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Abstract—The automated process of determining the crop
type carried on plots of land, leveraging data provided by
earth observation satellites, represents a highly valuable ability
that can serve as a foundation for subsequent analyses or as
input for calibrating models, such as Decision Support Systems.
This paper presents a study on the task of crop classification
starting from indices derived from imagery data provided by
ESA Satellites Sentinel 1 and 2. We create a valuable tool to
verify farmers’ claims, especially in relation to state subsidies
for specific crops of interest. To this purpose, we focus on
perfecting a binary classification for each of five crops of
interest (Tomatoes, Soy, Sugar Beet, Rice, and Wheat), aimed to
accurately discern the target crop against any other possible crop.
The paper investigates various preprocessing techniques to create
a dataset suitable for traditional machine learning methods,
which presumes that each land plot to classify is represented by a
fixed set of features. To deal with inevitable missing observations
caused by clouds or other environmental factors, we investigate
different imputation strategies (linear interpolation and constant
value filling). Complementary, we study the impact of imbalanced
classification labels and evaluate the effectiveness of standard
balancing techniques. The findings offer practical implications for
monitoring and optimizing agricultural practices in the context
of precision farming and sustainable agriculture.

Index Terms—Crop Classification, AgriAI, Machine Learning
for Agriculture, Decision Support Systems, Sentinel, Copernicus

I. INTRODUCTION

IN LINE with the objectives for the period 2023-2027

of the European Union’s Common Agricultural Policy

(CAP), Italy has allocated funds for the production of protein

crops (C544 million per year). The aim is to incentivize

local agricultural production of crops such as Tomatoes, Soy,

Sugar Beet, Rice, and Wheat in local production through

the granting of reimbursements by the state. Consequently,

there is a pressing need for methods to verify the authenticity

of indigenous crops. On-site inspections prove to be costly

and inadequate given the scale of the problem, meanwhile

satellite remote sensing is a promising technology to classify

crops since it can provide periodically large-scale observations

of ground objects [11], [13]. The objective of this study is

to automate such verification procedures by using Machine

Learning (ML) systems applied to satellite data of the relevant

geographical areas. Specifically, we focus on the central area

of region Emilia-Romagna (Italy) . The problem can be cast as

a binary classification: given the data pertaining to a particular

field and the farmer’s statement regarding the crop, our goal

is to verify the veracity of the information given.

The usage of machine learning algorithms for similar

tasks is explored in many recent contributions. Among them,

Random Forest [3], [7], [12] or decision tree-based [3], [9]

classifiers are among the most commonly employed methods

for handling this type of data. Data for this paper has been

sourced from Sentinel satellites, deployed within the Coperni-

cus program, managed by the European Space Agency (ESA).

Sentinel-2 images, have already proven to be a valuable data

source for crop mapping in different regions and countries

like Central Europe [7], Spain [3], [10], Lebanon [9] and

China [12].

The remainder of this paper is structured as follows. Sec-

tion II, provides a description of the composition of the dataset,

highlighting the type of utilized data, the characteristics of

the satellite observations, and the distribution of the different

crop types. Section III provides e a theoretical overview of

the Machine Learning method employed: Random Forests
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Fig. 1: Study area and locations of ground truth samples (red

area). The analyzed fields are located in the central part of

the region. This specific area of interest tends to prioritize

the production of Wheat, Soy, and Sugar Beet over Rice and

Tomatoes.

(RF) with an emphasis on the data pre-processing work, from

handling missing dates due to adverse weather conditions to

addressing the dataset’s imbalance. Section IV presents the

performance of the proposed pipeline for crop classification.

The aim of this section to assess the accuracy of our model

using the complete time frame of the planting process, from

seeding to product harvest. In Section V we briefly go through

the main result of this work to provide possible branches of

further research on the topic.

II. DATASET AND PREPROCESSING

All the data used for the remote sensing purpose in

this work is acquired from the earth observation satellites

deployed by ESA during the missions Sentinel-1 and

Sentinel-2.1. Each of these missions deployed in a near-polar

sun-synchronous orbit a twin pair of satellites (named

Sentinel-1A and Sentinel-1B, Sentinel-2A and Sentinel-2B),

which provide sensor observation capabilities depending

on the objective of the mission. In particular, Sentinel-1

satellites are equipped with C-band synthetic-aperture radar

(C-SAR), while Sentinel-2 satellites are instead equipped

with passive Multi-spectral camera operating in 13 distinct

bands spanning the spectrum of visible, near-infrared and

short wave infrared. Sentinel-1A has a revolution period,

hence a temporal revolution, of 12 days, whereas Sentinel-2A

and Sentinel 2B of 3 to 5 days, depending on the area.

Spatial resolution of Sentinel-1 observations is 10 meters,

hence the crop field is discretized in squares of 100m2.

Sentinel-2 data has a different spatial resolution according

to the sensor by which they are collected, either 10 or 20

meters. From a qualitative standpoint, Sentinel-1 active radar

sensors imply it always collects the data independently of

1https://sentinel.esa.int/web/sentinel/missions

atmospheric conditions, while Sentinel-2 satellites, relying on

passive optical sensors, can produce missing or fragmentary

observations due to clouds presence. Starting from the raw

observations obtained from the Sentinel satellites, we leverage

a total of 16 numerical indices, 12 of them are obtained by

Sentinel-2A and Sentinel-2B, and 4 came from Sentinel-1A

and Sentinel-1B. Sentinel-1B stopped working in December

2021 and is currently unavailable. Overall, the time frame of

the whole dataset spans across 14 months.

A. Data Preparation

Each of the 2 indexes coming from Sentinel-1, named

backscatter and coherence, is further divided in the two polar-

ization VV (co-polarized) and VH (cross-polarized). Backscat-

ter defines the portion of the radar signal that get reflected

from the earth’s surface straight to the radar antenna, while

coherence is defined as the normalized value of the complex

cross-correlation between a pair of SAR observation spaced

by a period of 12 days. Intuitively, a very low value of

the coherence, might indicate a big change in how the field

presents itself in 12 days time-difference. To prioritize the

number of available observations over the homogeneity of

those observations, we also leverage the multiple observations

of fields that are visible from partially overlapping orbits This

is acceptable since we use pixel statistics (as detailed below),

not raw observations, to analyze our data. The differences

between observations from different orbits are therefore con-

sidered negligible.

The most popular index obtainable from Sentinel-2 observa-

tions is the NDVI (Normalized Difference Vegetation index),

eq. (1), defined as the ratio of the difference and the sum of

the reflected radiation in the near infrared and red, which is a

good indicator of the amount of chlorophyll in a field.

NDV I :=
NIR−RED

NIR+RED
(1)

In order to produce a suitable time series representation for

each field, we devise a simple yet effective post-processing

strategy of the raw satellite observations. For each record,

using its vector geometry, the corresponding patch is cut out

for each available observation. Then, each patch is reduced

to a set of five statistics (mean, mode, standard deviation,

maximum and minimum). The full set of observation obtained

over the growing season constitute the field time series that we

aim to classify, and it’s labeled with a single class identifying

the crop being grown.

Our dataset consists of 49 different types of crops and

16,684 sample fields. Among those 49 crops only five are

subject to crop-specific subsidies and only for them it is

necessary to verify the truthfulness of the farmer’s declara-

tions. Getting more specific, the dataset consists of 12,496

samples with specific target crop, divided in: 743 Tomatoes,

63 Rice, 5,214 Wheat, 2,974 Sugar Beet and 3,502 Soy, and

4,188 samples with crops not subject to specific subsidies and

therefore considered as ”OTHER” class.
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TABLE I: Amount of crop types for the available fields

Crop Amount

Tomatos 743

Soy 3502

Sugar Beet 2974

Rice 63

Wheat 5214

Others 4188

Total 16684

B. Analysis of the used Dataset

Therefore, we propose a qualitative analysis of the available

data, this is helpful in order to build an intuition for the

possibility to accurately classify the observed crop based

on the data gathered. The bar plots (Figure 2a-Figure 2e)

depict the variation of the NDVI value across all the fields

during the season. The black line represents the behavior of

the NDVI average across the fields, while the green vertical

bands represent one standard deviation above and one below

the mean. The sowing and harvesting phases of the different

crops (See Table II) are delimited by the dashed blue and red

vertical lines, respectively. The behavior of the NDVI appears

to be highly indicative of the growth trend: the blue area

(sowing) is usually followed by an increase in the value of

the index, whereas the red bands (harvesting) correspond to a

steep decrease of the NDVI value. This has a straightforward

interpretation given the meaning of the NDVI (indicative of the

amount of chlorophyll in the field): after the sowing period, the

amount of chlorophyll increases during the vegetative growth,

and decreases rapidly with the harvesting. Looking at the width

of the green error bars, we can also appreciate the variability

changes during the different phases and among different crop

types.

III. METHOD

Since ultimately the objective is to verify if the crop is the

one declared by the farmer (among the 5 ones of interest)

versus any other different crop type, we propose to train

a binary classifier for each of the crop of interest. After

the common data preparation steps detailed above, a binary

classification dataset is prepared for each of the target crops,

by assigning to the samples labeled as it the label positive (1)

and to any other sample the label negative (0). At deployment

stage, the binary classifier is fed a new unseen crop that should

belong to a specific class and assess the truthfulness of the

declared crop.

It is known in the literature that Random Forest has great

performances in remote sensing classification tasks [1]. A

Random Forest (RF) [2] is an ensemble method whose base

estimators are decision trees. This method reduces bias and

variance thanks to the introduction of multiple uncorrelated

voters, because each of the trees has the chance to learn

a different pattern in the data and then this knowledge is

combined.

A. Missing data management

Due to variable atmospheric conditions and the nature of

Sentinel-2 passive optical sensors, we have a lot of images

that were totally or partially covered, hence we opted to

disregard covered units up to a certain threshold during pre-

processing. In order to represent each field as a fixed set

of features, we define a common set of observation dates.

While other strategies are possible, we prefer to preserve

all the remaining observations by considering all the times-

tamps that corresponds to at least a single observation in the

whole dataset, resulting in 110 valid timestamps. Complete

observations of all the 16 indices are usually not available

for all the 110 timestamps for each field, Figure 3 illustrates

the approximate distribution of the amount of observations

per field. We experiment with two standard techniques to

fill the missing values. The first is to insert an out-of-scale

value in all empty dates. The other technique we evaluate is

linear interpolation [8]. For each field, we linearly interpolated

all the statistics (mean, mode, minimum, maximum, standard

deviation) in each of the empty dates.

B. Data imbalance management

The creation of the five binary classification dataset inher-

ently causes large data imbalance that is of potential harm

when training a classifier, as it could learn a bias towards

the dominant class. To tackle this problem, we investigate

3 popular ways to obtain a balanced dataset before training

the classifier: undersampling, random oversampling, SMOTE

(Synthetic Minority Oversampling Technique) [5].

Undersampling consists in balancing the training set by

randomly eliminating units from the majority class. The main

drawback of this is the information loss, as the classifier may

lose the chance to see some different and valuable examples

of the adversary class. On the other hand, this approach leads

to having a smaller dataset, which makes the training phase

less time-consuming and energy-demanding, also reducing the

environmental impact in the perspective of GreenAI. On a

different note, random oversampling consists of balancing the

training set by randomly sampling more units of the minority

class.While this approach does not lose any information, it

presents other drawbacks.The dataset becomes larger without

actually adding new information: this translates in an increased

computational cost and training time, without a correspond-

ing increase in the algorithm performance. Furthermore, we

run the risk to induce overfitting, reducing the classifier’s

ability to generalize with respect to undersampling, likely

leading to many false positives [6]. Finally, SMOTE is a

balancing technique that focus on generating synthetic samples

for the minority class, this is achieved by interpolation in

feature space between two neighbor samples from the minority

class.This approach mitigates the risk of overfitting, but it is

often unclear whether the newly generated units are actually

realistic, therefore the risk is to create noise or introducing a

bias in the training sample. For this reason, we refrain from

leveraging SMOTE in the following experimental section.
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(a) Tomato
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(b) Soy
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(c) Sugar Beet
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(d) Rice
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Fig. 2: Bar plots showing NDVI index across time for different crops. Vertical green error bars represent one standard deviation

above and one below the average, computed among the fields. Vertical dashed blue lines enclose the sowing periods, red ones

enclose the harvesting ones (See Table II)
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Fig. 3: Distribution of the amount of observations.

Intuitively, we could prospect that undersampling could be

the best option for our case, given the dataset to be large

enough for the model to see enough variability in the adversary

class. Moreover, since false declarations are a rare occurrence

(<5%), we could foresee that among the units flagged as

suspicious (classified as negative for the class of interest), there

would be a predominance of false positive. False positive could

trigger and unnecessary verification, while false negatives

could mean a false declaration going undetected, hence the

trade-off should be carefully evaluated in the deployment

scenario.

IV. EXPERIMENTS

In this section, we present and discuss the results of the

methodology detailed in the first part of this manuscript. To

restate, the goal of our research is to leverage the observations

provided by the ESA Copernicus satellites in order to provide

the regulatory agency with feedback on the truthfulness of the

stated crop for a given plot of land. A negative outcome of

the automatic classification might trigger an on-site inspection,

hence it is crucial to be able to provide a reliable classification.

A. Experimental Setup

For the purpose of this work, five crops have been con-

sidered, which are reported in Table II along with the most

relevant information of the production’s life cycle. Our training

data include all the available observation for the 2022 season

TABLE II: Start and end of sowing and harvesting opera-

tions for the crops of interest, along with the minimum and

maximum observed days of duration of the crop cycle. The

information is obtained from the data for the 2022 growth

season. Dates are expressed in (mm/dd) format.

Crop Sowing Harvesting Cycle duration (d)

start end start end min max.

Tomato 04/01 07/01 07/15 10/01 95 110

Soy 01/03 06/15 09/10 09/30 120 150

Sugar Beet 01/03 03/31 07/15 09/15 60 90

Rice 01/04 04/30 09/15 11/05 160 180

Wheat 10/15 11/30 06/01 07/10 210 230

(completed), we train a binary classifier for each of the five

crops of interest, leveraging the datapoints labeled with the

target class as positive examples (class 1), and the remaining

datapoints as negative examples (class 0), those include the

remaining 4 classes along with other crop classes. In this eval-

uation, we use as training data all the data available between

the beginning of the sowing phase to the end of the harvesting

for the target crop. This analysis is relevant for two aspects:

(a) It allows for a controlled setup to experiment with multiple

options for dealing with the problems of extremely unbalance

between positive and negative examples (Section III-B) and to

evaluate the two options for dealing with missing observations

(Section III-A). (b) It allows defining a baseline for the

classifier’s performance in a best-case scenario.

To assess the effectiveness and reliability of the classifica-

tion models we use the standard metrics in the literature for

binary classification: Precision, Recall and F1-Score, defined

below.

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

F1-score = 2×
Precision × Recall

Precision + Recall
(4)

Given the extreme unbalance of the dataset uses for testing,

it is best to avoid relying on the Accuracy, since a high

accuracy may be achieved by simply predicting the majority

class.
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For each binary classifier, we isolate a uniformly sampled

25% of the available data for evaluation, while the remaining

75% is used for training. The very same train-test subset have

been used for all the experiments, to ensure a fair comparison.

Before training each classifier, we further refine the training

data by narrowing the observation window to only include

observations between the start of the sowing season to the end

of the harvesting season for the target crop. This is especially

important since the same field might be grown with different

crops through the year, which might induce a bias in the

classifiers.

B. Results

TABLE III: Comparison of Interpolation with out-of-range

placing for filling statistics of missing observation dates.

Crop Strategy Precision Recall F1-Score

Tomato
Interp. 0.89 0.59 0.71

Fill 0.89 0.62 0.73

Soy
Interp 0.915 0.86 0.89
FIll 0.92 0.86 0.89

Sugar Beet
Interp 0.99 0.93 0.96

Fill 0.99 0.92 0.96

Rice
Interp 1.0 0.75 0.85

Fill 1.0 0.375 0.54

Wheat
Interp 0.93 0.93 0.93

Fill 0.93 0.93 0.93

a) Management of missing observations: The first funda-

mental experiment involves comparing different strategies for

filling missing observations in the statistics, as introduced in

Section III-A. The results obtained with two strategies, linear

interpolation and filling missing values with an out-of-scale

value (-1000), are presented in Table III. The choice of these

strategies appears to have minimal impact on the evaluated

metrics, except for the Rice crop, which exhibits a significantly

low recall when using the constant value strategy. However,

it is challenging to precisely attribute this result solely to

the interpolation strategy, due to the crop’s extreme under-

representation across the dataset. For the above reasons, in the

remainder of this analysis, we opted to use the Interpolation

strategy.

b) Dataset balancing: The second part of the experi-

mental evaluation focuses on determining the optimal strategy

for handling the highly unbalanced dataset used to train

the binary classifier. We compare the performance of the

baseline classifier trained on the original imbalanced training

set with the same model trained using two different resampling

techniques: undersampling and oversampling. Undersampling

involves reducing the number of instances from the majority

class to achieve a more balanced representation of the classes,

conversely oversampling involves increasing the number of

instances in the minority class to address the class imbalance.

These and other resampling strategies are further described in

Section III-B.

By analyzing the results presented in Table IV, noteworthy

observations can be made regarding the two resampling tech-

niques. The application of the undersampling strategy resulted

TABLE IV: Effects of training data balancing on the unbal-

anced test data.

Crop Train Data Precision Recall F1-Score

Tomato
Unbalanced 0.89 0.59 0.71

Undersampling 0.39 0.92 0.54
Oversampling 0.83 0.72 0.77

Soy
Unbalanced 0.915 0.86 0.89

Undersampling 0.832 0.93 0.88
Oversampling 0.9 0.91 0.91

Sugar Beet

Unbalanced 0.9 0.93 0.96
Undersampling 0.95 0.96 0.95
Oversampling 0.99 0.99 0.99

Rice

Unbalanced 1.0 0.75 0.85
Undersampling 0.12 0.87 0.22
Oversampling 1.0 0.75 0.86

Wheat
Unbalanced 0.93 0.93 0.93

Undersampling 0.88 0.97 0.92
Oversampling 0.92 0.95 0.93

in an increase in the number of false positives, where crops

are mistakenly classified as the target crop. Consequently, this

led to a notable decrease in the Precision metric, reaching

drastic levels for certain cases as highlighted in the results

table. This issue can be attributed to the significant reduction

in the training data caused by the undersampling procedure.

As a result, the negative effect is particularly pronounced for

the most underrepresented crops, such as Rice and Tomato.

It’s worth noticing that False positive are possibly the least

desirable outcome in our application scenario, while a false

negative leads to further investigations on the effective crop

being carried out, a false negative means that bogus declaration

are more likely to be undetected.

On the other end the oversampling strategy shown promis-

ing results, with a noticeable reduction in false negatives

with respect to the baseline with only a manageable increase

in false positive, the overall superiority of this approach

is hence validated by an increase in F1 score for all the

crops. To conclude, while we can’t recommend relying on

an undersampling strategy, we are confident in suggesting

the oversampling approach in order to reduce the number of

occurrences of an investigation being triggered by mistake.

c) Choice of the classifier: The previous results were

all obtained with a Random Forest classifier, to demonstrate

the validity of our choice, therefore hereafter we evaluate the

alternative usage of the very powerful and popular binary clas-

sifier SVM [4] This classifier builds a separation hyperplane by

choosing support vectors, those are the defined as the harder

to classify points. For a simple yet meaningful comparison, we

compare the results obtained without train dataset balancing,

using the interpolation strategy for the management of the

missing observation.

In Table V we report the results. It’s clear that RF slightly

outperforms SVM for all the crops, of particular interest it

is the Rice crop, that never gets correctly classified, hence

scoring zero in all the metrics. The reason lies in the very small

number of fields labeled as Rice (Table I), with SVM clearly

requiring a larger training set. Another advantage of RF is its

superior interpretability compared to SVM. With each decision

PAOLO BERTELLINI ET AL.: BINARY CLASSIFICATION OF AGRICULTURAL CROPS USING SENTINEL SATELLITE DATA 863



TABLE V: Comparison of the results obtained with Random

Forest and SVM.

Crop Classifier Precision Recall F1-Score

Tomato
RF 0.89 0.59 0.71

SVM 0.876 0.55 0.68

Soy
RF 0.915 0.86 0.89

SVM 0.87 0.87 0.87

Sugar Beet
RF 0.99 0.93 0.96

SVM 0.97 0.93 0.95

Rice
RF 1.0 0.75 0.85

SVM 0.0 0.0 0.0

Wheat
RF 0.93 0.93 0.93

SVM 0.9 0.94 0.92

tree acting as a transparent flowchart, it becomes easier to com-

prehend how the model classifies data points. The consensus-

based decision-making further enhances stability and improves

generalization abilities. In contrast, SVM’s optimal hyperplane

may lack clear interpretability.

V. CONCLUSION AND FUTURE WORKS

In conclusion, this work provides a significant contribution

to agricultural research by demonstrating the applicability of

machine learning techniques and the utility of satellite data

for crop classification. The proposed methodology can be

applied to verify the authenticity of farmers’ claims, especially

regarding state subsidies for specific crops of interest.

Our work lays the foundation for further research in the

field of agricultural field classification using satellite imagery

and ML techniques. Several avenues for future work can be

explored to enhance and extend the findings presented in this

paper.

1) Multi-class classification could provide a more compre-

hensive understanding of crop distribution and facilitate

more accurate crop monitoring and yield estimation.

2) Incorporating additional data sources, such as weather

data, soil composition, or historical crop records, could

improve the accuracy and robustness of the classification

models.

3) Investigating the development of dynamic classification

models that can adapt to changing environmental condi-

tions and crop phenology could enable real-time moni-

toring and detection of crop changes, disease outbreaks,

or other significant events that affect agricultural fields.

By pursuing these future research directions, we can ad-

vance the field of agricultural field classification and contribute

to the development of more accurate, efficient, and sustainable

agricultural practices.
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