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Abstract—Federated learning (FL) is a decentralized approach
that aims at training a global model with the help of multiple
devices, without collecting or revealing individual clients’ data.
The training of a federated model is conducted in communication
rounds. Still, in certain scenarios, numerous communication
rounds are impossible to perform. In such cases, a one-shot FL is
utilized, where the number of communication rounds is limited
to one. In this article, the idea of one-shot FL is enhanced with
the usage of adversarial data, exploring and illustrating the pos-
sibilities to improve the performance of resulting global models,
including scenarios with non-IID data, for image classification
datasets: MNIST and CIFAR-10.

I. INTRODUCTION

F
EDERATED learning [1] is a popular research field that

attracts thousands of researchers due to its simple, yet,

open for improvements idea that is inline with current trends

in distributed computing infrastructures. The core of federated

learning lies in its collaborative nature, which allows multiple

devices (clients) to use their own private data to jointly train

one global model, managed by the centralized server. In

general, the federated learning workflow can be summarized

as follows: (1) a global model is initialized (during the first

round) or aggregated (for subsequent rounds) on a server and

sent to the set of client devices, (2) client devices receive

the current version of the global model and use their private

data to train the model for a set number of epochs, (3) each

client returns resulting updates/weights/whole model back

to the server, (4) server receives updates from clients and

aggregates them into the new version of the global model.

The client-based training round happens multiple times and

is referred to as a communication round. At the end of each

communication round the updated models are aggregated into

the new version of the global model utilizing the federated

averaging (FedAvg [1]) algorithm, which averages the updated

models’ weights. The federated averaging can also be easily

combined with a weighting technique, for instance, its first
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version [1] weighted individual client’s update based on the

size of the local dataset this client possessed and used during

training.

Communication between the centralized server and client

devices is a well-known bottleneck for the federated learning

pipelines [2], therefore, techniques for improving the con-

vergence time [3], minimizing energy consumption [4] or

improving network resource management scheme [5] were

studied. One of the ways to mitigate the communication

burden between the server and the client is to utilize the

concept of few-shot learning.

Few-shot learning [6] is usually referred to as a learning

technique where during training a model only sees a small

portion of data (for instance, a few examples of each class

in a classification task instead of a full dataset) and then

is considered ready for performing testing/inference. In the

case of federated learning, the few-shot learning idea restricts

the number of communication rounds that happen between

clients and centralized servers, e.g. one-shot federated learning

implies only one communication round [7].

Despite few-shot learning techniques being able to drasti-

cally reduce the number of communication rounds needed to

train the model, new questions arise, concerning the perfor-

mance of the resulting models, since machine learning models

usually require numerous epochs to reach the best possible

accuracy. The problem of few-shot FL is further complicated

by the privacy-preserving nature of the FL, which does not

allow revealing any information about the local data that

clients used during local training. In some cases, the problem

of non-IID data can materialize, which can further damage the

performance of the resulting global model [8], [9], [10]. Non-

IID data can manifest itself in many ways. One of the possible

classifications can be described as follows [9]: (1) quantity

skew (different sizes of the local datasets that clients possess),

(2) attribute skew (local datasets have unique distinct features

for the same event/object they are describing, e.g. writing

style), (3) label skew (only a subset of labels is present in local

data, leaving some labels with no samples), (4) temporal skew

(local datasets have time-dependent nature, e.g. were collected

in different moments of time), (5) preference skew (same
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event/object in different local datasets has a different target

value due to subjective preference, e.g. ratings). Combinations

of the different skews can also be present inside one scenario.

In this article, one-shot federated learning is researched

in the context of aggregation of the clients’ updated models

and the possibility of using adversarial images as a source of

client-picking guidance and performance improvement in the

presence of label skew non-IID data.

II. RELATED WORKS

As was stated in section I, the decision to drastically limit

the number of communication rounds increases the importance

of the aggregation algorithm, which can significantly influence

the best possible performance on the test dataset. One of

the first approaches to one-shot FL was to utilize ensemble

learning, where each updated client model was treated as a

part of the ensemble [7]. It was acknowledged, that in FL

scenarios, the size of the ensemble of models depends on

the number of participating clients, which can reach millions

of devices. Moreover, not all clients are equally “useful” in

terms of the data they have. Therefore, the ensemble of the

models was restricted to a subset of models depending on

the selection criteria. For example, models for the ensemble

could be chosen randomly, or based on some indicator. One

of the possible indicators for best candidates is the local

test performance of the model, which requires the model to

save a portion of its local data as a test set to measure the

performance of the updated global model after local training

on the remaining local data. Another similar technique uses a

local cross-validation performance as a performance indicator

for ensemble model picking.

Distillation technique was also researched with respect to

one-shot FL. Data distillation was studied as an alternative

to communicating whole models/model updates from clients

back to the server [11]. Instead, each client, after receiving

the global model used it to distill its own local data and

sent the resulting set of distilled data and targets back to

the server. Although communicating clients’ data even in

a distilled form that cannot be directly interpreted by the

human eyes may be considered a violation of the clients’

privacy, the authors state, that acquiring distilled data will not

let the adversary replicate the resulting global model. After

receiving the resulting datasets from all clients, the server

uses them to train its own global model. Some enhancements

were also presented in the process of data distillation, for

instance, soft labels. Another distillation technique is proposed

to treat clients’ models as teachers and use them for training a

student model on the server side. For instance, client devices

can use their data to train conditional variational autoencoder

(CVAE [12]). Moreover, the ensemble of these decoders is

further distilled on the server into one decoder that can further

be used as a data generator for training a global model on the

server side [13].

The presented approaches to one-shot FL are capable of

reaching a good final accuracy while preserving the benefits

of the reduced number of communication rounds. Neverthe-

less, they may still require training additional models (e.g.

encoders) or be prone to suffering from non-IID data (cross-

validation ensembles). Therefore, a new way of performing

one-shot FL can be of interest. This article presents an

algorithm that can acknowledge the presence of label skew

non-IID data and mitigate its effect on the final model, without

requesting any additional data from the clients or imposing

any additional computation on the client devices by using

adversarial data.

III. ADVERSARIAL ATTACK

Neural networks are susceptible to various kinds of adver-

sarial attacks [14]. The attacks aim at misleading the trained

models into incorrect predictions, by altering the perfectly

correct source data sample in a way that is unrecognizable

by the human eye. This changed source sample is referred to

as an adversarial sample.

There are several methods for generating adversarial sam-

ples. The method that the adversary prefers can depend on how

much information about the source model the adversary has.

The attack methods that require full access to the target model

gradients are called ‘white-box” attacks, while attacks that can

operate on a limited set of information from the source model,

e.g. the predictions from the target model, are called “black-

box” attacks. Among the most popular attack methods, one can

name: the fast gradient sign method (FGSM) [15], its iterative

version I-FGSM [16], momentum-enhanced MI-FGSM [17],

Carlini and Wagner (C&W) [18] attacks, and more.

Moreover, with respect to image classifiers, attacks can also

be divided into two categories based on the precise intention of

the attack. The attack which aims solely to mislead the trained

model into misclassifying an image into any class that is not

the right one is called a non-target adversarial attack, while

the attack that aims at making the classifier make a mistake

by predicting a certain class, set by the adversary, is called a

targeted attack.

One of the fascinating properties of the adversarial samples

is their transferability [19] – adversarial samples generated for

one target model can also mislead models which were trained

to solve similar tasks. In other words, models with similar

architectures that were trained on non-intersecting subsets of

the dataset will most likely be successfully attacked by the

same adversarial sample. The reason behind this phenomenon

is that models that have similar tasks tend to come up with

similar decision boundaries. This behavior can be valuable

in terms of federated learning scenarios, where clients with

similar datasets are training a set of individual models with

respect to the same task objective.

To sum up, during the targeted adversarial attack, the

adversary creates an adversarial sample by modifying the

source sample based on the selected attack method (e.g. by

using gradient-based algorithms like FGSM-family methods).

These changes applied to the source sample force it to cross the

decision boundary estimated by the target model [20], resulting

in misclassification.
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IV. PROPOSED APPROACH

As discussed in section II, one of the possible approaches

to one-shot FL is an estimation of the most successful client

models and using them for making an ensemble of models

instead of combining all clients’ models into one global model

version. The proposed approach described in this paper uses

the knowledge retrieved from the adversarial samples to find

the most promising clients to be included in the ensemble

of models. A more complex algorithm based on the idea

of adversarial data was described in a previous article [21]

and is referred to as AdFL (Adversarial FL). Although the

AdFL algorithm implies training in epochs, in this article the

algorithm is adapted to a one-shot FL scenario and further

extended to be used in an ensemble of models. The description

of the algorithm is given in Algorithm 1.

Algorithm 1 Server-side of proposed one-shot FL, where n

– positive size of the model ensemble, w0 – initialized global

model

Ensure: w0; clients are ready;

Require: n > 0;

for client in Clients do

2: wclient
0 ← run training on client(w0)

end for

4: adv data ← create adversarial data(w[0,...,Clients])

CS[0,...,Clients] ← calculate CS(adv data, w
[0,...,Clients]
0 ])

6: w
[0,...,Clients]
0 ← sort desc(w

[0,...,Clients]
0 , CS[0,...,Clients])

model ensemble ← w
[0,...,n−1]
0

1) The server initializes the global model and sends it to

all clients, participating in training.

2) Clients perform local training with the whole data they

possess for the specified number of epochs.

3) Clients send the resulting updated models back to the

server.

4) After collecting all updated models, the server uses them

to generate C×N adversarial samples, where C – is the

number of classes in the classification task and N – is

the number of updated models returned from the clients

as described in section IV-A.

5) Based on the generated adversarial samples, for each up-

dated client model, a coherence score (CS) is calculated

as described in section IV-B.

6) CS is further used as a performance indicator to identify

the top-performing models and use them as an ensemble.

A. Adversarial samples generation

In order to identify clients that can potentially be useful

for the ensemble, the proposed algorithm exploits the trans-

ferability property of adversarial samples that was described

in section III. Still, per definition, adversarial samples are

created on the basis of existing samples drawn from the source

data. This condition is generally unacceptable for strictly

privacy-preserving FL. Therefore, considering the absence of

the source data on the server side where the creation of

the adversarial samples happens, a random noise image is

considered the starting point for adversarial sample generation.

The targeted MI-FGSM method is used in this article

to generate adversarial samples [17]. The algorithm can be

summarised in a few steps as described in formulas listing (1),

where t is the current iteration of the method, x states for the

input noise image, y – target class, to which the resulting

image should eventually be attributed, gt – accumulated gra-

dients through previous t iterations, θ – source model (in case

of presented algorithm, one of the updated clients’ models),

and J – loss function (e.g. cross-entropy).

gt+1 = µ ∗ gt +
∇xJ(θ, x

∗

t , y))

||∇xJ(θ, x∗

t , y))||1
(1)

x∗

t+1 = x∗

t + α ∗ sign(gt+1) (2)

The algorithm is parameterized by a number of parameters,

namely, µ – decay factor, α – step size. Moreover, the resulting

x∗

t+1 image is further clipped at the end of each iteration in

the clipping range e. The parameters used in this paper are

different from those presented in the referenced paper, due to

the different intentions for the resulting adversarial samples.

Initially, adversarial samples are created to perform an attack

on trained classifiers during inference time, but in the case of

the one-shot FL algorithm described in this paper, the target

is the transferability measure of the samples. Therefore, the

constraints on the amount of the changes applied to the source

image were loosened to allow more gradient information to be

added to the adversarial sample. For instance, the number of

MI-FGSM iterations was increased to 30, and step size α was

increased to 1.

B. Coherence score

After local training, clients return the resulting updated

models back to the server, where each model is used to

generate one adversarial sample per class in the classifica-

tion task. These samples are further used to estimate their

transferability across all models. The idea behind this action

is to find models that can generate transferable samples and

are susceptible to samples, generated by other models. This

two-side transferability might come from the similar decision

boundaries that were learned during the local training step as

noted in section III. Therefore, it can be assumed that such

models learned somehow in a similar way.

The two-sided transferability measure is called a coherence

score (CS) and is calculated out of two separate measures,

each of which summarizes either the ability to create or the

ability to identify adversarial samples.

The ability of a certain model to produce adversarial sam-

ples that are being recognized by other models participating

in training is measured according to equation (3), where k

stands for the model that was predicting adversarial samples

generated by the source model, c stands for a target class that

the adversarial sample was made to represent. The measure is

calculated across all models from the training set with respect

to the adversarial data, generated by the source model for
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which the measure is computed. The predictions of this source

model for its own data are omitted.

was predicted =

K∑

k=1

C−1∑

c=0

is correctk,c · returned prob.k,c (3)

This equation uses a binary feature to identify if the predic-

tion of the adversarial sample was correct or not. This binary

flag is then multiplied by the confidence of the prediction.

Therefore, no punishment is done due to the wrong prediction

and less certain predictions will accumulate less significance.

The ability of the model to correctly predict classes of

adversarial data generated by other models is measured ac-

cording to equation (4), where k stands for the model that

generated the adversarial data and c stands for the target class

of the adversarial sample.

predicted others =

K∑

k=1

C−1∑

c=0

is correctk,c×

× returned prob.k,c (4)

Again, the results of the model predicting its own adversar-

ial data are omitted.

The resulting coherence score is a simple summation of the

two previously described measures (equation (5)).

coherence score = predicted others + was predicted (5)

Each of the models returned by the clients, participating

in training, acquires its own coherence score and the list

of models can then be easily sorted based on the resulting

measure. The models that scored higher in CS are treated as

those that provide more value to the model ensemble and are

picked first. On the other hand, the coherence score can also

be used for weighted federated averaging to create one global

model instead of an ensemble.

V. EXPERIMENTAL SECTION

To illustrate the efficiency of the presented adversarial-based

method in one-shot federated scenarios, a series of experiments

were performed on two datasets for image classification tasks:

MNIST and CIFAR-10.

The results of the presented approach are compared to

three algorithms: classic federated learning (FedAvg), and two

ensembles – an ensemble of random models and a cross-

validation ensemble.

In all experiments, only 10% of models were included in

the ensemble, making the number of models per ensemble

equal to 5. For cross-validation, during the local training part,

5 validation folds were performed, with train/validation data

division being 80/20 respectively. The validation performance

during cross-validation was collected. After that, the model

was trained once again with the whole local data and sent

back to the server together with validation metrics.

A. Data partition

Each of the experiments featured 50 federated clients that

had approximately 400 images from the training dataset as

their local data. The local datasets were created in a non-

intersecting manner. Moreover, all classes inside the local

dataset had the same number of instances (locally balanced

dataset). The local training round consisted of 15 epochs, with

the optimizer set to Adam, with starting learning rate of 0.001.

For the test performance estimation, test sets provided by the

datasets were used.

As was mentioned in section I, non-IID data can create

additional challenges to federated pipelines. Therefore, during

the experiments, both IID and non-IID data partition scenarios

were examined. In the case of IID data, all classes were equally

presented in the local datasets of clients. The label-skewed

non-IID data partition was emulated by constructing each

client’s local dataset only from the limited number of classes.

In both MNIST and CIFAR-10 experiments, the number of

unique classes presented in the local dataset was limited to 4.

So, before starting the FL pipeline, each client’s class set was

constructed individually by sampling 4 classes from the set of

all classes. For each class, a probability of its occurrence in the

local dataset is drawn from a normal distribution. The example

of probability distribution used for CIFAR-10 experiments is

showed in Figure 1.

Fig. 1. Class occurrence probability for CIFAR-10 label skew experiments

Due to the custom distribution of the probabilities of class

occurrence, some classes were less represented globally across

client devices, while others – more.

B. Model configuration

For the MNIST classification task, a simple LeNet5 [22]

configuration was used for all the experiments. As for the

CIFAR-10, a custom configuration of a Convolution Neural

Network was implemented, featuring 6 convolution layers,

each pair followed by a maximum pooling layer, at the end

followed by three dense layers.

C. Results

All experiments were performed at least 15 times to better

capture the statistical significance of the results. As the training
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process consists only of one epoch, the final performance of

the models was summarised across multiple runs. For the

MNIST dataset and IID data partition, the result is showed

in Figure 2.

Fig. 2. Test accuracy comparison for IID MNIST experiment

It is seen, that, in general, all algorithms managed to get

more than 80% of accuracy, while centralized models on the

MNIST dataset reach up to 98% of accuracy. Still, some

algorithms scored higher than others: ensembles of models

performed better than aggregated global models – with median

accuracy for AdFL, cross-validation and random ensembles

being 87.6%, 86.9%, and 86.9% respectively, while aggregated

FedAvg and AdFL achieved 82% and 82.2%, respectively.

In contrast, the non-IID scenario shows a different behavior,

as showed in Figure 3 in addition to a way smaller resulting

accuracy across all algorithms.

Fig. 3. Test accuracy comparison for non-IID MNIST experiment

Here, aggregated versions of the models perform better than

the ensembles, with AdFL and FedAvg reaching 30.6% and

27.4%, and AdFL, cross-validation, and random ensembles

reaching 24.6%, 26.4%, 23.3%, respectively.

This difference in behavior on varying datasets depending

on either presence or absence of non-IIDness, may come

from the fact that individual model evaluation cannot spot the

non-IID clients. Therefore, it is not guaranteed that models

which were exposed to heterogeneous data during training will

appear in the ensemble.

To identify if this behavior can be replicated, the same

experiment was performed on the CIFAR-10 dataset. The

results for the IID data partition are showed in Figure 4.

Fig. 4. Test accuracy comparison for IID CIFAR-10 experiment

In this case, again, ensemble versions perform better than

aggregated models in the presence of IID data. AdFL, cross-

validation, and random ensembles reached 25.8%, 24.9%,

and 25.6%, respectively, while aggregated versions could not

manage to achieve any meaningful results in the provided

scenarios.

However, when examining the results for the CIFAR-10

non-IID scenario (Figure 5), the results differ from those

observed on the MNIST dataset with non-IID data.

Fig. 5. Test accuracy comparison for non-IID CIFAR-10 experiment

In the CIFAR-10 non-IID scenario, contrary to MNIST,

aggregated models (AdFL and FedAvg) still could not get

any meaningful performance, while ensemble methods showed

low, but, somehow diverse across experiments, accuracy with

AdFL, cross-validation, and random ensembles achieving

11.1%, 10.3%, and 10.9% median accuracy, respectively.

Although median accuracy is low, maximum accuracy for

AdFL, cross-validation and random ensemble reached 20.8%,

17.5%, and 18%. This low performance may be a sign that the

proposed task was overly complex and, therefore, may need

more experiments with bigger local datasets or require some

knowledge transfer techniques.

VI. CONCLUSION

In this work, a new approach to building a model ensemble

for one-shot federated learning was introduced and compared

with other ensembling techniques for both IID and non-IID

scenarios. It was observed, that, for the MNIST dataset, in the

presence of IID data, presented ensembling techniques achieve
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better performance than the aggregated models, but for non-

IID data the situation is opposite. For the CIFAR-10 dataset,

the studied non-IID scenario presented a complicated scenario

and did not replicate the results of the MNIST dataset. Still, the

described technique utilizing adversarial data shows similar or

better performance when compared to other algorithms with

respect to test accuracy for both MNIST and CIFAR-10 image

classification tasks. Further research may inspect other non-IID

data scenarios, use more sophisticated model architectures and

datasets, and improve the ensemble construction technique.
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