
Simulating Large-Scale Topographic Terrain

Features with Reservoirs and Flowing Water

Łukasz Błaszczyk, Michalina Mizura, Aleksander Płocharski, Joanna Porter-Sobieraj

0000-0002-9827-3562, 0009-0007-1683-6442, 0000-0002-7487-8153, 0000-0002-1411-475X

Warsaw University of Technology, Faculty of Mathematics and Information Science

ul. Koszykowa 75, 00-662 Warszawa, Poland

Email: {lukasz.blaszczyk, michalina.mizura.stud, aleksander.plocharski, joanna.porter}@pw.edu.pl

Abstract—The flow and accumulation of water are essential
aspects when it comes to generating realistic terrains. In this
article, we have set out to create a method for generating
the distribution and levels of water in a virtual world. Our
method fully simulates the water entering and exiting the system
through rainfall, perspiration, and flowing out of the domain.
Also, it simulates the phenomena of flow and accumulation
in an iterative process. According to our observations, only
allowing the user to influence the terrain and then simulating
the placement of water bodies provides a natural result while
preserving a high level of control.

I. INTRODUCTION

T
HE rapid growth of the game and movie industries has

generated a rise in demand for virtual worlds generation

methods, especially when generating realistic natural environ-

ments. Modeling the environment by hand is, of course, still

possible but only realistic when it comes to small parts of the

vast virtual worlds that have become common. The workforce

needed to create a whole extensive world by hand would be

too substantial to consider these days. That is why the need

for an automatic generation has drastically risen over the last

decade to shorten this possibly tedious process.

The field in recent years has been moving in various

directions depending on the use case being considered. Some

algorithms focus purely on generating realistic natural environ-

ments from a humble set of parameters. While these methods

usually provide very little control over the result, they are

strongly based on geological knowledge (like tectonic plates)

and climate data [1] and produce compelling results. These

algorithms provide the foundation for most automatic world

generation research. However, since the desired methods are

supposed to replace modeling by hand, the methods at the

forefront of interest usually provide much control over the

result while still retaining a satisfying level of realism. The

user may want to place mountain tops in certain specific places

or keep a section of the environment flat. Unfortunately, the

problem that arises seems to be that walking that thin line

between control and realism is not so obvious and means

that some natural processes might become neglected in the

generation process.

We have observed that one of the environmental aspects that

has a high chance of being treated like that is the placement

and flow of water bodies in the result. While the methods

usually aim for realistic placement of rivers and lakes, it

is achieved mainly by some heuristic metrics rather than

simulation loops. In most cases, the water bodies are just

placed according to the positions specified by the user, and

the environment is supposed to adjust independently to those

requirements.

Since the flow and accumulation of water are essential

aspects when it comes to keeping the veil of realism intact, we

have set out to create a method for generating the distribution

and levels of water in a virtual world. We have decided on

a method that fully simulates the process of water entering and

exiting the system (through rainfall, perspiration, and flowing

out of the domain) and also simulates the phenomena of flow

and accumulation in an iterative process. The method in itself

does not offer much control over the result. However, the

user can still use a terrain generation method which allows

for controlling the shape of the terrain and place valleys and

depressions in places where they want rivers and lakes to

appear, and by applying our algorithm after that, the likelihood

of meeting those water bodies placement expectations is very

high. We have observed that only giving the user the ability

to influence the terrain and then simulating the placement of

water bodies naturally usually provides a very natural result

while still preserving a high level of control based on our

human intuition of where water is most likely to flow in

a system of a given shape.

II. RELATED WORK

Terrain generation methods are usually grouped into two

distinct categories based on their output. The first and more

popular category is generating a heightfield representing the

resulting terrain. In contrast, the second group of algorithms

focuses on producing a three-dimensional output using various

volumetric structures.

We first examine the former category, which, while having

some apparent drawbacks – not being able to model things

like caves and overhangs – usually provides the performance

edge, which is invaluable for most iterative world creation

pipelines [2]. One approach to the problem of 2D generation is

constructing the terrain from primitive structures and defining

their connections using a tree structure [3]. The primitives

can be modeled by hand or generated from real-life data, for

instance, using point cloud data from photogrammetry [4]. The

Proceedings of the 18
th Conference on Computer

Science and Intelligence Systems pp. 385–392

DOI: 10.15439/2023F2137

ISSN 2300-5963 ACSIS, Vol. 35

IEEE Catalog Number: CFP2385N-ART ©2023, PTI 385 Thematic track: Multimedia Applications and Processing

method can yield compelling results, but the quality depends

on the artist’s skill in fitting those primitives together. While

still cutting much modeling time, this approach cannot guar-

antee realistic results and will only provide partially automatic

generation.

A significant subset of methods focuses on getting a more

realistic result by employing geological knowledge. One of the

aspects which can be used is the presence of tectonic plates

since the process of forming mountains is influenced mainly

by their movement and the placement of their borders. The

position and shape of the plates can be generated from features

that the user wants to appear in the final result, like the position

of mountain tops and rivers [5]. The tectonic plate information

can then be used to simulate the geological terrain folding pro-

cess. Another example of using geological knowledge would

be generating the resulting terrain using examples from the real

world. Various distributions of geological parameters can be

gathered for specific regions of the Earth, like the Himalayas

or Norwegian fjords. Given some user input like positions and

heights of mountain tops, the generation process can then try

to recreate those distributions in the virtual environment [6].

This can produce convincing and realistic results, but since the

output is majorly based on real-life data, it is limited to only

resembling naturally occurring environments.

Rough sketches of the desired results can also guide the

generation of terrains. The user could draw a 2D representation

of the required scene using color-coded shapes or control

points representing various topographical features like moun-

tain ridges, plateaus, rivers, etc. [7], [8]. Unfortunately, this

approach, like some of the methods mentioned above, suffers

from very varied levels of realism in the resulting terrain based

on the input data.

A good compromise between control and realism seems to

be allowing the user to create maps of geological parameters

that should be applied to the domain instead of specific

topographical features that must appear in the resulting terrain.

One such geological parameter is the tectonic uplift defining

the growth rate of a particular point in the two-dimensional

domain. The generation method can then simulate the growth

of mountain ranges using the geological data provided while

considering other factors like fluvial erosion [9].

Now we focus on the volumetric algorithms to briefly

overview the rest of the generation methods spectrum. After

adding dimension, a primitive-based modeling solution is still

an excellent way to produce a convincing environment. It

seems to be one of the most prominent methods for volumetric

generation. One possible approach is basing the primitive

structures on B-splines [10], which most artists are used to

working with. The result becomes more flexible since it can

model things like overhangs, allowing for smoother control

but straying further from geological realism. The terrain could

also be generated using a generalization of the previously

mentioned primitive tree-based method [11]. Unfortunately,

since the primitives must now be positioned across three

dimensions, the work required to create desired scenes sig-

nificantly increases.

There also exists a middle ground between the two repre-

sentations – each point on a flat plane could hold a series

of layers that are present above it together with their heights,

representing a narrow column of the resulting terrain. This

approach could either be used in conjunction with the standard

two-dimensional methods or be extended with the ability to

create a layer containing only air, allowing us to model things

like caves and overhangs [12].

What most of the described methods have in common is

that they treat the placement of water bodies in the result

more like an afterthought rather than a significant step of

the algorithm. Rivers and lakes are usually generated using

heuristic methods to fit the generated environment, or their

placement is dictated purely by the input data, which allows

for setting their positions by the user almost entirely.

To design our algorithm, we needed to choose a terrain

generation algorithm that would serve as a base for our water

flow simulation. We have decided on using the method by

Cordonnier at al. [9], which – apart from using the previously

mentioned uplift maps – also considers the flow of water to

be a significant factor in the process of erosion that is being

simulated. This allowed us to use some of the water flow data

structures already present in the solution as a jumping-off point

for our method.

III. METHOD

A. Starting off point

The base method [9] operates over domain Ω ⊂ R
2 and

aims to compute the function h : Ω → R representing the

height of the terrain at each domain point. During the initial-

ization step the method generates a terrain graph G defined

over a discretization of the domain achieved by computing the

Voronoi cells of points distributed over the domain using the

Poisson distribution. In order to perform the fluvial erosion

step the algorithm also computes a directed stream graph GS ,

based on the same nodes as graph G, representing the water

flow in the system, which serves as the foundation of our

method.

Each node v in the graph GS is represented by the cell’s

surface area av and a generating point pv . The edges in

the graph GS represent the flow of water. Each node is

connected to its lowest (in terms of height during this iteration)

neighboring region, apart from points on the very edge of the

domain where we assume the water flows out of the system.

This creates disjointed components in the graph GS (each

in a form of a directed tree with the lowest - in terms of

height - node forming the root), which in the original method

are called lakes. Connection between these trees are stored

in a separate lake graph GL with edges defining the lowest

connection between them - the minimum height at which one

lake would start overflowing to the other.

The base method performs an additional step to merge the

trees in GS (representing lakes) into a complete graph. This is

done by connecting them according to the connections in GL.

The algorithm allows itself to do that based on the assumption

that all lakes are fully filled at all times – an assumption that

386 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

we reject in the design of our method. That is why our solution

is based on a disconnected stream graph; any mentions of it

from now on will refer to this version.

At the base level of the solution, we have also incorporated

different types of rock layers into the terrain representation

[13]. Each point in the domain bears the characteristics of all

layers below it with appropriate weights. This modification im-

proves the overall realism of the result but does not influence

the structure of the proposed water accumulation algorithm.

B. Algorithm modification

Algorithm 1 presents a general description of our modified

fluvial erosion algorithm. A water accumulation step, per-

formed during each iteration, and a lakes computation step

have been added. Since a stream graph built for the current

elevation of nodes is required for the correct computation of

lakes, it is necessary to recreate this graph after the last change

in elevation caused by erosion.

Algorithm 1 Base fluvial erosion algorithm [9] extended by

adding water accumulation and lakes computation (underlined

sections)

Require: u {uplift map}, imax {maximum number of itera-

tions} and P {terrain sample points}

1: compute terrain graph G

2: for i = 1 to imax do

3: compute stream graph GS

4: update accumulated water level in G

5: update GS with edges resulting from lake overflow

6: compute the new elevation values h(v) after uplift and

erosion for v ∈ V (G)
7: end for

8: compute stream graph GS

9: update accumulated water level in G

10: compute the lakes list L

11: determine the elevation values h(p) for p ∈ P by interpo-

lating values h(v) for v ∈ V (G)
12: return h {elevation map} and L {lakes list}

1) Water accumulation: Each vertex v of the terrain

graph G stores information about the volume Vv of water

collected on the part of the terrain represented by this vertex.

The initial value of Vv is 0.

In this model, it was assumed that two factors had the most

significant impact on the change in the accumulated water

level: the increase in water resulting from precipitation and the

evaporation phenomenon. Let us consider the first one. Due to

the immense time scale of the simulation (millions of years),

we assume that the amount of water that will accumulate at

the bottom of the lake represented by its root v during a given

iteration will be proportional to the time δt of the iteration

and the basin area Av , i.e.,

V rain
v (t+ δt) = δt · rAv(t+ δt),

where r is a constant describing the amount of precipitation

per unit area.

The evaporation phenomenon leads to a partial loss of water

in each iteration. We assume that the amount of water that has

evaporated will be proportional to the iteration time and the

area of the considered lake. Studies on the characteristics of

natural lakes [14] have shown that the relationship between the

volume V of a lake and its water surface S is approximately

V ∼ S6/5. Thus, the volume of water lost can be written as:

V evap
v (t+ δt) = δt · eSv = δt · eV 5/6

v (t),

where e is a constant controlling the evaporation rate. Using

this approximation allows us to estimate the water loss due to

evaporation without repeatedly determining the actual areas of

the lakes.

The formula for changing the volume of water during an

iteration of δt is then:

∆Vv(t+ δt) = δt
(

rAv(t+ δt)− eV 5/6
v (t)

)

.

It is also worth noting that because each iteration of the

stream graph GS contains different connections, it is necessary

to traverse all the vertices belonging to a given subtree and

move the water accumulated in them so far to the current

root. This step is performed before calculating the change in

water volume so that water accumulated at other vertices can

also participate in evaporation. The water-shifting process is

illustrated in Figure 1.

In the stream graph GS created during each iteration of the

algorithm, roots of trees contained in GS do not have receivers

– water does not flow from them to another node. If the tree’s

root is at the edge of the terrain, we can assume that rainfall

water flows out of the domain. Otherwise, the water should

stagnate in the area of the tree (starting from the root), creating

a lake.

2) Computing and merging lakes: The key element of the

described modification is the algorithm for determining the

water level in each lake. The non-trivial nature of this task

results from the fact that more water can be accumulated

in the lake than the surrounding area can hold. Therefore,

a solution is needed that will allow for modeling the flow of

water between lakes, as well as combining several lakes into

5

2

4

(a) i-th iteration

5

2

4

(b) (i+ 1)-th iteration

7

4

(c) result

Fig. 1. The process of water shifting to its current roots in a stream graph. The
numbers in the vertices indicate the volume of water accumulated in them.
Different edge structure between iterations is caused by the erosion process
which changes the height of the nodes resulting in the need to update the
stream graph.

ŁUKASZ BŁASZCZYK ET AL.: SIMULATING LARGE-SCALE TOPOGRAPHIC TERRAIN FEATURES WITH RESERVOIRS AND FLOWING WATER 387

Algorithm 2 Determining the water level in lakes

Require: GS {stream graph}

1: GL ← lakes graph determined by GS

2: L← V (GL) {merged lakes set}

3: for all lakes k in V (GL) do

4: v ← root of k

5: V rem
k ← Vv {the water remaining to fill up is all the

water collected in the root}

6: V acc
k ← 0 {water accumulated in a given lake}

7: lk ← neighbor of k, to which the lowest passage from

k leads

8: V miss
k ← the amount of water needed to reach the

crossing height (k, lk)
9: end for

10: while the flow is non-zero or no lakes have merged do

11: s← network source, t← network sink

12: N ← empty lake network; V (N) = {L, s, t}
13: for all lakes k in L do

14: if V rem
k > 0 then

15: append to N arc (s, k) with capacity V rem
k

16: end if

17: if V miss
k > 0 then

18: append to N arc (k, t) with capacity V miss
k

19: else

20: append to N arc (k, lk) with capacity ∞
21: end if

22: end for

23: SCC ← set of strongly connected components in N

24: for all strongly connected components H in SCC such

that |H| > 1 do

25: collapse the vertices belonging to H into one pool m

26: determine lm and V miss
m

27: remove the component lakes and add a new merged

lake m to L

28: end for

29: F ← maximal flow in N

30: for all arcs coming from the source (s, k) in F do

31: subtract the flow value at (s, k) from V rem
k

32: end for

33: for all arcs entering the sink (k, t) in F do

34: add the flow value at (k, t) to V acc
k

35: subtract the flow value at (k, t) from V miss
k

36: end for

37: end while

38: for all lakes k in V (GL) do

39: hacc ← water level based on V acc
k

40: end for

41: return GL {graph of lakes supplemented with informa-

tion about the water level hacc}

one. The pseudocode of the developed algorithm is described

in Algorithm 2.

a) Computation of water volume and surface height:

During the algorithm, it is necessary to determine the volume

of water required to reach a certain surface height. We can

Algorithm 3 Determining the volume of water needed to reach

the given height of the surface

Require: GS {stream graph}, k {lake}, V acc
k {volume of

water accumulated in a given lake} and htarget {target

surface height}

V total ← 0
Q← empty queue

for all lakes l forming part of the combined lake k do

if root of l is below htarget then

append root of l to Q

end if

end for

while Q is not empty do

remove vertex v from Q

V total = V total + av · (htarget − hv)
for all nodes w in the set of children of v do

if hw < htarget then

append w to Q

end if

end for

end while

V miss
k ← V total − V acc

k

return V miss
k {the amount of water needed to reach a given

height}

approximate the volume of the lake by the sum of prisms

whose bases are the Voronoi cells of individual vertices of

the terrain graph located underwater, and the height is the

difference between the height of the surface hacc and the

height of the vertex hv . The volume approximation method

is illustrated in Figure 2 and described in Algorithm 3.

It is worth noting that the lake for which calculations are

made can be either a single tree in the stream graph or

a combination of several trees into one merged lake.

At the end of the lake computation algorithm, a reverse

operation is required, i.e., calculating the height of the water

surface based on the volume of collected water. The method

chosen for this purpose consists of gradually flooding the tops

of the lake to increase the height until the lowest unflooded

top is above the existing water surface. A detailed description

of this step is provided in Algorithm 4.

b) Finding strongly connected components: Strongly

connected components are essential in constructing a network

describing the water flow between lakes. They represent

(a) The actual volume of water in the
lake

v hv

hacc

(b) Approximating the volume of wa-
ter by the sum of the prisms

Fig. 2. Cross-section of an example lake filled with water to the level of
h
acc

388 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Algorithm 4 Determining the height of the lake surface for

a given volume of water

Ensure: GS {stream graph}, k {lake} and V acc
k {volume of

water accumulated in a given lake}

Q← empty priority queue {priority – lowest height}

V below
k ← 0 {volume of land under the lake}

Aacc
k ← 0 {surface area}

hacc
k ←∞

for all lakes l forming part of the combined lake k do

append root of l to Q

end for

while Q is not empty and the lowest vertex of Q is below

hacc
k do

remove the lowest vertex v from Q

Aacc
k ← Aacc

k + av
V below
k ← V below

k + av · hv

hacc
k ← V acc

k
+V below

k

Aacc

k

for all nodes w in the set of children of v do

if hw < hacc
k then

append w to Q

end if

end for

end while

return hacc
k {surface height}

groups of two or more lakes connected by passages at the same

height and filled with water at least up to that height. Adding

water to the system of lakes thus connected would result in

a combined rise in the level of all the constituent lakes. To

model this behavior, lakes belonging to the strongly connected

component are represented by one vertex when determining

the flow. This means that the water flow network and the lake

graph GL must be modified at each iteration, as shown in

Figure 3.

Tarjan’s algorithm [15] was used to find strongly connected

components in the directed lake graph GL. It allows us to

determine all such components in time O(V +E). Since each

vertex except sources and sinks has precisely one outgoing arc

in the considered network, the complexity, in this case, will

be O(M), where M is the number of lakes.

c) Computing the maximum flow: Flow in a network of

lakes allows the determination of the amount of water flowing

out of each lake and into each lake. The arcs from the source

to the lakes with the capacity of the collected water model

the water that directly flows into the basin of a given lake

due to precipitation. The arcs from the lakes to the estuary

with a capacity representing the volume to the lowest passage

represent the water accumulating in the basin. The arches

between the lakes allow water to flow through passages.

Push-relabel is the chosen algorithm for determining the

maximum flow in the network. An appropriate implementa-

tion of this algorithm [16] allows obtaining a complexity of

O(V 2
√
E), which in the case of the considered network is

O(M2
√
M).

6

8

4
5

6

5

6
3

7

9

7

2

2

2

(a) A lakes graph fragment with the
heights of the passages marked

(b) A flow network fragment with the
strongly connected component high-
lighted in orange

6

4

5

6

5

63

7

(c) A lakes graph fragment after the
collapse of the strongly connected
component. Only those edges incident
with the component, which have the
smallest height, are left

(d) A flow network fragment after
the collapse of the strongly connected
component

Fig. 3. Modification of the lakes graph and the water flow network as a result
of replacing the strongly connected component with one merged lake

d) Optimizations: The first optional optimization of the

lake computation algorithm is the step of joining pairs of lakes

for which the lowest passage is at the same level as both of

their roots. This situation occurs primarily in the first iterations

of the erosion algorithm when many vertices are at the same

level. This optimization will connect many lakes that consist

of only one vertex, significantly reducing the lake network’s

size.

The second optimization used consists of the lakes’ initial

filling with the water collected in them. This step is done after

executing the 8 line in Algorithm 2. For lake k, V acc
k becomes

min(V rem
k , V miss

k), and V rem
k and V miss

k will be reduced by

same amount. This means that if more water has accumulated

in the lake than is necessary to fill it, then already in the first

iteration of the lake computation algorithm, water from it can

flow to the remaining reservoirs.

3) Computational complexity: The water accumulation step

involves traversing the stream graph to move water from the

non-root vertices to the roots and determining a new value for

each lake’s water volume. Hence the complexity of this step

is O(N +M) = O(N), where N is the node count in stream

graph GS . Since each iteration of the basic fluvial erosion

algorithm requires O(L ·N +M logM) operations, where L

ŁUKASZ BŁASZCZYK ET AL.: SIMULATING LARGE-SCALE TOPOGRAPHIC TERRAIN FEATURES WITH RESERVOIRS AND FLOWING WATER 389

is the terrain layer count, adding a water accumulation step

does not affect the complexity of the iterations.

In order to determine the complexity of the lake determina-

tion algorithm, all steps described in the Algorithm 2 should

be considered. Determining the lakes graph in line 1 has

a complexity of O(N) due to the need to traverse all edges of

the terrain graph and its planarity. The loop in line 3 executes

M times, calling Algorithm 3 for each lake. However, since

within Algorithm 3, each vertex of the terrain graph will be

queued at most once, the total execution time for all iterations

of this loop will be O(N). The situation for the loop in line 38

is analogous, so this fragment also has a complexity of O(N).
Let us now consider the execution time of one iteration of

the lake determination algorithm. The complexity of the loops

in 13, 30 and 33 is O(M). Finding strongly connected compo-

nents using Tarjan’s algorithm also requires O(M) operations.

Collapsing them into one vertex is also O(M) complex.

This step involves traversing all the vertices of the found

components and updating the arcs in the network incident with

those vertices. We assume that we can find a specific arc and

then modify or delete it in constant time, which is possible,

for example, by using hash tables as collections of arcs. The

most demanding operation, with a complexity of O(M2
√
M),

is finding the maximum flow in the network.

The last key issue is the number of iterations performed

by the lake determination algorithm. The chosen stopping

condition means that in each iteration except the last one,

there must be either a combination of at least one strongly

connected component with a cardinality greater than 1 into

one lake or a non-zero flow.

Each iteration in which a newly merged lake is created

reduces the number of network vertices representing the lakes

by a minimum of one. This means that at most M −1 of such

iterations is possible.

The lake merging operation is the algorithm’s only element

that modifies the network structure between successive itera-

tions. This means that if the lakes do not connect, the network

in the next iteration will be the same network with the volumes

of the arcs minus the value of the last maximum flow, resulting

in zero flow. There can therefore be at most M iterations

in which the lakes do not merge. Hence the total number of

iterations is limited by O(M).
The total computational complexity of the lake determina-

tion step is O(N +M3
√
M). It is worth noting, however, that

the number of vertices in the network decreases with each

strongly connected component collapse, so in practice, later

iterations of the water level determination algorithm run faster.

4) Computation of lakes and the basic erosion algorithm:

In our modified fluvial erosion algorithm, water overflow

between lakes is a separate step independent of lake over-

flow during the iteration. This approach proved necessary to

preserve the realistic and varied resulting terrain.

The first attempts to extend the erosion algorithm consisted

of replacing the original overflow of lakes with a model that

would consider water stagnating in depressions. However, this

approach did not produce the expected results. Since the terrain

was almost flat in the first iterations, the water stagnated

at numerous points and led to the formation of craters. It

was, therefore, necessary to separate the overflowing and the

computation of lakes. The first of these stages allows us to

shape the relief, while the second only determines which

places in the existing area should be flooded with water.

5) Elevation computation for vertices on the boundary

of the domain: The original version of the fluvial erosion

algorithm described in [9] assumes that vertices of the terrain

graph located on the edge of the domain never change the

height. As a result, the edge of the resulting terrain is always

at 0. As the rest of the land is uplifted, this leads to the

formation of a steep slope along the entire length of the border.

This problem can be eliminated by determining the vertices’

elevations on the domain’s border in the same way as for

the other vertices. However, since some of these vertices do

not have receivers, it is necessary to modify the original

formula [9, eq. (2)].

The proposed modification consists in replacing the value

hw(t+ δt) with 0 and replacing the distance ∥pv −pw∥ with

a large constant, for example, the domain size. This is equiv-

alent to introducing artificial vertices of constant elevation 0
into the terrain graph, which are ignored when determining

rivers and lakes. So the formula for vertices without a receiver

is:

hv(t+ δt) =
hv(t) + δtuv

1 +
k
√

Av

D
δt

,

where D is the domain size.

Thanks to this modification, the resulting terrain has

a natural-looking edge. It gives the impression of a fragment

cut out from a larger area, allowing it to be used in various

applications without additional processing. In addition, the

terrain more accurately reflects the features marked on the

uplift speed map, giving the user more control over the

outcome.

IV. RESULTS ANALYSIS

The new proposed version of the whole terrain generation

algorithm has been implemented in C++ as an Unreal Engine 5

plugin. The plugin allows the user to generate terrain based on

required input parameters and save it in one of the available

formats. All reported results were obtained on a PC with an

AMD Ryzen 7 1700 3.0 GHz and 16 GB RAM, supplied with

an NVIDIA GeForce GTX 1080.

The algorithm’s parameters allow the user to control the

amount of water accumulating in lakes as well as decide the

threshold for considering a stream of water to be a river.

Figure 4 shows an example of the result of our method with

generated lakes and rivers on display.

Figure 5 demonstrates the influence of the water accumula-

tion parameters on resulting lakes. An increase in precipitation

creates an increase in water flow in the system, which raises

the water levels of the lakes, possibly even causing overflow

390 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

Fig. 4. Terrain with generated lakes and rivers

(a) Terrain with increased precipi-
tation

(b) Terrain with increased evapora-
tion rate

Fig. 5. The impact of water accumulation parameters on the resulting terrain

and joining some of them together. On the other hand, in-

creasing the evaporation rate causes the water levels to fall,

resulting in some of the lakes completely drying out.

Figure 6 shows the river network for different inclusion

threshold levels. Setting a high value for the threshold results

in highlighting only the most pronounced rivers in the basin,

while keeping the value low allows us to keep even the small

streams in the scene.

The computation time of the algorithm has been tested for

multiple input terrain parameter presets:

• Basic – a constant terrain uplift on the whole domain

• Perlin – uplift of the domain defined by 2D Perlin noise

• MountainSimple, MountainSteep – uplift map typical for

mountain regions; the second preset allows for steeper

slopes

• MountainLayers – uplift map typical for mountain re-

gions but with each layer subdivided into 5 additional

sublayers

The key aspect of the algorithm is the time required for

generating the terrain (Figure 7). The performed tests show

that generating the terrain in low resolution (a 5 km × 5

km region with mesh vertices about 2.5 m from each other)

takes from a dozen to several dozen seconds (Figure 7a). Such

a resolution is enough to give the user a general idea of the

topographical aspects of the resulting terrain. It allows for

a quick iterative process of refining the result. The highest

resolution (a 5 km × 5 km region with mesh vertices about

0.5 m from each other) in most cases computes in less than 30

minutes (Figure 7c) and allows the user to glimpse the precise

shape of the result.

In one specific case, the time is substantially lengthened.

When the uplift map is constant, the terrain remains mostly

(a) Terrain with a high river threshold (b) Terrain with a low river threshold

Fig. 6. The impact of the river threshold parameter on the resulting terrain

flat, resulting in a significant amount of puddles instead

of a handful of big lakes resulting in the apparent rise of

processing time (Fig. 7c) caused by the parts of the method

that are dependant on the number of lakes. The other parameter

set that was an outlier in terms of processing time, but this

time by not that big of a margin, was the Mountain Layers

preset. This is caused by the extended calculation time of the

erosion step since multiple layers need to be considered.

It is worth noting that since the node and edge counts in

the terrain graph are not dependent on the water accumulation

input data but only on the size of the terrain and the sampling

rate, the execution time of the lake generation process is

invariant to different input parameter sets.

The extension of the terrain generation algorithm by adding

the water accumulation and lake generation step impacts the

total processing time marginally. The only exception is the

Basic preset. However, since it is an artificial example created

only for the purposes of testing the processing time and

the method aimed at generating realistic environments, this

result can be disregarded. For the highest resolution examples

presented in the paper, the additional lake calculations only

take up from 15% to 23% of the total computation time.

V. CONCLUSION

The modification presented in this paper to the base fluvial

erosion algorithm [9] can allow the user to obtain diversified

terrains in a few seconds to several dozen minutes. While the

base method was only capable of generating terrains consisting

of topographical features such as mountains, hills, plains the

extension developed by us makes it possible to also add bodies

of water to that list – rivers and lakes. This creates a much

more natural looking environment since not only do we end up

with more diverse features in the result but all of these features

are also simulated simultaneously, interacting with each other

during the generation process and in turn leading to a more

lifelike result.

Rivers and lakes are created fully automatically. Rivers flow

from higher to lower terrain points and naturally join together.

Lakes form in natural depressions where water accumulates.

The user can suggest the desired locations of water reservoirs

by using the uplift velocity map.

During further research, the presented new version of the

algorithm, could also allow us to diversify the terrain’s shape

by changing the erosion result for submerged vertices. Such

ŁUKASZ BŁASZCZYK ET AL.: SIMULATING LARGE-SCALE TOPOGRAPHIC TERRAIN FEATURES WITH RESERVOIRS AND FLOWING WATER 391

(a) low resolution (5km×5km, vertices distance≈2.5m)
- 300 iterations

(b) medium resolution (5km×5km, vertices distance≈1.5m)
- 300 iterations

(c) high resolution (5km×5km, vertices distance≈0.5m)
- 300 iterations

Fig. 7. Execution time results for different resolutions

a change could depend on a total change in height for

all nodes belonging to a given lake or the phenomenon of

sedimentation. It is worth noting that in the described version

of the modified algorithm, it is not necessary to compute

lakes after each iteration. However, any method improvement

that would affect the erosion result for underwater vertices

will also require information about the water level during the

algorithm’s evaluation.

Further improvements of the method may also relate to the

user’s level of control over the final terrain – for instance the

ability to determine the location of water reservoirs. Currently,

the user can suggest where rivers and lakes should appear

using the uplift map, but their occurrence is not guaranteed.

An alternative is to add the option of forcing some connections

in the flow graph, freezing the height of selected vertices, or

imposing additional conditions on them, which would facilitate

the insertion of selected topographic features. This however,

could lead to some loss of realism over more control given to

the user.

ACKNOWLEDGMENT

The research was supported by Warsaw University of Tech-

nology faculty grant.

REFERENCES

[1] J.-D. Champagnac, P. Molnar, C. Sue, and F. Herman, “Tectonics,
climate, and mountain topography,” Journal of Geophysical Research:

Solid Earth, vol. 117, no. B2, 2012. doi: 10.1029/2011JB008348
[2] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on

procedural modelling for virtual worlds,” Computer Graphics Forum,
vol. 33, no. 6, pp. 31–50, 2014. doi: 10.1111/cgf.12276

[3] J.-D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet, F. Gros-
bellet, and B. Benes, “Terrain modelling from feature primitives,”
Computer Graphics Forum, vol. 34, no. 6, pp. 198–210, 2015. doi:
10.1111/cgf.12530

[4] M. Luckner and K. Rzążewska, “3D model reconstruction and evaluation
using a collection of points extracted from the series of photographs,”
in Proceedings of the 2014 Federated Conference on Computer Science

and Information Systems, 2014. doi: 10.15439/2014F304 pp. 669–677.
[5] E. Michel, A. Emilien, and M.-P. Cani, “Generation of folded terrains

from simple vector maps,” in Eurographics 2015 short paper proceed-

ings. The Eurographics Association, 2015. doi: 10.2312/egsh.20151019
[6] O. Argudo, E. Galin, A. Peytavie, A. Paris, J. Gain, and E. Guérin,

“Orometry-based terrain analysis and synthesis,” ACM Transac-

tions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019. doi:
10.1145/3355089.3356535

[7] D. B. Adams, “Feature-based interactive terrain sketching,” Master’s
thesis, Brigham Young University, 2009. [Online]. Available: hdl.lib.
byu.edu/1877/etd3221

[8] S. T. Teoh, “River and coastal action in automatic terrain
generation,” in Proceedings of the 2008 International Conference

on Computer Graphics and Virtual Reality, 2008, pp. 3–9.
[Online]. Available: citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=316be57e56662a0113a5678eb29dd5b3b951694a

[9] G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie,
and E. Guérin, “Large scale terrain generation from tectonic uplift and
fluvial erosion,” Computer Graphics Forum, vol. 35, no. 2, pp. 165–175,
2016. doi: 10.1111/cgf.12820

[10] M. Becher, M. Krone, G. Reina, and T. Ertl, “Feature-based volumetric
terrain generation and decoration,” IEEE Trans. Vis. Comput. Graphics,
vol. 25, no. 2, pp. 1283–1296, 2019. doi: 10.1109/TVCG.2017.2762304

[11] A. Paris, E. Galin, A. Peytavie, E. Guérin, and J. Gain, “Terrain
amplification with implicit 3d features,” ACM Transactions on Graphics

(TOG), vol. 38, no. 5, pp. 1–15, 2019. doi: 10.1145/3342765
[12] A. Peytavie, E. Galin, J. Grosjean, and S. Mérillou, “Arches:

a framework for modeling complex terrains,” Computer Graphics

Forum, vol. 28, no. 2, pp. 457–467, 2009. doi: 10.1111/j.1467-
8659.2009.01385.x

[13] G. Cordonnier, M.-P. Cani, B. Benes, J. Braun, and E. Galin, “Sculpting
mountains: Interactive terrain modeling based on subsurface geology,”
IEEE Trans. Vis. Comput. Graphics, vol. 24, no. 5, pp. 1756–1769, 2017.
doi: 10.1109/TVCG.2017.2689022

[14] B. B. Cael, A. J. Heathcote, and D. A. Seekell, “The volume and mean
depth of Earth’s lakes,” Geophysical Research Letters, vol. 44, no. 1,
pp. 209–218, 2017. doi: 10.1002/2016GL071378

[15] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972. doi:
10.1109/SWAT.1971.10

[16] J. Cheriyan and S. N. Maheshwari, “Analysis of preflow push algorithms
for maximum network flow,” SIAM Journal on Computing, vol. 18, no. 6,
pp. 1057–1086, 1989. doi: 10.1137/0218072

392 PROCEEDINGS OF THE FEDCSIS. WARSAW, POLAND, 2023

