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Abstract—Biomedical event detection is an essential subtask
of event extraction that identifies and classifies event triggers,
indicating the possible construction of events. In this work
we propose the comparison of BERT and four of its variants
for the detection of biomedical events to evaluate and analyze
the differences in their performance. The models are learned
using seven manually annotated corpora in different biomedical
subdomains and fine-tuned by adding a linear layer and a Bi-
LSTM layer on top of the models. The evaluation is done by
comparing the behavior of the original models and by adding a
lexical and a syntactic features. SciBERT emerged as the highest
performing model when the fine-tuning is done using a Bi-LSTM
layer, without need of extra features. This result suggests that the
use of a transformer model that is pretrained from scratch and
uses biomedical and general data for its pretraining, allows to
detect event triggers in the biomedical domain covering different
subdomains.

Index Terms—Biomedical Event Extraction, Event Detection,
Transformer Language Models, Named Entity Recognition

I. INTRODUCTION

B IOMEDICAL event extraction is a complex information

extraction task that identifies key information from large

sets of textual data for further applications, such as the study of

biomolecular mechanisms or epigenetic changes. A biomedical

event is constructed from an event trigger and one or more ar-

guments that orbit around the trigger. Event triggers generally

refer to nouns or verbs that express an action, circumstance

or eventuality, while the arguments refer either to biomedical

entities or to other events, called nested events. Fig. 1 shows

the example of a sentence annotated with two biomedical

events, ‘-Reg’ (which stands for ‘Negative regulation’) and

‘Locl’ (which stands for ‘Localization’). The event ‘Locl’ (the

event is given the same type as the trigger) that is constructed

from the trigger word ‘excretion’ presents as argument the

biomedical entity of the type ‘D/C’ (which stands for ‘Drug

or compound’), who plays the role ‘Th’ (which stands for

‘Theme’). This role allows answering the question ‘What

is excreted?’. While the event ‘-Reg’, constructed from the

trigger word ‘reduces’, presents two arguments. The first argu-

ment is a biomedical entity of the type ‘Drug or compound’,

who plays the role ‘Cause’. This role allows answering the

question ‘What causes the reduction?’. The second argument

is the nested event ‘Locl’ described before, who plays the role

‘Theme’, answering the question ‘What is reduced?’.

Fig. 1. Example of event extraction; the ‘-Reg’ (negative regulation) event
has the ‘Locl’ (localization) nested event as argument.

Event extraction is usually divided into three main sub-tasks,

event detection, argument identification and event construc-

tion. Event detection identifies and classifies the trigger words

into a set of predefined types of event triggers, while argument

identification identifies and classifies the corresponding event

arguments and their respective roles [1]. Event construction

refers to the merging of the relations that correspond to the

same event. This work focuses on event detection, which

has a fundamental role in the construction of events, since

the triggers are the targets that allow to know that an event

may exist [2]. Difficulty for trigger detection comes from

the sensitivity to the domain or subdomain (text can present

specialized language), linguistic forms (triggers can be single

words, multi-words, discontinuous markers) and ambiguity

on the trigger class (a trigger word can be given different

trigger classes) [3]. According to different works, such as in

[1], solutions to address these issues may include additional

features to provide lexical, syntactic and semantic information

about text, which have proven to be useful for detecting event

triggers. Transformers models have been adopted for event

detection due to their positive achievements in performance

for solving different Natural Language Processing (NLP) tasks

[4], [5]. BERT [6], which stands for Bidirectional Encoder

Representations from Transformers, is pretrained to generate

bidirectional representations of the words, taking into account

the semantics by considering both left and right directions of

the text. From this pretraining, BERT can be fine-tuned by

including additional layers on top of the model to solve new

specific tasks. Furthermore, a series of variants from BERT

have been developed for specific domains by being trained on

large corpus with the same context, such as the biomedical

domain.

In this work we compare BERT and four of its variants

pretrained in the biomedical domain for the detection of

biomedical event triggers to analyze their performance and

identify which model is the most appropriate to address

this task. For this purpose, BERT, BioBERT, SciBERT, Pub-
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MedBERT, and BioMedRoBERTa are fine-tuned using two

different classifiers, a linear layer and a Bidirectional Long

Short Term Memory (Bi-LSTM) layer, to detect biomedical

event triggers. These BERT variants have been chosen for

comparison because they share the same BERT architecture

but have previously been pretrained using different data in

the biomedical and/or general domain [7]–[9]. The models

are learned using seven manually annotated data sets merged

together. These corpora were originally developed for the

event extraction task in different biomedical subdomains. In

addition to these data, two features are included as lexical and

syntactical extra-information to the models, the stems and the

parts-of-speech (POS) tags, respectively. SciBERT presented

the highest performance when the fine-tuning is done using

a Bi-LSTM classifier without adding any extra-features. This

result suggests that using a transformer model that is pretrained

from scratch using biomedical and general domain data, al-

lows to detect biomedical event triggers addressing different

biomedical subdomains.

Our main contributions refer to the (1) comparison of the

capability of different pretrained transformer models to detect

biomedical events, (2) evaluation of the performance of two

different classifiers for the fine-tuning of event detection,

(3) analysis of the impact of manually annotated corpora

on different biomedical subdomains to detect event triggers,

and (4) assessment of whether adding lexical and syntactic

information improves biomedical event detection.

II. RELATED WORK

Current SOTA systems for event detection use neural net-

work models due to their robust event extraction capabilities.

P. V. Rahul et al. [10] used Recurrent Neural Networks

(RNN) to extract higher level features through the hidden

state of the network to identify biomedical event triggers.

They also used the word and the entity type embeddings

as features, demonstrating positive results in the MLEE [11]

corpus. S. Duan et al. [12] and Y. Zhao et al. [13] explored an

augmentation of the semantic information by integrating the

full document representation. Both proposed the use of RNNs

to extract cross-sentence features without the use of external

resources. T. H. Nguyen and R. Grishman [14] presented a

Graph Convolution Network (GCN) model to exploit syntactic

dependency relations. They used dependency trees to link

words to their informative context for event detection. H. Yan

et al. [15] also proposed a GCN model, integrating aggrega-

tive attention to model and aggregate multi-order syntactic

representations of the sentences, while in the case of S. Cui

et al. [2], they extended the GCN by adding the relation

aware concept, which exploits the syntactic relation labels

and models the relation between words. DeepEventMine [16]

is an end-to-end system for event extraction that consists on

four main modules; BERT model, trigger and entity detection

and classification, relation extraction and event identification.

For each of the modules, BERT is used as base model and

a linear layer is added. One of the main objectives of this

system is improving the extraction of nested events, where it

has achieved the new SOTA performance on seven biomedical

nested event extraction tasks. B. Portelli et al. [17] compared

BERT and five of its variants for the identification of Adverse

Drugs and Events (ADEs). They showed that span-based

pretraining, from spanBERT, provides an improvement in the

recognition of ADEs, and that the pretraining of the models in

the specific domain is particularly useful in comparison to train

the models from scratch. A. Ramponi et al. [18] developed

BEESL, a neural network model based on a sequence labeling

system for the extraction of events. The system converts the

event structures into a format of sequence labeling, and uses

BERT as language model. Y. Chen [19] proposed the Multi-

Source Transfer Learning-based Trigger Recognizer system,

which is an extension on transfer learning using multiple

source domains. All the datasets from the different domains

are used for jointly train the neural network, achieving a higher

recognition performance on the biomedical domain, having a

wide coverage of events.

According to these works, transformer architectures have

achieved positive results for detecting event triggers, and the

use of pretrained language models has shown an improvement

in the performance of this task. However, these works have

been developed in a specific biomedical subdomain or in the

general domain, not allowing a generalization to different

biomedical subdomains. This may present a limitation in

the detection of biomedical triggers because the language in

biomedical texts is usually specialized and very specific. In

addition, an analysis on how the pretrained language models

used were selected over the other existing models is not

described. Besides, according to A. Ramponi et al. [18], the

detection of triggers continues to be the most important source

of errors in event extraction, where around 31 % of the errors

correspond to non-detection of triggers and 28 % to over-

detection of triggers.

III. MATERIALS AND METHODS

Fig. 2 shows the approach followed in this work. The

annotated data is given as input to the pretrained transformer

models to calculate the embeddings. The models used are

BERT and four of its variants, who have achieved state-of-the-

art performance in different NLP tasks without requiring major

architectural modifications according to the specific tasks. In

addition, the embeddings of a lexical and a syntactic features

are also calculated. Then, a classification layer is added on top

of the models for fine-tuning to detect event triggers.

Fig. 2. Overview of the approach proposed to detect event triggers.
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A. Transformer Model: BERT

BERT [6] is a contextualized word representation model

based on a masked language model pretrained with bidirec-

tional transformers [7]. In BERT, the sequence of input tokens

(words or sub-words) is constituted with initial vectors that

are the combination of the token embeddings, the (token)

position embeddings and the segment embeddings (text seg-

ment to which the token corresponds) through element-wise

summation. The embeddings of extra features can be computed

and included in this summation, such as the POS embeddings

(token function in meaning and grammar within the sentence),

which has demonstrated to be helpful in detecting event

triggers [1]. The embeddings are then passed to a set of layers

of transformer modules. Each transformer layer generates a

contextual representation of every token by summing the

non-linear transformation of the tokens’ representations from

the previous layer. This representation is weighted by the

attentions calculated using the representations of the previ-

ous layer as query. The last layer generates the contextual

representations for all the tokens, where the information of

the whole text span is combined [20]. Following the BERT

principle, other transformer models have been developed being

pretrained with data from specific domains, e.g. biomedical

data, presenting better adaptation for solving in-domain tasks.

BioBERT [7] and BioMedRoBERTa [21] are some examples

of BERT variants pretrained in the biomedical domain.

B. Fine-Tuning Transformer Models for Event Detection

Various downstream text mining tasks can be performed

by making minimal modifications to the BERT architecture

through a process of fine-tuning. Here, the transformer models

are fine-tuned following the Named Entity Recognition (NER)

task. NER is one of the main tasks of biomedical text

mining, which aims to recognize domain-specific nouns in

a biomedical corpus by giving each word si in a sentence

S = s1, s2, ..., sn (n refers to the number of words in the

sentence) a predefined class l ∈ L (where L refers to the

predefined collection of entity types including the no-entity

class). In this work, NER is adapted to identify triggers, which

implies not only identifying nouns, but also verbs and in

some cases adjectives. Two different classification layers, a

linear layer and a Bi-LSTM layer, are used separately for

comparison. The output labels are obtained following the IOB

(Inside-Outside-Beginning) tagging to identify and classify the

triggers into the predefined trigger categories (in the case of

the I and B tags).

IV. EXPERIMENTAL SETTINGS

A. Corpus

Table I presents the seven datasets 1 (all publicly available)

used for fine-tuning the transformer models. These corpora

were manually or semi-manually annotated by experts and

1Cancer Genetics (CG) 2013 [22], Epigenetics and Post-translational Mod-
ifications (EPI) 2011 [23], GENIA 2011 [24], GENIA 2013 [25], Infectious
Diseases (ID) 2011 [26], Pathway Curation (PC) 2013 [22], Multi-Level Event
Extraction (MLEE) [11]

released to be used in the development and improvement of

event extraction models.

TABLE I
STATISTICS OF THE CORPUS USED

Dataset No. Triggers Trig Classes Documents Train/Dev/Test

CG 2013 9,790 35 PubMed abstracts 300/100/200
EPI 2011 2,035 14 PubMed abstracts 600/200/400
GENIA 2011 10,210 10 MEDLINE abstracts 1,000 (total)
GENIA 2013 4,676 12 PMC full-text 34 (total)
ID 2011 2,155 10 PMC full-text 15/5/10
PC 2013 6,220 22 PubMed abstracts 260/90/175
MLEE 5,554 15 PubMed abstracts 131/44/87

For the development of the experiments, the training and

development datasets of all the corpora are initially merged

into one single dataset and split into sentences, obtaining a

total of 24,819 sentences. The original test sets are not used

since the annotation are not released. Then, a random data

partition into 80/20 is applied to obtain the training and testing

sets, containing 19,855 and 4,964 sentences, respectively. Each

sentence is further split into words by spaces and then, each

word into sub-words or tokens following the setting of the

BERT tokenization. These tokens are then given as input to the

transformer model. All the trigger classes from each corpus are

considered for the final trigger classification, presenting a final

set of 58 classes (some classes overlap among the different

corpora).

B. Pretrained Transformer Models

The transformer model, BERT [6], and four BERT variants

pretrained in the biomedical domain, BioBERT [7], SciBERT

[8], PubMedBERT [20], and BioMedRoBERTa [21], are used

and compared for the detection of event triggers. These models

differ from each other by the corpora in which they were pre-

trained (all in English), the type of pretraining and the size of

the vocabulary. SciBERT and PubMedBERT, were pretrained

from scratch, meaning that they use a unique vocabulary

on the pretraining corpus and include embeddings that are

specific for in-domain words. BioBERT and BioMedRoBERTa

were pretrained starting from the BERT checkpoints, which

means that the vocabularies are built with general-domain

texts (similar to BERT) as well as the initialization of the

embeddings.

C. Lexical and Syntactic features

The embeddings of stems and POS tags are also computed

and added as extra-features. Stems provide lexical information

that correspond to the words reduced to their word roots,

without needing to be an existing word in the dictionary. Stems

are obtained by applying a set of rules to remove attached

suffixes and prefixes (affixes) from terms without considering

the POS or the context of the word occurrence [27]. POS

tags represent syntactic information that provides the categor-

ical differences of the words according to their functions in

meaning and grammatically within the sentence. POS tagging

consists on automatically obtaining the POS tag of each word

among the different POS categories corresponding to their
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syntactical role [28]. For this work, the stems of the words are

obtained using the ‘Snowball Stemmer’ module from NLTK-

3.4.5 2, while the POS were obtained using spaCy-3.0.0 3,

using ‘en core web sm’, a pipeline developed for biomedical

data. The embeddings of the stems and POS tags are summed

to the rest of the embeddings (token, position and segment)

calculated by the transformer models.

D. Parameters Settings

All the experiments are done with PyTorch, using the Trans-

formers 4 library and the models were taken from Hugging

Face 5. The transformer models are trained using the original

parameters from BERT, presenting a dropout probability for

the attention heads and hidden layers of 0.1, a hidden size of

768, an initializer range of 0.02, a max position embeddings of

512 and an intermediate size of 3,072. The number of attention

heads and hidden layers was 12 for both. ‘Adam’ was used

as optimizer and ‘gelu’ as activation function. The training

parameters of the classification layers, both linear and Bi-

LSTM, were set as follows; batch size of training and testing

sets of 16, learning rate of 1e-05 and max gradient norm of

10, since gradient clipping was included. The maximum length

of the sentences was set to 256. All the models were trained

during 100 epochs on the training set without applying early

stopping, and evaluated by measuring the precision (P), recall

(R) and F1-score.

V. RESULTS AND DISCUSSION

The evaluation results of the fine-tuning of the models for

event detection are shown in Table II. The approximate time

in hours for the fine-tuning of each model is presented in the

last column of the table. The highest results obtained in epochs

10, 30 and 100 are presented in bold, and the highest overall

results of all epochs are presented in bold and underlined.

First, we observe that SciBERT, which was pretrained from

scratch using biomedical and general data, obtained the best

results for each number of epochs and overall, in P, R and

F1. It presented higher values when Bi-LSTM was used as

classifier, especially when extra features were not added or

when the lexical feature is added in the case of the training

for 10 epochs. When the training was done for more than

10 epochs, the performance between SciBERT+POS (syntactic

feature) and SciBERT+stem (lexical feature) was very similar.

When the fine tuning was done using a linear classifier,

SciBERT+POS achieved the best results, having a difference

of around 10 % to when the lexical feature (SciBERT+stem)

is added. PubMedBERT, a model pretrained from scratch

using biomedical data, achieved the second best performance,

being below SciBERT by 4 % when the training is done

for 30 epochs, using Bi-LSTM as classifier and no adding

extra-features (which was the best overall result of SciBERT).

When PubMedBERT used Bi-LSTM as classifier, the results

2https://www.nltk.org/ modules/nltk/stem/snowball.html
3https://spacy.io/
4https://github.com/huggingface/transformers
5https://huggingface.co/

were very similar between adding the syntactic or lexical

features and not adding them. These results were also similar

to when a linear classifier was used and the extra features are

added, noticing that the result was worse when no features

were added. In the case of BERT, which was trained from

scratch using data from the general domain, it presented lower

results than PubMedBERT by around 5 %. The best results of

BERT were obtained using a linear classifier and not adding

extra features, noticing that the results of BERT+POS and

BERT+stem were slightly lower and very similar between each

other. This same behavior can be noticed when Bi-LSTM was

used as classifier. These three last transformer models, SciB-

ERT, PubMedBERT and BERT, presented some similarities

in that they were trained from scratch, used very comparable

text sizes for their pretraining and had similar vocabulary

sizes. The two models that presented the lowest performance

are BioBERT and BioMedRoBERTa, both pretrained from

the BERT weights, using biomedical and, biomedical and

general data, respectively, presenting the largest text sizes of

all the models. BioBERT used the smallest vocabulary for

its pretraining, while BioMedRoBERTa used the largest in

comparison to the rest of the models. In both models it was

observed that there was not significant change when adding the

extra features, although there was an improvement of around

7 % when using a Bi-LSTM classifier compared to a linear

classifier. In general, what can be noticed in all the models is

that adding the syntactic and lexical features does not improve

the performance for detecting biomedical events.

Fig. 3 shows the performance of fine-tuning SciBERT

during 30 epochs using a Bi-LSTM classifier on the seven

datasets separately. The F1-scores obtained using EPI, CG,

ID, GE’13 and PC were similar between each other, obtaining

values between 0.70 and 0.80. When GE’11 was used, the F1-

score reached a value of around 0.65 and when MLEE was

used, the model completely failed the detection of triggers.

In Fig. 4 it is observed the effect of fine-tuning SciBERT

over 30 epochs using a Bi-LSTM classifier without adding

extra-features by cumulatively adding each corpus one by one.

Below each corpus is shown the total number of classes by

adding each corpus. Recall was improved when CG and EPI

were used together, and then reduced as the rest of the corpora

were added. Precision was affected when EPI and GE’11 were

added. The behavior of recall and precision varied differently

depending on the added corpus, although when GE’13 was

added both values were comparable, and as might be expected

according to the observed on Fig. 3, when MLEE was added

the values were negatively affected. This behavior may be

due to the fact that when adding a new corpus for the fine-

tuning of the models, some classes may overlap between the

corpora while other classes do not, causing to probably have

less samples in the new classes and, therefore, affecting the

balance of the data. In addition, the context of the different

biomedical subdomains may also affect the performance, since

BERT and its variants compute embeddings considering the

semantics.

1214 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023



TABLE II
RESULTS OF THE MODELS’ FINE-TUNING FOR EVENT DETECTION

Classifier Model
10 epochs 30 epochs 100 epochs Time

P R F1 P R F1 P R F1 (h)

Linear
BERT 0.57 0.67 0.62 0.60 0.68 0.64 0.62 0.68 0.65 13
BERT+POS 0.58 0.61 0.59 0.62 0.63 0.62 0.64 0.64 0.64 14
BERT+stem 0.62 0.58 0.59 0.67 0.57 0.61 0.66 0.62 0.63 18

Bi-LSTM
BERT 0.59 0.57 0.57 0.67 0.58 0.62 0.65 0.64 0.64 19
BERT+POS 0.46 0.59 0.51 0.58 0.62 0.60 0.61 0.63 0.62 21
BERT+stem 0.57 0.59 0.57 0.63 0.61 0.62 0.67 0.60 0.63 15

Linear
BioBERT 0.49 0.49 0.48 0.52 0.50 0.50 0.56 0.49 0.51 19
BioBERT+POS 0.54 0.44 0.47 0.49 0.51 0.49 0.51 0.51 0.51 16
BioBERT+stem 0.48 0.50 0.47 0.52 0.46 0.49 0.53 0.48 0.50 18

Bi-LSTM
BioBERT 0.60 0.39 0.45 0.60 0.56 0.58 0.64 0.56 0.59 14
BioBERT+POS 0.57 0.39 0.44 0.59 0.55 0.57 0.61 0.55 0.58 15
BioBERT+stem 0.54 0.50 0.50 0.61 0.52 0.56 0.59 0.57 0.58 20

Linear
SciBERT 0.59 0.64 0.61 0.61 0.65 0.63 0.70 0.70 0.70 11
SciBERT+POS 0.67 0.72 0.69 0.69 0.71 0.70 0.72 0.73 0.72 16
SciBERT+stem 0.56 0.62 0.58 0.61 0.62 0.61 0.64 0.62 0.63 13

Bi-LSTM
SciBERT 0.65 0.71 0.68 0.71 0.73 0.72 0.74 0.71 0.72 19
SciBERT+POS 0.55 0.56 0.54 0.70 0.71 0.70 0.73 0.70 0.71 22
SciBERT+stem 0.67 0.68 0.67 0.72 0.68 0.70 0.75 0.68 0.71 16

Linear
PubMedBERT 0.49 0.61 0.54 0.58 0.66 0.61 0.58 0.62 0.60 14
PubMedBERT+POS 0.63 0.68 0.65 0.64 0.68 0.66 0.68 0.67 0.67 16
PubMedBERT+stem 0.62 0.66 0.64 0.66 0.67 0.66 0.70 0.67 0.68 18

Bi-LSTM
PubMedBERT 0.57 0.65 0.61 0.66 0.69 0.67 0.67 0.69 0.68 19
PubMedBERT+POS 0.58 0.65 0.61 0.67 0.66 0.66 0.69 0.67 0.68 17
PubMedBERT+stem 0.59 0.66 0.61 0.66 0.69 0.67 0.70 0.66 0.68 18

Linear
BioMedRoBERTa 0.48 0.49 0.47 0.52 0.52 0.51 0.55 0.50 0.52 14
BioMedRoBERTa+POS 0.52 0.56 0.53 0.55 0.51 0.52 0.55 0.53 0.54 13
BioMedRoBERTa+stem 0.50 0.53 0.51 0.51 0.51 0.51 0.53 0.54 0.53 18

Bi-LSTM
BioMedRoBERTa 0.58 0.50 0.53 0.60 0.57 0.58 0.69 0.53 0.59 19
BioMedRoBERTa+POS 0.51 0.56 0.52 0.61 0.53 0.56 0.62 0.56 0.58 15
BioMedRoBERTa+stem 0.51 0.54 0.52 0.57 0.59 0.57 0.60 0.59 0.59 15

Fig. 3. Fine-tuning SciBERT on the different corpus (Bi-LSTM classifier).

VI. CONCLUSIONS AND LIMITATIONS

In this work, we analyze BERT and four of its variants

for biomedical event detection using corpora of different

biomedical subdomains. By comparing the performance of

the models and by adding a lexical and syntactic features,

we found that fine-tuning SciBERT during 30 epochs using a

Bi-LSTM classifier is the best strategy to detect biomedical

events, especially if the additional features are not included.

Furthermore, it is shown that fine-tuning the models for 10

to 30 epochs achieves most of the model learning, while

Fig. 4. Fine-tuning SciBERT by cumulatively adding the corpus one by one
(Bi-LSTM classifier).

training for more epochs can only achieve a slightly better

result. One of the limitations of this work is the imbalance of

the data. Since some classes of the different corpora overlap,

the samples for those classes are increased, while the unique

classes for each corpora present fewer samples. This can

negatively affect the behavior of the models between the

different subdomains. Also, using external tools to get POS

tags and stems can lead to errors that are learned by the models

and may be one of the reasons why performance without

additional features achieves better results.
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