Combination of Fuzzy Sets and Rough Sets for Machine Learning Purposes
(Tutorial – Extended Abstract)

Chris Cornelis, Henri Bollaert
Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium

FUZZY set theory (Zadeh [22], 1965) is a popular AI tool designed to model and process vague information. Specifically, it is based on the idea that membership to a given concept, or logical truthhood of a given proposition, can be a matter of degree. On the other hand, rough set theory (Pawlak [14], 1982) was proposed as a way to handle potentially inconsistent data inside information systems. In Pawlak’s original proposal, this is achieved by providing a lower and upper approximation of a concept, using the equivalence classes of an indiscernibility relation as building blocks.

Noting the highly complementary characteristics of fuzzy sets and rough sets, Dubois and Prade [7] proposed the first working definition of a fuzzy rough set, and thus paved the way for a flourishing hybrid theory with numerous theoretical blocks.

In this tutorial, we will explain how fuzzy rough sets may be successfully applied to a variety of machine learning problems. After a brief discussion of how the hybridization between fuzzy sets and rough sets may be achieved, including an extension based on ordered weighted average operators (see e.g. [1], [4]–[6]), we will focus on the following practical applications:

1) Fuzzy-rough nearest neighbor (FRNN) classification [10], [11], [21], along with its adaptations for imbalanced datasets [15], [19] and multi-label datasets [20]
2) Fuzzy-rough feature selection (FRFS) [2], [3]
3) Fuzzy-rough instance selection (FRIS) [9] and Fuzzy-rough prototype selection (FRPS) [16], [17]

We will also demonstrate software implementations of all of these algorithms in the Python library fuzzy-rough-learn [12], [13].

REFERENCES