this.

Let’s start with an arbitrary encryption scheme σ :=
(e, d,P, C,K) and a bijection f : Cn → Pn, for some n,

the details of which we outline in Section VI. The scheme

σ′ := (e′, d′,Pn, Cn,K) is then defined such that for a key

k ∈ K:

• e′((p1, p2, · · · , pn), k) :=
(e(f(e(p1, k)), k), · · · , e(f(e(pn, k)), k)),

• d′((c1, c2, · · · , cn), k) :=
(d(f−1(d(c1, k)), k), · · · , d(f−1(d(cn, k)), k)).

In other words, to encrypt a message, we concatenate n
messages encrypted with σ, pass the output through f , split it

back into n messages, and encrypt them again. To decrypt a

message we then: decrypt the ciphertexts using σ, concatenate

them, pass the output through f−1, split them, and decrypt

them using σ.

f/f -1

co
n
ca
te
n
at
io
n encrypt/decrypt

encrypt/decrypt

encrypt/decrypt

encrypt/decrypt

sp
li
t

encrypt/decrypt

encrypt/decrypt

encrypt/decrypt

encrypt/decrypt

Figure 1: The proposed solution: securing cipher against

Grover’s attack with nonlinear bijective function f

Let us define a k-mixing function:

Definition 3. A function g : GF (2)n → GF (2)n is k-mixing

if, it is impossible to compute values for any subset of output

bits, given only k of input bit values.

Let us then state the following observation

Observation 1. The proposed above solution produces a

scheme that is secure against the Grover attack on machines

with at most k qubits if the function f is k-mixing.

Proof. Since the Grover attack requires the attacker to formu-

late an oracle circuit, and the attacker has at most k qubits

available, this oracle function would have to compute values

of some output bits given only k of the input bits, since that

is all the attacker could store in memory.

All that is now needed is to propose a family of bijective

functions that will contain k-mixing functions for arbitrarily

large k-s. At first glance, traditional multilayer perceptrons

could be utilized. Indeed, a sigmoid activation function and

invertible weight matrices would guarantee bijectivity, and the

expressive power of neural networks should, at least intuitively,

correlate to the mixing property, if random weights were used.

However, with this approach, a practical issue arises - the

naive implementation of such a function utilizing floating point

arithmetic, would almost certainly not be able to produce an

exact mathematical inverse. Instead, in the following section,

we introduce a structure that operates on the finite field GF (2)
in a similar way that traditional multilayer perceptrons operate

on R, which we then may use instead.

VI. DEFINITION OF THE f FUNCTION

Let us define a Galois neural network:

Definition 4. A Galois neural network is a multilayer per-

ceptron over a Galois field.

Let’s observe that such a Galois network may serve as our

f function, as long as we design it to be a bijection. To do

so, it suffices to design a layer that is bijective. For the linear

part of each layer, since we have total control of the values

of the matrices, it suffices to find an invertible matrix M .

For the activation function, this is less trivial, partially since,

unlike traditional neural networks, all bijections over the field

GF (2) are linear, and so this activation function must in some

way require interaction between elements of a vector. Below,

we detail the design of the family of functions that fit these

requirements.

We define a family of functions that work analogously to the

iterative application of the Toffoli gate in quantum computers.

Definition 5. A function tm,k,l : GF (2)
n → GF (2)n will be

called a Toffoli function acting on bit m with control bits

k, l (where m, k, l are pairwise different and k < l) if for all

v ∈ GF (2)n:

1) ∀i ̸=mtm,k,l(v)[i] = v[i],
2) (tm,k,l(v)[m] ̸= v[m]) ⇐⇒ (v[k] = v[l] = 1).

The following lemma is then true:

WOJCIECH WĘGRZYNEK, PAWEŁ TOPA: POSTQUANTUM SYMMETRIC CRYPTOGRAPHY INSPIRED BY NEURAL NETWORKS 1207

Lemma 1. Let f : GF (2)n → GF (2)n be a composition of at

least one Toffoli function f = tm1,k1,l1◦tm2,k2,l2◦· · ·◦tmi,ki,li ,

such that for any 1 ≤ α, β ≤ i where α ̸= β, at least one of

the following is true:

1) mα ̸= mβ ,

2) kα ̸= kβ or lα ̸= lβ .

Then f is

1) bijective,

2) nonlinear.

Proof. The function is trivially bijective since tm1,k1,l1 =
t−1
m1,k1,l1

.

Let us then prove nonlinearity, and suppose, by contradic-

tion f is linear. There have to then exist A ∈ GF (2)n×n, b ∈
GF (2)n such that f(v) = Av + b for any v ∈ GF (2)n. Take

tm1,k1,l1 and consider a vector v0, that is defined as follows:

• v0[i] = 0 for all i /∈ {k1, l1},

• v0[i] = 1 for all i ∈ {k1, l1}.

We know, from the definition of f that v0[m1] = 1, on the

other hand v0[m1] = (Av0 + b)[m1] = A[m1]v0 + b[m1] =
A[m1][k1] +A[m1][l1] + b[m1]. Notice that b[m1] must equal

0 since f(0) = 0, by definition of a Toffoli function. That

means exactly one of A[m1][k1], A[m1][l1] must equal one.

Suppose, without loss of generality it is A[m1][k1]. Consider

then a vector v1, that only has a one as its k1-th element.

By definition of a Toffoli function, f(v1) = v1, but since

A[m1][k1] = 1 and b[k1] = 0, f(v1)[m1] = 1 ̸= v1[m1], thus

we have a contradiction.

Notice how Lemma 1 guarantees exactly the requirements

for an activation function for a bijective Galois neural network.

We now formulate a conjecture which, if true, would

guarantee security by Observation 1.

Conjecture 1. For each w ∈ N+ there exists a w-mixing

Galois neural network.

We will try to argue for the validity of this conjecture by

applying some statistical tests to randomly generated Galois

neural networks in Section VIII.

VII. PERFORMANCE TEST

In this section, we evaluate the applicability of this approach

through performance test results. We note, however, that the

implementation used for these tests has likely yet to be fully

optimized, one can expect enhancement in that regard with

further development.

The Galois neural networks have been implemented using

bitwise logical operations in Numpy [8] and the correctness

of this approach was validated against the Galois package [9]

for Python.

We will contain ourselves to single-layer NNs for the

purposes of this evaluation, since increasing the number of

layers since increasing the number of layers results in almost

exactly linear growth of computation time.

To establish a frame of reference, we will contrast these

results with the AES-256 implementation found in the Py-

Cryptodome [10] package, note however that while we choose

Figure 2: Results of performance tests. Encryption/decryption

time contrasted with that of AES.

to compare to AES, because of its popularity, our solution is

designed to work with any cipher, in particular less performant

ones, where the performance gap might be less noticeable.

We compare the performance of a Galois neural network

of a certain width on a single input with the performance of

AES on that same input. For each of the lengths 128, 256, 512,

1024, and 2048 we ran 20 randomized messages, encrypted

and decrypted them, and recorded the means and standard

deviation. The tests were run on a mid-range laptop.

The results of these tests can be seen in Figure 2. Un-

surprisingly, as Galois neural network evaluation has cubic

complexity with respect to the width, the neural network

execution time quickly trumps that of AES. However, this

level of increased execution time might still be acceptable for

applications where speed is not of high priority. Nonetheless,

for most usecases, this data indicates a need for optimization,

especially past the 512 mark.

Note that the results for AES do not seem to increase as the

length of the messages increases. This is likely due to some

kind of parallel execution.

VIII. STATISTICAL TESTS

To investigate the validity of Conjecture 1 we performed

a suite of tests to examine some properties of Galois neural

networks with randomized but constant weights.

A. Uniform distribution test

First, we propose the following test. Let w be the (even)

width of a Galois neural network, randomly select the first

w/2 bits of the input. Then repeatedly randomly select the

remaining w/2 bits, concatenate all w bits together, compute

the output of the network, and record the first few bits of the

output. For a w/2-mixing function, we would expect a roughly

uniform distribution of output values.

We performed this test, recording the counts for each output

value, we then used the chi-squared test to assess how alike

1208 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Figure 3: χ2 values from 1024 iterations of the uniform

distribution tests.

these outputs are to those from a uniform distribution. The

results values of those tests can be viewed in figure 3. The

critical values for significance level 0.01 and the given degrees

of freedom are (approx.) 11.345, 18.475, 30.578, 52.191
respectively. Thus all those tests failed to reject the null-

hypothesis with a significance level of at least 0.01.

B. The bit flip test

Another property a mixing function should have, is that a

small change in the input should have a large impact on the

output. In [11] this property is tested in the following way:

• Consider x a random input to the function, record f(x).
• Change a random bit of x, call it x′, record f(x′).
• Compute the number of bits that are different between

f(x) and f(x′).

If f were a random permutation, we would expect the number

of differing bits to follow a binomial distribution. Since we

expect f to behave like a random permutation, we may use

the Student’s t-test to check if that is the case.

We performed 1000 samples of this test for every combina-

tion of 1, 2, 3, and 4 deep and 128, 256, 512, 1024, and 2048
wide Galois neural networks. We then computed the Student’s

t test z statistic for each of those combinations and found

the highest of these values to be less than 0.002, since for

significance level 0.01 and 999 degrees of freedom, the passing

z value is around 2.58, this indicates passing of the Student’s

t test.

C. Nonlinearity measurement

One of the fundamental properties of neural networks is

their lack of linearity, in traditional applications this is useful

because it lets them express and approximate nonlinear func-

tions. Here, we would also benefit from a similar property,

as if our function f were to be linear, it would be easily

recognizable from a random permutation. We had already

proven in Lemma 1 that, at least a single layer, Galois neural

network would be nonlinear. In this section, we investigate the

extent of nonlinearity, as depth increases.

Figure 4: The distribution of nonlinearity for w = 128, t = 5,

exponentially growing GNN depth. 1000 samples.

In [12] the nonlinearity of a function f : Fn → Fm where

m,n ∈ N+, and F is a finite field, is defined in the following

fashion.

Definition 6. The nonlinearity N of a function f : Fn → Fm

is given as:

N (f) =

min
(u,w,v)∈Fn×Fm×F

#{x ∈ Fn|wtf(x) ̸= utx+ v}

In other words, we look at how closely we may approximate

a projection of the output to a scalar, with an affine transforma-

tion of the input. We may use this definition to apply a measure

to the notion of nonlinearity and express how nonlinear each

depth of a neural network is.

Unfortunately, the naive computation of N (g), where g :
GF (2)n → GF (2)m requires O(2n+m) time complexity, and

O(2n) invocations of g. This is too steep to compute for a wide

Galois neural network. Instead, we may propose the following

experiment:

1) Define a Galois neural network of width w, let f :
GF (2)n → GF (2)n signify its computation.

2) Take a small number t.
3) Randomize the last w − t bits and call them vs.

4) Consider a function ft : GF (2)t → GF (2)t that for

input vp is equal to f(c(vp, vs)) constrained to the first t
bits, where c is a function that concatenates two vectors.

5) Compute the nonlinearity of ft.

Such an experiment may help us derive some insights into the

function f , and the efficiency of the activation function. Note

that unlike measuring the nonlinearity of f , this is a random

process so we will have to repeat it to gather reliable data.

In figures 4 and 5 we can see the results of such experi-

ments. We may notice that for only one layer, and therefore

only one activation function the nonlinearity values seem

low and constant. This might be the result of the exact

WOJCIECH WĘGRZYNEK, PAWEŁ TOPA: POSTQUANTUM SYMMETRIC CRYPTOGRAPHY INSPIRED BY NEURAL NETWORKS 1209

(a) t = 6

(b) t = 7

(c) t = 8

Figure 5: The distribution of nonlinearity values for larger t-s,

w = 128, exponentially growing GNN depth. 100 samples for

each.

implementation of the activation function, but nonetheless, this

seems like a strong argument not to use such a low-depth

GNN.

It is also noteworthy, that, with the exception of depth equal

to 1, while the GNN depth increases exponentially it fails to

have a significant impact on the magnitude of nonlinearity

(at least in these experiments). However, the results for depth

2 still show some non-random behavior, like the results for

t equal to 7 and 8 seemingly avoiding odd values. While a

depth of 2 seems to be enough for the purposes of nonlinearity,

practically it may be wise to air on the side of caution and

recommend larger values.

IX. FUTURE WORK

It seems that the biggest area for improvement with this al-

gorithm is performance. In the current form, it seems unlikely

that the algorithm would see widespread use.

One idea to deal with that limitation would be to see if

sparse matrices could be utilized to improve performance with-

out loss of the statistical properties. One could also propose a

different architecture for the underlying Galois neural network.

A different approach would be to seek improvements in

the technical implementation of the algorithm, and either find

improvements on the side of the algorithm or try to achieve

better hardware support.

The second area for potential further work is trying to

further verify and work towards proving Conjecture 1. One

could for example try to replicate existing and to design new

statistical tests perhaps on a bigger scale in order to show the

guarantees required for widespread usage.

ACKNOWLEDGMENT

The research presented in this paper was realized with funds

from the Polish Ministry of Science and Higher Education

assigned to AGH University of Krakow.

REFERENCES

[1] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[2] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,

vol. 549, no. 7671, pp. 188–194, Sep. 2017. doi: 10.1038/nature23461.
[Online]. Available: https://doi.org/10.1038/nature23461

[3] X. Bogomolec, J. G. Underhill, and S. A. Kovac, “Towards post-
quantum secure symmetric cryptography: A mathematical perspective,”
2019, https://eprint.iacr.org/2019/1208. [Online]. Available: https://
eprint.iacr.org/2019/1208

[4] R. Kuang, D. Lou, A. He, and A. Conlon, “Quantum safe lightweight
cryptography with quantum permutation pad,” 2021 IEEE 6th Interna-

tional Conference on Computer and Communication Systems (ICCCS),
pp. 790–795, 2021.

[5] A. Canteaut, S. Duval, G. Leurent, M. Naya-Plasencia, L. Perrin,
T. Pornin, and A. Schrottenloher, “Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security,” Mar. 2019, soumission
à la compétition ”Lightweight Cryptography” du NIST. [Online].
Available: https://hal.inria.fr/hal-02436763

[6] M. Arvandi, S. Wu, A. Sadeghian, W. Melek, and I. Woungang,
“Symmetric cipher design using recurrent neural networks,” in The 2006

IEEE International Joint Conference on Neural Network Proceedings,
2006. doi: 10.1109/IJCNN.2006.246972 pp. 2039–2046.

[7] J. Tchórzewski and A. Byrski, “Performance of computing hash-codes
with chaotically-trained artificial neural networks,” in Computational

Science – ICCS 2022, D. Groen, C. de Mulatier, M. Paszynski, V. V.
Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot, Eds. Cham:
Springer International Publishing, 2022. ISBN 978-3-031-08754-7 pp.
408–421.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and
T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2.
[Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[9] M. Hostetter, “Galois: A performant NumPy extension for Galois fields,”
11 2020. [Online]. Available: https://github.com/mhostetter/galois

[10] “Pycryptodome,” https://www.pycryptodome.org/, accessed: 2023-05-
22.

[11] J. Tchórzewski, “Application of artificial neural networks as hashing
functions,” Ph.D. dissertation, AGH University of Technology, 2022.

[12] K. Nyberg, “On the construction of highly nonlinear permutations,” in
Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory

and Application of of Cryptographic Techniques, Balatonfüred, Hungary,

May 24-28, 1992, Proceedings, ser. Lecture Notes in Computer Science,
vol. 658. Springer, 1992. doi: 10.1007/3-540-47555-9_8 pp. 92–98.

1210 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

